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Design of all-optical, hot-electron 
current-direction-switching device 
based on geometrical asymmetry
Chathurangi S. Kumarasinghe1, Malin Premaratne1, Sarath D. Gunapala2 & 
Govind P. Agrawal3

We propose a nano-scale current-direction-switching device(CDSD) that operates based on the 
novel phenomenon of geometrical asymmetry between two hot-electron generating plasmonic 
nanostructures. The proposed device is easy to fabricate and economical to develop compared to most 
other existing designs. It also has the ability to function without external wiring in nano or molecular 
circuitry since it is powered and controlled optically. We consider a such CDSD made of two dissimilar 
nanorods separated by a thin but finite potential barrier and theoretically derive the frequency-
dependent electron/current flow rate. Our analysis takes in to account the quantum dynamics of 
electrons inside the nanorods under a periodic optical perturbation that are confined by nanorod 
boundaries, modelled as finite cylindrical potential wells. The influence of design parameters, such 
as geometric difference between the two nanorods, their volumes and the barrier width on quality 
parameters such as frequency-sensitivity of the current flow direction, magnitude of the current flow, 
positive to negative current ratio, and the energy conversion efficiency is discussed by considering a 
device made of Ag/TiO2/Ag. Theoretical insight and design guidelines presented here are useful for 
customizing our proposed CDSD for applications such as self-powered logic gates, power supplies, and 
sensors.

Highly enhanced electric fields produced by localized surface plasmons inside plasmonic nano-particles can gen-
erate a high-energy non-equilibrium electron gas1,2 referred to as hot electrons. A fraction of these hot electrons 
often have sufficient momentum to cross the potential barrier at the nano-particle boundary and enter neighbor-
ing materials3,4. This is a fundamental process that has been found useful for many applications such as photo-
voltiacs5,6, photocatalysis3,7,8, nano-scale imaging9 and photodetection10. In this paper we exploit this process for 
designing a novel optically controlled, current-direction-switching device.

The number and the energy distribution of hot electrons generated inside a nano-particle depends strongly on 
its shape and size1,2, in addition to the nature of its composition, excitation power, excitation frequency, and die-
lectric properties of the surrounding medium11,12. Therefore, when two nano-particles that are dissimilar in shape 
or size are optically excited under similar conditions, one nano-particle can be expected to produce more higher 
energy electrons than the other due to this geometrical asymmetry. If they are separated by a finite potential bar-
rier, a net flow of electrons (i.e., a net photo-current) from one particle to the other can be expected. Moreover, 
the direction and the magnitude of this current would depend on the excitation frequency. This process will 
leave one nano-particle positively charged and the other negatively charged. When an electron donor/receptor 
mechanism, such as an external circuit connecting both nano-particles, is available to transport the transferred 
holes/electrons and to maintain the charge neutrality, a continuous net electron flow can be expected. Clearly, this 
process can be exploited to develop a novel optically controllable nano-scale circuit element, capable of absorb-
ing energy from an optical field to drive a current in the connected circuit, with the direction of the current 
switched via the applied field frequency. Moreover, the ability to control the internal electric field enhancement 
and the quantum-mechanical properties of nano-particles via their composition, shape and dimensions2,13 gives 
one the flexibility for tailoring the switching frequencies of such devices. Owing to this behaviour, we refer to 
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such a devices as the current-direction-switching-device (CDSD) in this paper. Such nanoscale, optically con-
trolled, power supply devices will allow designing self-powered logic-gates for energy/information processing, 
bio-sensors, optical sensors and power supply units, leading to nano and molecular circuits that can function 
without external wiring.

Similar CDSDs based on semiconductor-semiconductor or semiconductor-metal structures14–16 and mol-
ecules17–20 have been reported in literature. However, in almost all cases they are based on fluid solutions and 
consist of subtle molecules or semiconductors, acting as light harvesting media. Their operation is mainly based 
on difference in material propertied rather than difference in geometry, requiring multiple complex materials 
for construction. To our knowledge, the possibility of switching a plasmon-induced photo-current direction 
based on the geometrical asymmetry of nano-particles has not been discussed so far in the published literature. 
Such systems can offer higher mechanical and chemical stability than the existing fluid-based molecular sys-
tems. Furthermore, the use of metallic nano-particles as a light-harvesting medium is more desirable compared 
to bulk-metals, semiconductors or molecules, since plasmon-enhanced electric fields in metallic nano-particles 
can generate hot electrons more efficiently than the direct electron excitation mechanism used in other media. 
However, molecular-scale components have the potential for higher packing densities enabling highly miniatur-
ized electronic circuits. Therefore, a hybrid approach involving a combination of molecular components with 
nano-scale power supply may be better suited in practice for developing electronic circuits.

It has been shown experimentally in the context of light-harvesting applications that a sustainable electron 
flow in a circuit based entirely on optically excited electrons generated from a metallic nano-structure is possi-
ble3,4,21. For example, an efficient solar water-splitting system with light as the only energy input has been demon-
strated3. Its operation is based on Ag nanorods with TiO2 caps that are submerged in water. A portion of electrons 
generated in an Ag nanorod passes through TiO2 and is eventually transferred to ionized hydrogen in water, 
generating H2 and leaving the nanorod positively charged. Electrons from the oxygen ions enter the Ag nanorod 
to resupply it with electrons, ultimately creating an electric circuit for the electron flow. Also, the ability to extract 
and inject hot electrons from plasmonic nano-particles to molecular electronic devices, has been experimentally 
demonstrated in a system consisting of Au nano-particles linked to thiophenylethynyl-terminated porphyrin 
molecules6 where a hot-electron based current was clearly observed in the molecular structure. Such observa-
tions confirm the possibility of generating a continuous photo-current from plasmonic nano-particles that can be 
injected to a molecular- or nano-structure22 acting as the external circuit.

The efficiency of hot-electron generation and injection depends significantly on the frequency-dependant 
enhancement of the electric field inside a nano-particle, which is essentially decided by its shape. Rod-like or 
ellipsoidal shapes supporting a longitudinal plasmon resonance have been proven to be more efficient than other 
basic shapes such as nanospheres, nanocubes or nanopallets1,2. Furthermore, the direction of the applied elec-
tric field relative to the nano-particle-barrier interface has a high influence on the generation of hot electrons 
with correct momentum orientation for injection over the barrier. Therefore, when designing self-powered 
hot-electron based CDSDs, a ‘rod-like’ shape is most suitable for the plasmonic nano-particle together with an 
optical field polarized along its longitudinal direction.

The non-equilibrium excited electrons relax into lower energy levels by emitting photons, distributing their 
energy to other electrons (in several hundred femtoseconds), and transferring energy to the lattice within 
a few picoseconds23–25. For this reason, the injection of hot-electrons over an energy barrier should happen 
before electrons lose energy through relaxation processes. On the other hand, such fast relaxation allows the 
hot-electron-based devices to have switching speeds approaching terahertz frequencies26.

In this work, we have designed an all-optical, nano-scale, hot-electron CDSD by using two dissimilar metallic 
nanorods, separated by a thin potential barrier in the middle. The proposed structure require only two materials 
that can be found in abundance: a plasmonic metal such as gold or silver and a wide-band-gap semiconductor 
such as TiO2. Such a device is easy to fabricate and is also economical compared to most other existing designs 
found in literature, which are made of complex molecules or multiple semiconductor-insulator layers. A contin-
uous photo-current with the direction controllable via the operating frequency, can be injected from this CDSD 
to a molecular or a nano-structures acting as the external circuit. Moreover, since this CDSD is powered and 
controlled optically, it can be used to build all-optical nano/molecular circuits.

Typically, Fowler’s theory is used to quantify the rate of electron injection from a metal to another material 
in contact27. This theory assumes an isotropic distribution of electron momentum orientations inside the metal, 
which is not the case for small nano-particles with dimensions less than the electron mean free path28. At ener-
gies close to the Fermi energy, the electron mean free path for metals used for hot electron generation such as 
silver and gold have reported values of 50 nm and 40 nm, respectively29,30. Therefore, for nano-structures such 
as the ones used in our design, a quantum-mechanical model incorporating the shape, size and composition 
specific effects of nonuniform electron energy distribution has to be developed. We model the behaviour of elec-
trons inside the plasmonic nano-particles of our proposed CDSD by using the wave function for an electron 
confined to a finite potential well and consider the effect of the internal electric field as a periodic perturbation 
causing electronic transitions among energy levels. Similar models have been successfully applied for mode-
ling hot-electron generation in isolated geometries such as nanorods, nano-pallets, nano-cubes1,2,31, and nano-
spheres32. These results have been successfully matched with those obtained with the density functional theory 
(DFT), an high-accuracy ab-initio approach that includes quantum-mechanical many-body effects but is limited 
to smaller nano-particles (dimensions < 5 nm) owing to its excessively high computational costs.

Theoretical Formulation
As shown in Fig. 1, we consider two metallic nanorods of different lengths L1 and L2 but the same radius R. Both 
nanorods are made of the same material but are separated by a thin potential barrier of width w. The barrier 
height is given by  φ= +U e B1 F , where F  is the Fermi level of the metallic nanorods and eφB is the potential 
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difference between F  and the conduction band of the barrier material (see the bottom part of Fig. 1). We assume 
that our structure is connected to an external circuit that allows flow of electrons. As seen in the figure, U2 is the 
potential-barrier between the external circuit and the nano-particle.

When the nanostructure shown in Fig. 1 is optically exited with an electric field oriented along the nanorod 
length, hot electrons are generated in both nanorods. A fraction of these electrons attain sufficiently high energy 
with desired momentum orientation to cross the potential-barrier in the center and enter the neighboring nano-
rod. The electric field enhancement in two nanorods is different owing to the difference in their lengths. Also, 
the electron wave-functions and energy levels in each are different due to differences in electron confinement. 
Consequently, the energy distribution of hot electrons generated and the number of electrons that cross the 
potential-barrier turn out to be unequal for each nanorod. This results in a net electron flow across the barrier 
from one nanorod to the other, generating a net electron flow in the connected external circuit. Since, which 
nanorod generates more high-energy electrons is decided by the excitation frequency, the direction of the net 
current flow over the barrier is controllable via the excitation frequency. In this paper, we refer to current flow 
from NR1 to NR2 as being positive (and from NR2 to NR1 as being negative).

In the following, we first outline the procedure for deriving a general expression for the net electron flow over 
the potential-barrier separating two nano-particles. Then we apply this expression to the nanostructure in Fig. 1 
by calculating the wave functions and electron energy levels for the nanorods in the presence of an internal elec-
tric field while also paying attention to the specific nature of their boundaries.

General expression for the rate of electron flow.  As discussed in the Methods section, the 
time-dependent transition probability for an electron from an initial state i to a final state f under an external 
perturbation V′ (r, t) can be written as

 ∫ ψ ψ ω( ) = − ( ) ′( , ′) ( ) ( ′) ′ ,
( )

P t
j

V t j tr r r1 exp dt
1if

t
f i fi

0

2

were  π= /( )h 2 , h is the Plank’s constant, t is the time measured from the start of the perturbation, ψ ( )rf  and 
ψ ( )ri  represent electron’s wave functions in the final and the initial states, and ωfi is the energy difference between 
these two states. The rate of electron excitation  ω( )if  can be obtained by taking the derivative of Pif(t) with 
respect to time. For a sinusoidal perturbation at frequency ω, i.e. ω ω′( , ) = ′( ) ( ) + (− )V t V j t j tr r [exp exp ], this 
rate is found to be

Figure 1.  Schematic showing generation of hot electrons inside two metallic nanorods (NR1 and NR2) and 
their injection from one nanorod to the other over a potential barrier. The incident light is propagating in the 
direction of the wave vector k0 with its electric field E0 oriented along the length of nanorods. The bottom part 
shows the energy-band diagrams before and after the optical excitation.
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where i  and f  are eigen-energies of the initial and the final states of the transition and δ ω− ,f iE E �  is the Dirac 
delta function.

In deriving Eq. (2) from Eq. (1) we have assumed that the duration of the perturbation, t is much greater 
than the electron relaxation time associated with electron-electron collisions33,34. This allows us to use the 
approximation
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Electrons that are excited to high energy states either surmount the potential barrier and reach the other 
nano-particle or reflect off the barrier due to scattering events. The probability of an electron with energy f  
crossing the barrier can be written as35,36,

( )
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where m′  is electron’s effective mass and τs is electron’s scattering time in the barrier. As expected, higher energy 
electrons have a larger probability of crossing the barrier. In nanometer-sized semiconductor particles, the mag-
nitude of band bending is negligibly small37,38 and therefore safely discarded in our derivations.

By summing  ω( )if  over all possible initial and final electron states and accounting for the barrier loss and 
electron availability, the transfer rate of hot electrons from one nano-particle to the other nano-particle can be 
obtained as

N R∑∑ω ω( ) = ( ) ( ) ( )( − ( )),
( )

P f f1
5i f

if f F i F fbarrier   

with ( )f F k  indicating the Fermi distribution associated with an electron of energy k . The multiplication factors 
( )f F i  and ( − ( ))f1 F f  account for the the probability of finding an electron in the initial state i and the prob-

ability of finding the final state f empty during a transition. This equation has been multiplied by a factor of 2 to 
account for electron’s spin and by a factor of 1/2 to account for the probability of the excited electron having its 
momentum towards the barrier (instead of the opposite direction). However, the two factors simply cancel each 
other.

If  ω( )particle1
 and  ω( )particle2

 represent the hot-electron transfer rates from each nano-particle to the other 
particle, the general expression for the electron flow rate between the CDSD and the external circuit can be writ-
ten as

I N Nω ω ω( ) = ( ) − ( ) . ( )6particle1 particle2

This equation can be used for any nano-particle shape after substituting relevant perturbing potentials along 
with electron wave functions and energy levels. In the following sections we apply it for the CDSD described in 
Fig. 1 and consisting of two nanorods.

Perturbing potential inside the nanorods.  The time-dependent external electric field 
ω ω ω( ) ( ) + (− )j t j tE [exp exp ]0  of the incident light is assumed to be linearly polarized along the longitudinal axis 

of nanorods since longitudinal modes of electrons show higher field enhancement than the transverse modes in 
rod-like shapes39. We write the amplitude of the internal electric field in the form E(ω) =  γ(ω)E0(ω), where γ(ω) 
is the the enhancement factor induced by localized surface plasmons. This factor depends strongly on the shape 
of the nano-particle and its orientation with respect to the applied field, in addition to the dielectric properties of 
the nano-particle and the surrounding medium40. Since it is known that the plasmonic behaviour of a rod-like 
shape is quite close an ellipsoid when its aspect ratio (length/radius) is high, we assume that the internal electric 
field is oriented parallel to the external field41,42. The enhancement factor then takes the form1,
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where ℘ is the volume of the nano-particle.
The perturbing potential can now be written considering ρ= ( , Φ, )zr  in cylindrical coordinated as

γ ω ω′( ) = ( ) ( ) , ( )V q zr E 80

where q is the charge of an electron. By substituting Eq. (8) in Eq. (2) we obtain the electron transition rate as
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Here, we have used the quantum mechanical relationship between the position operator r and the momentum 
operator = − ∇p j  in the form43,
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Energy eigenstates of an electron inside a nanorod.  Assuming that conduction electrons in a metal-
lic nanorod act as free particles in a cylindrical potential well and the nanorod boundary acts as an infinite 
potential-barrier except in the longitudinal direction, the Schrödinger equation for a single electron can be writ-
ten in cylindrical coordinates as

µ
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where L is the length of the nanorod under consideration. As shown in Fig. 1, U1 and U2 denote the heights of the 
potential barriers on two sides of a nanorod. Owing to the cylindrical symmetry, we can employ the method of 
separation of variables and write the wave function in the form

ψ ψ ρ ψ ψ( ) = ( ) (Φ) ( ), ( ), zr 13k n m m l

where the integers ≥n 0, ≥m 0 and l ≥  0 are quantum numbers corresponding to a particular electron state k. 
Here, ψ ρ( ),n m , ψ (Φ)m , and ψ ( )zl  represent the radial, azimuthal and longitudinal components of the wave func-
tion respectively. The electron energy of state k can be written as,

= + , ( ), 14k n m l  

with  ,n m representing the radial and azimuthal components and l  representing the longitudinal component.
After applying the orthonormal property of the radial and azimuthal components of the wave function we can 

simplify Eq. (9) as
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where the quantum numbers mi, ni and li coorespond to state i and mf, nf and lf correspond to state f. It is clear in 
Eq. (15) that the conditions mi =  mf and ni =  nf are required for  ω( )if  to be non-zero, and we need to consider 
in our analysis only those transitions that change the longitudinal quantum number. Physically, this condition is 
imposed because the applied electric field is along the longitudinal axis of the nanorod, and the internal electric 
field is in the same direction as the applied field.

The electron is confined by infinite boundaries in radial and azimuthal directions according to Eq. (12) and 
therefore the quantized electron energies  ,mi ni and  ,mf nf , required for further calculations can be easily found as 
shown in the Methods section. However, finding the longitudinal components ψ ( )zli , ψ ( )zlf ,  li and lf  is more 
complicated owing to the finite nature of longitudinal boundaries. To find these we assume that prior to excitation 
electrons reside in an energy state below the Fermi level F , which is less than both U1 and U2, and all final energy 
states of interest have longitudinal energies larger than U1 and U2. As shown in the Methods sections, two sets of 
solutions needs to be found for Eq. (11) for these two situations33. From these solutions it is clear that  i is quan-
tised. However, f  is not quantized because  lf  is continuous as it is greater than both U1 and U2 i.e., in the  
final state the electron is unconfined in the longitudinal direction.

Electron flow over the barrier as a function of frequency.  After substituting the initial and final wave 
functions derived in the Methods section (Eqs (30) and (36)) into Eq. (15), we obtain the transition rate in the form
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In the Methods section it is described how to find the values of Cli, Clf , Dli, Dlf , k2li and k2lf in terms of L, i  and 
f . The variable Linf is a fictitious length of confinement that is introduced for the ease of final eigen states deriva-
tion, which is removed at a later stage.

Because of the existence of a continuum of final states we can write the summation over discrete final states in 
Eq. (5) as an integration over energy f

43. The result is

N R∫∑ω ω ω
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We can safely approximate the probabilities of finding the state i  occupied and state  f  empty given by 
( )f F i  and ( ( )− f1 F f  as unity because  <i F and  >f F in all situations of interest. By substituting 

Eq. (16) in this equation, we finally obtain the bound-to-continuum electron transfer rate for a nanorod:
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The electrons will initially occupy a state below the Fermi level. After the transition, in order to be injected to 
the barrier, electrons should have longitudinal energy greater than the barrier indicated by > Ulf 1 . Therefore 
considering a linear single-photon absorption, the limits of the summation for the quantum number i =  {mi, ni, li} 
can be given as,

ω− < ≤ , ≤ ≤ − . ( ),U 0 20li ni mi li1 F F� E E E E E

The most important feature of Eq. (19) is that the electron transfer rate depends on the length of the nanorod 
and is different for the two nanorods in Fig. 1 because of their different lengths. We can calculate the net current 
flowing through the circuit by using

I N Nω ω ω( ) = ( ) − ( ) ( )21N R N R1 2

where the subscripts indicate the two nanorods of different lengths. We present the numerical results based on 
Eqs (19) and (21) in the next section.

Results and Discussion
We consider a CDSD whose two nanorods made of silver are separated by a thin TiO2 barrier. TiO2 is selected as 
the barrier material because it has a wide-band-gap of 3.3 eV and it does not absorb radiation below this band-gap 
value. Therefore, in the frequency range 1.5 to 3.3 eV, we can neglect any contribution from excited electrons in 
TiO2 to the net electron flow. It is important that the barrier material does not generate excited electrons contrib-
uting to the electron flow because we do not have control over the direction of such electrons. Also it could create 
more resistance for the electrons crossing the barrier. Silver is selected as the plasmonic metal for the nanorods 
due to its strong interaction with light.

The parameter U1 can be found as  φ χ+ ( − )e mF , where φm is the work function of Ag (in the range  
4.26–4.72 eV)44 and χ is the electron affinity of TiO2 films (about 3.9 eV)45–47. This gives U1 =  0.8 eV for our 
CDSD, and this barrier height is adjustable by changing the materials used. For example by using Ag with SiC 
poly-types for which the electron affinity can be varied between 2.33–4.00 eV48,49, barrier height can be adjusted 
between 0.70–1.57 eV. For all calculations, we assume the potential-barrier U2 between the nanorods and the 
external circuit is 0.5 eV.

Figure 2 shows the electric field distributions, electric field enhancement factors and the resulting hot-electron 
injection rates for the two nanorods along with their differences. It can be seen from Fig. 2(a) that electric field 
enhancement factors are different in the two nanorods, and this difference is frequency dependent, showing neg-
ative and positive peaks at certain frequencies. For instance, NR1 is at resonance around 1.5 eV while NR2 is not. 
Therefore, as shown in the cross section view, the electric field intensity inside NR1 in general is much stronger 
than in NR2 at this frequency, generating a field asymmetry inside the CDSD. This contributes to unequal hot 
electron generation in nanorods and as a result a net current flow from NR1 to NR2. However the field asymmetry 
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is reversed around 2 eV, where the electric field inside NR2 in general appears to be much stronger than in NR2 
due to resonance, contributing to a net electron flow from NR1 to NR2. Figure 2(b) illustrates how the current flow 
over the barrier from each nanorod is variable with the frequency. When  ω( ) is positive, the current flow is from 
NR1 to NR2; the direction reverses when  ω( ) is negative. When comparing Fig. 2(a,b), it is apparent that, as a 
general trend, peak values in  ω( ) correspond to the peaks in the enhancement factor difference. Figure 2(c) 
shows  ω( ) on a logarithmic scale and shows more clearly the nature of frequency dependant direction switching. 
The main thing to note is that both the magnitude and the direction of net electron flow can be easily controlled 
by varying the excitation frequency.

Electrons with longitudinal energy less then the barrier height can still pass through the barrier via tunnelling. 
The tunnelling transmission coefficient for the barrier can be calculated using33,

E
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The tunneling-aided electron transmission rate can be calculated by summing up all energy states below U1 
multiplied by ( )T . However, it can be seen from Fig. 2(c) that for the electric field intensity (3.6 ×  107 Wm−2) and 
the barrier width of 3 nm that we have considered here, tunnelling current is negligible compared to  ω( ). 
Experimental studies also suggest that tunneling of electrons between plasmonic nano-particles is negligible for 
junction widths larger than 0.5 nm50 under moderate electric field intensities used here.

In Fig. 3, we vary the length of one nanorod while keeping length of the other nanorod constant to study the 
effects of geometrical asymmetry on  ω( ). We introduce the parameter, ζ = ( − )/( + )L L L L1 2 1 2 , representing 
the relative length difference of two nanorods. It can be seen from Fig. 3(a) that as the value of L2 gets closer to L1 
so that the absolute value of ζ becomes small, the oscillatory nature of  ω( ) becomes more pronounced, making 
the direction of the flow highly sensitive to the frequency. We define another parameter β to represents the ratio 
between average values of the current in the positive and negative directions. In designing CDSDs this ratio is an 
important parameter and its ideal value is close to unity. It can be seen from Fig. 3(b) as the absolute value of ζ 

Figure 2.  Hot-electron switching behaviour in two nanorods. (a) Electric-field enhancement factors (γ(ω)) 
inside NR1 and NR2 and their difference. The Ag/TiO2/Ag composite structure and its design parameters along 
with the normalised electric field (E(ω)/E0(ω)) in a cross section of the device around the peaks 1.5 eV and 2 eV 
are shown on right. (b) Injection rates of hot electrons from NR1 and NR2 and the net current flow through the 
CDSD. The blue and green bands indicate the direction of current flow that can be switched by changing photon 
energy. (c) Comparison of net current through the CDSD and the tunnelling current through the barrier (on a 
log scale).
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becomes large, β moves away from unity, indicating an increased difference between magnitudes of positive and 
negative currents.

Figure 4 shows the influence of relative nanorod length difference (ζ) and overall device volume on the energy 
conversion efficiency and the magnitudes of positive and negative current flows. The internal quantum efficiency 
(IQE) is a measure of energy conversion efficiency of a system and can be used as a figure of merit for comparison 
among different energy converting systems. For this nano-structure, IQE can be defined as the ratio of absorbed 
photons to injected net electrons over the barrier (see Methods). Figure 4(a) shows IQE for devices having dif-
ferent combination of L1 and L2 (i.e. different ζ values), while keeping total length L1 +  L2 constant. It can be seen 
that the IQE exhibits an oscillatory behavior. However, note that the peak quantum efficiency can exceed 30% 
for ζ =  0.2 at a certain excitation frequency. Figure 4(b) shows the averaged IQE over the total range of photon 
energies (1.5–3.2 eV) for different device volumes and ζ values. An increase in the value of ζ can increase the aver-
aged IQE, indicating that a higher geometric difference can lead to higher efficiency. Further, for a certain ζ value, 
increasing the overall device volume can result in reduced averaged IQE. At the same time, since the number of 
conduction electrons increases with increasing volume, the magnitude of current flow (averaged over the spec-
trum), both positive and negative, increases with the volume as seen in Fig. 4(c). However, the the ratio between 
average positive to negative electron flow (β) remains almost constant despite of the change in volume, indicating 
it is mainly dependant on the geometrical deference indicated by ζ.

In Fig. 5, the barrier width is varied while keeping all the other factors constant. When the separation between 
nanorods is high, as seen in In Fig. 5(b), the difference between their electric field enhancements will also increase 
due to reduced electric field coupling between nanorods, which can contribute positively for improving  ω( ). On 
the other hand, the electron energy loss while crossing the barrier will increase with increasing w, which can have 
a negative effect on  ω( ). However, as seen in Fig. 5(a,c), the overall effect is a reduction in the net electron flow 
and the averaged IQE.

In our derivations, the duration of the electron excitation under the optical field is considered to be much 
greater the electron relaxation time associated with electron-electron collisions. Under such conditions, electrons 
achieve local equilibrium within the duration of the laser pulse and the metal nanoparticle thermodynamic state 
can thus be described by one temperature. Therefore the current injection rate from the CDSD to the external 
circuit is found to be independent of time during the process. For Ag, this electron relaxation time in literature is 
typically around 350 fs24,51,52.

If the pulse duration is shorter than this electron relaxation time, the electron flow rate between the CDSD and 
the external circuit during and after the optical perturbation need to be studied in a high resolution femtosec-
ond or picoseconds time scale emphasising non-equilibrium effects which is outside the scopes of this research. 
Under a picosecond pulse, before the end of the pulse, the electron gas achieves internal thermalization vial 
electron-electron collisions, whilst the electron-lattice system is still far from equilibrium. Under these conditions 
the classical two-temperature model24,51,53 is used to model the time evolution of electron excitation rate due to 
energy exchange with the lattice. This energy exchange rate is proportional to the lattice-electron temperature 
difference and the electron-phonon coupling constant of the nanoparticle24,53,54. Under a femtosecond laser pulse, 
electron-electron collisions are not fast enough to thermalize the electron gas during the laser pulse, therefore 
the non-equilibrium conditions are maintained up to some hundreds of femtoseconds. Under this condition, 

Figure 3.  Effect of relative length difference. All parameters are the same as in Fig. 2 except L2 is varied from 
12 nm to 22 nm keeping L1 and all other parameters constant. (a)  ω( ) as a function of photon energy on a log 
scale. (b) β as a function of ζ.
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the Boltzmann equation should be solved for both electrons and phonons, considering the Fermi-Dirac and 
Bose-Einstein statistics, respectively to calculate the energy distributions for the two systems.

A challenge in fabrication of any nano structure is to control the particle sizes, shapes and morphologies. 
Irregular shapes and sizes due to fabrication imperfections may change the electric field enhancement and the 
electron energy structure of the CDSD from expected values. The geometry of the tips of the rods have a signif-
icant impact on field enhancement, especially in smaller rods where the tips comprise a larger portion of the 
overall rod55. Sharper tips generate higher field enhancement and the lightning-rod effect can be seen in extreme 
cases56.

Irregular surfaces with pits and bumps can be approximated roughly as an array small spherical or spheroidal 
particles, each having its own resonance frequency sitting on a flat surface57. If there are only few such irregulari-
ties, random peaks can be observed in the field enhancement spectra. If the surface is highly irregular containing 
pits and bumps of different sizes and shapes, it can broaden the peaks of the field enhancement spectrum due to 
combined effects, resulting in reduced frequency sensitivity for current direction switching.

The magnitude of the output is highly sensitive to the barrier width as discussed in the previous section. A few 
nanometre difference in the barrier thickness can cause a few orders of magnitude change in the output current. 
The current switching frequencies and internal quantum efficiencies can be considered as moderately sensitive 
to device dimensions.

Design Guidelines and Conclusion
We have proposed a composite nanostructure that is capable of generating a current flow in a connected circuit 
when light is incident on it. Moreover, both the direction and the magnitude of current is controllable via the 
frequency of the incident light. The device operation is based on the concept of hot-electron injection from two 
geometrically dissimilar nano-particles over a common barrier. We have derived the rate of electron flow in 
such a structure, made of two nanorods, by using the single-electron wave function and the corresponding eigen 
energy states of an electron inside each nanorod under a periodic perturbation. The electric field enhancement 
inside the structure, which has a high influence on the hot-electron generation rate was derived numerically.

We used our theoretical model to study how the current flow in our proposed CDSD depends on various 
design parameters. Our results show that the magnitude and the direction of current  ω( ) is highly controllable 
via the excitation frequency. Increase in the device volume can result in a decrease in the efficiency of the device 
and its suitability for nano/molecular scale designs. Further, if the nanorods have dimensions longer than the 
electron mean free path of the metal, electrons may relax before reaching the boundary, reducing the efficiency. 

Figure 4.  Same as in Fig. 2 except L1 and L2 are varied keeping the value L1 + L2 and other parameters 
constant. (a)  ω( ) in log scale for different L1 and L2 combinations. (b) Quantum efficiency for each case as a 
function of frequency. (c) Averaged quantum efficiency for each case against the ratio L1/L2.
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On the other hand, the magnitude of electron flow (averaged over the spectrum) increases with the volume. 
Therefore, when deciding device dimensions, a compromise between the efficiency and the magnitude of current 
generated has to be made.

The relative lengths of the nanorods is another important parameter that effects the CDSD performance. A 
higher geometric difference between the two nanorods (i.e. a larger ζ value) can lead to a higher internal quantum 
efficiency but it will make the direction of the flow less sensitive to the frequency. Also a larger ζ will result in 
a higher β value, indicating uneven positive and negative current flows, which can be desirable or undesirable 
based on the application.

Decreasing the barrier width will exponentially increase the magnitude of the electron flow from the device 
and its internal quantum efficiency. But if the barrier width is too small, tunnelling breakdown can happen58, 
depending on the intensity of the applied electric field, leading to reduced quantum confinement and decreased 
controllability over the electron flow direction. Further, the difficulty in fabricating very narrow barriers must also 
be considered. Higher intensity electric fields can lead to an increased  ω( ) at all incident frequencies. However, 
the intensity of the electric field is limited in practice by the barrier width. For moderate optical intensities 
(~107 Wm−2), a barrier width of about 3 nm is found to be most suitable.

A wide-band-gap semiconductor such as TiO2, SiC, or ZnO is desirable for constructing the barrier. The upper 
limit of the operating frequency is limited by the barrier band-gap since electron excitations in the barrier has to 
be avoided. Also the metal-barrier potential difference should be higher than the metal-external circuit potential 
in order to control the direction of the flow. For constructing the nanorods, strongly light absorbing plasmonic 
metals such as silver or gold are most suitable. The lower limit of the operating frequency is decided by the mini-
mum energy that an electron can absorb to surmount the barrier, which is equal to the energy difference between 
the barrier and the Fermi level of the plasmonic metal.

When designing the proposed CDSD, Eq. (21) can be used to plot  ω( ) over the entire frequency rage of the 
incident light for different sets of L1, L2, R and w values. Then, based on the trends we have identified in this paper, 
the parameters, ζ, overall volume of the nanorods and the potential-barrier width can be varied to tune this 
CDSD to work for certain operating frequencies delivering required amounts of negative and positive currents to 
the external circuit with a desired quantum efficiency. For the dimensions we have considered in this paper, the 
proposed CDSD shows an average internal quantum efficiency of over 2%, with peak efficiencies approaching 
30% at certain frequencies of incident light. The possibility of increasing the internal quantum efficiency by using 
more conductive barrier materials needs to be investigated further. Also, other combinations of particle geome-
tries may perform better and improve the performance of such devices.

In our study the injection rate of hot electrons over the barrier is calculated assuming a smooth interface 
between the metal and the semiconductor. This assumption imposes the condition that the component of 

Figure 5.  Same as in Fig. 2 except that the barrier width is varied while keeping other parameters constant. 
(a)  ω( ) for different w. (b) Difference in the electric field enhancement factor. (c) Averaged quantum efficiency 
for each case as a function of frequency.
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electron’s momentum normal to the interface should be large enough for the electron to cross the Schottky bar-
rier. In practice, imperfections and roughness of this interface can change the direction of momentum of incident 
electrons and enhance the injection rate. Tunneling through the barrier is found to be negligible for the barrier 
thicknesses we have considered.

Coupled plasmon resonances created by plasmonic nano antennas placed in close proximity to the CDSD 
can generate internal fields that are enhanced by orders of magnitude, improving the efficiency of the device. The 
energy from these antennas can be transferred efficiently to the plasmonic nanoparticles non-radiatively through 
resonance energy transfer59,60 or radiatevely, depending on the distance between the antenna and the CDSD. 
Cascaded plasmon resonances61,62, constructed using chains of such geometrically asymmetric antennas having 
the same plasmon resonance frequency but significantly different volumes, have proven to provide extremely 
strong internal field enhancements. When such nanoparticles are coupled with each other, a multiplicative field 
enhancement can be observed predominantly in the smallest particle of the chain. This mechanism can be used 
to improve the efficiency of the proposed CDSD.

Another experimentally demonstrated method to profoundly improve the electric field enhancement in metal 
nanoparticles is near-field coupling with an active substrate such as Si63 or quantum-dot-embedded dielectrics64. 
The energy emitted by electron relaxations in the active medium can be transferred non-radiatively to the sur-
face plasmons in the plasmonic nanoparticle. The stimulated nature of this energy transfer causes buildup of 
macro-scopic numbers of coherent surface plamons in the nanoparticle, increasing its internal electric field. This 
concept can be used to improve the electric field inside the plasmonic nanoparticles in the proposed CDSD, 
which then acts similar to the resonant cavity in a spaser65,66.

Methods
Electron excitation probability in nano-particles under an external pertubation.  Prior to the 
optical excitation, the system is considered to be under a time independent but spatially varying potential V(r). 
The Schrödinger equation for the motion of an electron in this system has its usual form

µ
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r
r r

2 23

2
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where Ψ( , )tr  is electron’s wave function at time t located at a position r, H is the Hamiltonian, and μ is the effec-
tive mass of the electron. Since V(r) is time independent, Ψ( , )tr  can be separated into temporal and spatial 
components as E � ψΨ( , ) = (− / ) ( )t j tr rexp . By substituting this in Eq. (23), the time independent part of the 
wave function satisfies the eigenvalue equation

ψ ψ( ) = ( ), ( )H r r 24k k k

where k and ψ ( )rk  are the eigenvalues and eigenfunctions of the kth solution of this equation, representing possi-
ble electron states.

When light is incident on an electron, its motion of an electron is governed by
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where V′ (t) is the time-dependant perturbing potential causing electronic transitions between its energy states 
and Ψ′( , )tr  is the modified electron wave function at this stage. We can express Ψ′( , )tr  as an expansion of the 
eigen functions Ψ ( , )tri  of the unperturbed, time independent system using a time dependent coefficient ci(t) as,
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Substituting this equation in Eq. (25), multiplying the resulting expression by ψ(− / ) ( )j t rexp f fE � , and inte-
grating over the spatial coordinates yields,
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The quantity | ( )|c tf
2 represents the time-dependent transition probability of an electron from an initial energy 

state i a final state f. It is given by33,34,
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with ωfi representing the energy difference between the final and initial states.

Derivation of energy eigenstates of an electron inside a nanorod.  By solving Eq. (11) for the radial 
and azimuthal potentials given in Eq. (12), the quantized electron energy in these directions can be easily found 
as67
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The longitudinal part of energy containing the quantum number l is more complicated owing to the finite 
nature of longitudinal boundaries.

To find the longitudinal wave functions ψ ( )zli  and ψ ( )zlf  and the corresponding energy components  li and 
 lf , we assume that prior to excitation electrons reside in an energy state below the Fermi level F , which is less 
than both U1 and U2, and all final energy states have energies larger than U1 and U2. Two sets of solutions needs to 
be found for Eq. (11) for these two situations33

Consider first the initial state. Since  li is less than U1 and U2, the wave function ψ ( )zli  can be written in the 
form
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The constants Cli, Dli and Eli can be found in terms of Ali considering the continuity of the wave function and 
its first derivative at the boundaries and are given by
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The quantized energy levels εli are found numerically from the eigenvalue equation
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When < Uli 1  and < Uli 2 , total energy of an electron in the state i can be written as
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Consider now the final state. Since lf  is greater than U1 and U2, ψ ( )rlf  is of the form
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As before, the constants Clf, Dlf and Elf can be found in terms of Alf considering the continuity of the wave 
function and its derivative at the boundaries:
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However, since there is no bounding potential, Alf is not normalizable. Therefore, to find Alf we introduce a 
fictitious length of confinement Linf which is removed at a later stage. After applying the orthonormal conditions 
within this length, Alf is found to be = Λ −A Llf inf
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We define two new quantities,
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which are independent of the fictitious length of confinement Linf and are used later. Finally, the total energy f  
can be written as
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Note that  f  is not quantized in the z direction because  lf  is continuous with values greater than both U1 and 
U2.

Internal quantum efficiency.  Internal Quantum efficiency of a CDSD can be defined as the ratio of the rate 
of electron injection to the external circuit  ω( ( )) and the rate of photon absorption  ω( ( ) )ph

 given by
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where V is the volume of the particle, ε ω( ( ))Im  is the imaginary part of the dielectric permittivity and  ω( )absorbed
 

is the power absorbed.

Material parameters.  In all calculations we assume the nano-particles to be made of silver with a Fermi 
energy of 5.5 eV. The semiconductor is taken to be TiO2, creating a barrier of 0.8 eV. The mobility of electrons in 
TiO2 is taken as 1 cm2 V−1 s−1 68,69. The complex permittivity of silver is taken from experimental data70 and the 
surrounding medium is assumed to be air with a relative permittivity of 1. The illumination intensity is taken as 
3.6 ×  107 Wm−2.
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