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Abstract: Pyroptosis is an inflammatory cell death induced by inflammasomes that release several pro-inflammatory mediators such 
as interleukin-18 (IL-18) and interleukin-1β (IL-1β). Pyroptosis, a type of programmed cell death, has recently received increased 
interest both as a therapeutic and immunological mechanism. Numerous studies have provided substantial evidence supporting the 
involvement of inflammasomes and pyroptosis in a variety of pathological conditions including cancers, nerve damage, inflammatory 
diseases and metabolic conditions. Researchers have demonstrated that dysregulation of pyroptosis and inflammasomes contribute to 
the progression of endometriosis and gynecological malignancies. Current research also indicates that inflammasome and pyroptosis- 
dependent signaling pathways may further induce the progression of endometrial cancer (EC). More specifically, dysregulation of NLR 
family pyrin domain 3 (NLRP3) and caspase-1-dependent pyroptosis play a contributory role in the pathogenesis and development of 
EC. Therefore, pyroptosis-regulated protein gasdermin D (GSDMD) may be an independent prognostic biomarker for the detection of 
EC. This review presents the molecular mechanisms of pyroptosis-dependent signaling pathways and their contributory role and 
function in advancing EC. Moreover, this review offers new insights into potential future applications and innovative approaches in 
utilizing pyroptosis to develop effective anti-cancer therapies. 
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Introduction
Endometrial cancer (EC) is the predominant form of gynecologic malignancy worldwide. The incidence of EC is 
approximately 142,000 women per year with an estimated 42,000 women dying from this disease.1 There is currently 
a predominant role for surgical interventions in the management of patients without reproductive needs.2 However, 
patients with elevated risk factors may require additional treatment techniques such as radiation and chemotherapy. These 
therapeutic approaches promote ROS-mediated stress and induce apoptosis in cancer cells. Cancer-related deficiencies in 
apoptosis initiation may occur, but there is also the possibility of an “oncogene addiction” phenomenon that can result in 
treatment ineffectiveness.3 Cancer cells are exquisitely dependent upon a single oncogenic lesion through many genetic 
and epigenetic changes during the development of their neoplastic characteristics. It was found in a laboratory setting that 
tumor cells could depend on tumor cells when an oncogene was suppressed or tumor suppressor expression was restored, 
which led to the initial suggestion that the developemnt of tumor cells could depend on tumor cells. These first 
discoveries suggested that therapeutic drugs aimed at the repair or regulation of these mutant gene products might 
have broad effectiveness in the treatment of EC. Apoptosis, necroptosis and pyroptosis are discrete cellular mechanisms 
of programmed cell death within host cells.4,5 Recent data suggests a significant relationship between pyroptosis and the 
pathogenesis and progression of multiple diseases including cardiovascular diseases (CVDs),6–9 cancer,10–12 neurological 
diseases (NDs)13–15 and metabolic diseases (MDs).16–18 In addition, pyroptosis plays a key role in the onset and 
advancement of several inflammatory conditions, particularly in the conversion of organ or cell inflammation into cancer.
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The purpose of this study was to find, screen and evaluate information on inflammasomes and pyroptosis-dependent 
cell death in EC including information obtained from Elsevier, Google Scholar, PubMed, Science Direct, Scirus, Sci 
Finder, Scopus, Springer and Web of Science. We also identified potential therapeutic compounds that may be used to 
suggest and control these mechanisms. Furthermore, we used local and international books and peer-reviewed journals to 
find relevant information. This review also discusses the molecular mechanisms of pyroptosis-related signaling pathways 
and their contributory roles in the pathogenesis and progression of EC.

Historical and Biological Features and Functions of Pyroptosis
Pyroptosis originates primarily from the Greek words “pyro” and “ptosis”, which represent fever and falling, 
correspondingly.4,19 This terminology is employed to describe a newly identified form of programmed cell death 
(PCD) that has inflammatory characteristics. In 1990, researchers discovered that Shigella flexneri and Salmonella 
infections remove mouse macrophages or human monocytes.20 Shigella dysenteriae was reported to activate caspase-1 
in host cells by Arturo Zychlinsky in 1997.21 Hersh et al also showed that the inhibition of caspase-1 alleviated 
Salmonella-induced cell death.22 Lawrence H. Boise and Brad Cookson reported in 2001 that microbial infection caused 
by bacteria led to the death of macrophages via the activation of caspase-1-dependent programmed necrosis.23,24 

Pyroptosis and apoptosis have comparable biological features and functions including DNA fragmentation and chroma-
tin. Specifically, pyroptotic cells show denaturation and the development of spherical expansions on their cellular 
membranes.25 The differences between pyroptosis and apoptosis can be distinguished based on a wide range of 
characteristics. Pyroptosis is mainly characterized by a rapid disruption of the plasma membrane, as opposed to the 
blebbing of the membrane that usually occurs during apoptosis. Pyroptosis results in rapid plasma membrane disintegra-
tion, whereas apoptosis is comparatively slow.26 The degradation of the membrane structure leads to the infiltration of 
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water and ions into the cell, which ultimately causes the cell to enlarge and burst.27 Pyroptosis also exhibits similar 
characteristics to apoptosis including caspase activation and PtdSer exposure.28 Pyroptotic cells produce PtdSer, which 
attracts engulfing cells. However, this mechanism differs from the process of PtdSer exposure mediated by scramblase in 
apoptosis.29 Studies have shown that pyroptosis results in the externalization of PtdSer through membrane 
disintegration.30 Nuclear condensation and DNA damage are found in pyroptotic cells, but the nuclei remain undamaged 
compared to apoptosis. Apoptosis involves the caspase-3 enzyme. Pyroptosis exhibits distinct cellular properties that 
differentiate it from other types of cell death.31–33 Pyroptosis induces low-grade inflammation, whereas apoptosis does 
not cause inflammation.34 Pyroptosis is triggered by both external and internal signals such as viral and bacterial 
infections, being exposed to toxins and certain chemotherapeutic agents.35–37 In contrast to necrosis, pyroptosis involves 
cytoplasmic damage caused by sudden plasma membrane rupture. Activation of caspases or release of granzymes leads 
to the oligomerization of gasdermin N-terminal and the development of pores (1–2 μm) in plasma membranes, which 
further promotes the matured form of IL-1β/IL-18 (4.5 nm) and caspase-1 (7.5 nm) permeability.38 The ingress of water 
via holes stimulates cellular expansion, osmotic disintegration and plasma membrane rupture, resulting in the release of 
pro-inflammatory factors including IL-1β and IL-18.39,40 Pyroptotic cell permeability is facilitated by the low molecular 
weight of 7-amino-actinomycin (7-AAD), phosphatidylinositol (PI) and ethidium bromide (EtBr). Pyroptotic cells 
eliminate these dyes by maintaining membrane integrity, whereas apoptotic cells destroy their membrane.41 Annexin 
V is a marker for pyroptotic cells, which are similar to apoptotic cells. It forms a bond with phosphatidyl serine (PS). 
Consequently, Annexin V cannot distinguish between cells undergoing apoptosis and those undergoing pyroptosis. 
Apoptotic bodies are generated during the process of apoptosis, whereas pyroptotic bodies are generated during the 
process of pyroptosis.42 Pyroptotic bodies have a diameter of 1–5 µm, which is comparable to the size of apoptotic 
bodies.43

Ferroptosis causes a typical- morphological feature with intact cell membranes and nuclei devoid of chromatin 
condensation. However, mitochondria exhibit reduced cristae and membranes collapse and rupture.44 It is triggered by 
disrupting the glutathione-dependent antioxidant defense using defects in system XC

− or glutathione peroxidase 4 
(GPX4). Glutathione (GSH) is synthesized in the cell by converting extracellular cystine into cysteine.45 GPX4 can 
swiftly facilitate the interaction between glutathione and lipid hydroperoxides, resulting in a decrease in the amount of 
lipid peroxidation inside cells. Inhibition of GPX4 or depletion of GSH leads to the accumulation of lipid hydroper-
oxides. It has been demonstrated that unbound iron reacts with lipid hydroperoxides via the Fenton reaction, which 
further produces reactive oxygen species (ROS) from lipids. The excessive production of ROS causes cell death. 
Ferroptosis activation may be verified by administering ferroptosis inhibitors (eg, liproxstatin-1 and ferrostatin-1) and 
by determining lipid peroxides (eg, malondialdehyde quantification and 4-hydroxynonenal quantification).46

Necroptosis, also called programmed necrosis, is featured by activating receptor-interacting protein kinases (RIPKs) 
via regulating a variety of signaling pathways.47 RIPKs are triggered when they are brought into large molecular 
structures by several receptors on the cell surface including the T-cell receptor (TCR), toll-like receptors (TLRs) and 
the death receptors (DRs).48 RIPK1 and RIPK3 are essential components of necrosomes.49 The oligomerized mixed 
lineage kinase domain-like protein (MLKL) invades and permeates the cell membrane, resulting in the death of the cell.50 

Furthermore, the activation of RIP3-dependent necroptosis is also initiated by the cytosolic DNA sensor, which is 
a DNA-dependent activator of interferon (DAI) regulatory factors.51 Necroptosis is a cell death process that exposes the 
necrotic characteristics including membrane rupture and the depletion of organelles. Necroptosis can be determined by 
evaluating the disruption of the plasma membrane using dyes that cannot enter the cell, the discharge of cellular 
components such as cyclophilin A, high mobility group box 1 (HMGB1) and lactate dehydrogenase (LDH) through 
Western blot analysis, the measurement of mitochondrial potential using fluorescent probes and the investigation of 
cellular morphology using electron microscopy. Several alternative approaches including blockers that inhibit necroptosis 
and measurement of key proteins in the pathway can be used.52

Nevertheless, a newly discovered GSDMD protein has been uncovered and thoroughly investigated. The protein is 
commonly observed in a condition of autoinhibition.53 After caspase cleavage, GSDMD generates the N-terminal 
fragment (GSDMD-NT), which causes cells to swell and burst. Therefore, gasdermin D (GSDMD) acts as an effector 
molecule for pyroptosis-induced cell death. Comparable to the GSDMD pore-forming protein, DFNB59, DFNA5/ 
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GSDME, GSDMC, GSDMB and GSDMA activate pyroptosis and induce the denaturation of cytoplasmic 
membrane.54,55 Wang et al showed pyroptosis is triggered by GSDMD-NT and correlates with the interaction between 
4 5-diphosphate phosphatidylinositol and the N-terminal domain of GSDME. This interaction leads to the creation of 
pores in liposomes and the removal of their phospholipid components.37 The study by Shi et al renamed pyroptosis as 
a gasdermin family-dependent programmed necrosis.40 Recently, Chauhan et al discovered that neutrophil elastase (NE) 
split GSDMD and caused neutrophil pyroptosis.56 Pyroptosis is a type of regulated cell death (RCD) that relies heavily 
on the gasdermin protein family to form pores in the cell membrane. This process is usually triggered by the activation of 
inflammatory caspases, as stated by the Nomenclature Committee on Cell Death (NCCD) in 2018.57

Molecular Mechanisms of Pyroptosis
Pyroptosis is induced by classic and non-classical inflammasome pathways, caspase-dependent apoptosis and granzymes- 
dependent signaling pathways.43 Gasdermin proteins are essential mediators in various cellular signaling pathways and 
must undergo cleavage by granzymes or precursor caspases.58 Caspases are classified into apoptotic and inflammatory 
caspases based on their distinct functions.59 Caspases-1/4/5/11 are inflammatory caspases that further suppress pathogen 
proliferation, regulate pyroptosis and release inflammatory substances.60 Caspases are primarily involved in protecting 
the body against infectious infections. Inflammasome is a multiprotein complex, which further activates the caspase-1 
pathway. Caspase-1 is a member of the inflammatory caspase family, responsible for converting IL-18 into its fully 
developed state, which is a potent pro-inflammatory mediator. These pro-inflammatory variables distinguish pyroptosis 
from apoptosis, even though both processes rely on caspases.

Therefore, pyroptosis is lytic and characterized by cell ruptures, swellings and many bubbles blowing on the plasma 
membrane.61 Apoptotic caspases mainly induce and regulate the biological processes involved in programmed cell death, 
known as apoptosis. The cleavage of gasdermins by proteases leads to the activation of the pyroptosis-regulated cell death.62

Classical Signaling Pathways (Caspase-1-Dependent Pyroptosis)
The stimulation of inflammasomes may initiate classical pyroptotic cell death, which results in the fragmentation of 
GSDMD and the release of several pro-inflammatory molecules such as IL-18 and IL-1β.63,64 Inflammasomes are 
intricate assemblies of several molecules that activate the adaptive immune response and act as a defense mechanism 
against microbial infections.65–69 Inflammasomes can trigger illnesses that are not caused by microorganisms.70,71 

Accumulating evidence indicates that inflammasomes and their associated cytokines play an important role in the 
progression of cancer including processes such as cell proliferation, invasion and metastasis.72–75 Cytosolic pattern 
recognition receptors (PRRs) that have been activated identify molecular patterns associated with pathogens and danger 
(DAMPs and PAMPs) to develop the inflammasome.76,77 Activation ofPRRs leads to the initiation of subsequent 
signaling pathways, resulting in the synthesis of type I interferons and several pro-inflammatory cytokines. PRRs bind 
to pro-caspase-1 and apoptosis-associated speck-like protein (ASC) to generate inflammasomes in response to cellular 
activation via signal molecules such as viruses and bacteria.78–80 The most prevalent PRRs are nucleotide-binding 
oligomerization domain-like receptors (NLRs), which include NLRP1, NLRP3 and NLRC4, missing in melanoma 2 
(AIM2) and pyrin.81,82 The N-terminal pyrin domain (PYD), nucleotide-binding oligomerization domain (NOD), 
leucine-rich repeat (LRR) and caspase recruitment domain (CARD) are constituents of NLRP1.83 The PYD is crucial 
for engaging with the ASC protein. NOD stimulates the signal by controlling the production of ATP. LRR recognizes and 
automatically inhibits ligands. The CARD proteins then recruit pro-caspase-1. The presence of the anthrax lethal toxin, 
muramyl dipeptide and Toxoplasma gondii components might potentially stimulate the activation of NLRP1.84 NLRP3 
consists of N-terminal PYD, NOD and LRR domains but does not have a CRAD domain. The NLRP3 inflammasome 
signaling axis is activated by several stimuli comprising fungi, viruses, bacteria, ATP, ROS, uric acid and intrinsic 
damage signals.85,86 The stimulation of the P2X7 receptor by extracellular ATP leads to the generation of IL-1β and the 
activation of the caspase-1 pathway. Thus, the outflow of K+ ions is enhanced.87 The NLRC4 protein consists of three 
domains: an N-terminal caspase activation and recruitment domain (CARD), a central nucleotide-binding domain (NBD) 
and a C-terminal leucine-rich repeat (LRR) domain. NLRC4 is upregulated by flagellin and proteins from type III 
secretion systems.88 The PYD and HIN-200 domains present in AIM2 can identify double-stranded nucleotides that 

https://doi.org/10.2147/JIR.S486878                                                                                                                                                                                                                                    

DovePress                                                                                                                                                 

Journal of Inflammation Research 2024:17 7040

Al Mamun et al                                                                                                                                                      Dovepress

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


originate from bacteria or viruses.89 The Pyrin protein consists of a PYD domain, two B-box domains and a C-terminal 
SPRY/PRY region. Pyrin specifically designates the toxins of bacteria or effectors that deactivate host Rho guanosine 
triphosphatases.90 PRRs either directly or passively attract pro-caspase-1 together with ASC to create the caspase- 
1-dependent inflammasome. This inflammasome then undergoes self-cleavage to activate caspase-1. The activation of the 
caspase-1 pathway results in the formation of the GSDMD-NT protein, which forms pores in the cytoplasm. 
Inflammation and pyroptosis are induced by this process (Figure 1).79 Inflammasome-mediated pyroptosis significantly 
protects immune cells from microbial infections.

Non-Classical Signaling Pathways (Caspase-4/5/11-Dependent Pyroptosis)
The non-classical pyroptotic signaling pathway does not include the association of human caspase-4/5 (or its mouse 
equivalent, caspase-11) with the downstream sensory complexes. Human caspase-4/5 (equivalent to mouse caspase-11) 
may be activated by straightaway binding to intracellular LPS via the N-terminal CARD in the non-classical pyroptotic 
route, which does not include upstream sensory complexes.91 Unlike dendritic cells, macrophages are responsive to the 
oxidized phospholipid 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphorylcholine (oxPAPC), which acts as a TLR4 
agonist and suppresses the non-classical inflammasome.92 Caspase-4/5/11 may cleave GSDMD, resulting in the forma-
tion of GSDMD-NT. GSDMD-NT undergoes polymerization and forms cytoplasmic pores.93,94 The NLRP3/caspase-1 

Figure 1 Cellular and molecular mechanisms of pyroptosis-dependent signaling pathways. Pyroptotic signaling pathways are mainly triggered by the stimulation of damage- 
associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs), leading to the activation of a variety of inflammasome components. The 
activated inflammasome proteins further activate the caspase-1 pathway. Then, the activated caspase-1 splits GSDMD to produce GSDMD N-fragment and plasma 
membrane pores, resulting in pyroptosis-dependent cell death. Furthermore, the caspase-1 pathway triggers the formation and release of IL-1β and IL-18 inflammatory 
factors. In addition, LPS binds to caspase-4/5/11 precursor, inducing pyroptosis. Caspase-3/GSDME can also cause pyroptosis-mediated cell death. Mitochondrial and death 
receptors can also trigger the caspase-3 pathway. The activated caspase-3 splits GSDME to produce GSDME N-fragment, creating plasma membrane pores, cell contraction 
and rupture and resulting in pyroptosis-mediated cell death.
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pathway is necessary for maturing and releasing IL-1β/IL-18, but caspase-4/5/11 cannot mature pro-IL-1/pro-IL-18.95,96 

Furthermore, caspase-4/5/11 cleaves GSDMD, inducing the release of K+ ions and initiating the activation of NLRP3 
inflammasomes and pyroptosis in the cells.97,98 Yang et al discovered that pannexin-1 is a crucial protein that triggers 
caspase-11-dependent non-classical pyroptotic cell death.97 Lipopolysaccharide (LPS) triggers the activation of caspase- 
11, which leads to the cleavage and modification of Pannexin-1. This process further leads to the extensive release of 
cellular ATP and the subsequent activation of pyroptosis via activating the purinergic (P2X7) receptor.99 In 2011, it was 
revealed that murine BMDMs lacking Pannexin-1 may cause the release of potassium ions and activate caspase-1 via the 
NLRP3 inflammasomewithout relying on P2X7.100 In addition, the elimination of pannexin-1 in mice protects to 
counteract endotoxin shock, suggesting that particular potassium (K+) channels control the non-classical NLRP3 
inflammasome signaling pathway.97 Therefore, the stimulation of caspase-11 activates the NLRP3 inflammasome 
through non-classical pyroptotic signaling.101

Alternative Signaling Pathways (Caspase-3/8-Dependent Pyroptosis)
The composition of gasdermin proteins is highly conserved among members of the family. Gasdermins, except DFNB59, 
possess both C-terminal and N-terminal domains. Activation of the N-terminus results in pyroptosis.58 Previous studies 
have shown that chemotherapeutic drugs may trigger the activation of caspase-3, leading to the cleavage of the gasdermin E 
(GSDME) protein. This process causes an increase in GSDME expression and results in the formation of N-GSDME 
termini in cancer cells.37,102 Caspases involved in apoptosis Yersinia infection in mouse macrophages have been shown to 
hinder the activity of TGF-β-activated kinase 1 (TAK1) and initiate the cleavage of GSDMD via the caspase-8 signaling 
pathway.103,104 It was believed that caspases-3/8 could not generate gasdermin to induce pyroptosis. Further investigation 
revealed that Yersinia infection leads to the production of yersinia outer protein J (YopJ), a protein that hinders TAK1 and 
initiates the cleavage of GSDMD via caspase-8 in mouse macrophages.105 Therefore, these results enhance the advance-
ment and broadening of information about pyroptosis. Unexpectedly, Hou et al revealed that programmed cell death ligand 
(PD-L1) regulates the process of converting TNF-induced apoptosis to pyroptosis in breast cancer cells.106 During hypoxia, 
the activation of p-Stat3 increases the movement of PD-L1 into the nucleus and the production of gasdermin C (GSDMC). 
LPS induces pyroptosis by the activation of caspase-4/5/11 signaling pathways.107 Scientists have explored that LPS 
stimulates macrophages to initiate pyroptosis by activating the caspase-8 pathway.106 The stimulation of TNF-α induces 
caspase-8 to lyse GSDMC, generate N-GSDMC and form membrane pores, resulting in pyroptosis.106 TNF induces 
pyroptosis in macrophages by activating nuclear PD-L1, caspase-8 and GSDMC. Furthermore, Hou et al showed that 
chemotherapeutics and antibiotics can enhance pyroptotic cell death of BC cells by activating caspase-8/GSDMC- 
dependent pyroptosis.106 Caspase-6 induces the NLRP3/caspase-1-dependent pyroptotic signaling axis by facilitating the 
connection among Z-DNA protein 1 and receptor-interacting serine/threonine protein kinase 3.108 Further investigation is 
highly required to determine the precise roles and activities of the additional caspases implicated in pyroptosis.

Researchers in 2020 discovered that chimeric antigen receptor (CAR) T cells secrete granzyme B (GzmB), which activates 
caspase-3.109 The activation of caspases-3 and GSDME pathways induces pyroptosis. Studies have shown that GzmB directly 
cleaves GSDME and triggers pyroptosis, which promotes the anti-tumor immune response and inhibits the growth of 
tumors.110 Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells were found to eliminate GSDMB-positive cells 
by triggering the process of pyroptosis. A recent study by Zhong et al reports that GSDMB is highly expressed in specific 
tissues, particularly inside the gastrointestinal system epithelium and tumors originated in this region.111 Zhou et al showed 
that gasdermin might go through hydrolysis at a site besides aspartic acid, leading to the formation of cytoplasmic pores.112 

These results contradict the widely accepted belief that caspases may only trigger pyroptosis.

Role of Pyroptosis-Regulated Signaling Pathways in the Pathogenesis and 
Progression of EC
Inflammasomes are important components of the innate immune response to PAMPs and DAMPs.65 The NLRP3 
inflammasome can react to a broad spectrum of stimuli. NLPR3 binds pro-caspase-1 through the pyrin domain of the 
adaptor protein of ASC, which promotes pro-IL-1β and pro-IL-18 to accelerate their maturation. Recent studies suggest 
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that the NLRP3 inflammasome plays a significant role in the progression of several types of cancer including gastric 
cancer, breast cancer, colorectal cancer and liver cancer.74,113–115 Therefore, the prognosis for patients with EC is 
enhanced by investigating alternative cell death mechanisms. Patients diagnosed with EC exhibit elevated levels of 
oxidative stress (OS) and systemic inflammatory conditions, which can be attributed to the presence of metabolic 
syndrome. The significant role of inflammatory pathways in estrogen metabolism in EC is noteworthy.116,117 

Radiotherapy and chemotherapy may not be effective in the treatment of serous carcinomas and tumors with high-risk 
characteristics such as distant metastases or deep myometrial invasion, as they are resistant to necrosis and apoptosis.118 

Therefore, targeting pyroptotic cancerous cell death might be considered an alternative therapeutic avenue for the 
treatment and management of EC in the near future. However, it was found that the protein expression level of 
GSDMD varies significantly between EC cells and normal endometrial tissues, according to the data obtained from 
the TCGA database. Furthermore, this discrepancy was shown to be associated with the pathological type, stage and 
patient weight. Contemporary studies indicate that pyroptosis is a distinguishing feature of autoinflammatory and 
autoimmune disorders.117,119 Yang et al found that EC lesions exhibit pyroptotic events, as indicated by the presence 
of increased NLRP3, caspase-1 and GSDMD concentrations.120 The GSDMD-NT portion facilitates the formation of 
cytoplasmic pores that function as “hydrogen channels” for hydrogen efflux. Chang et al discovered that patients with EC 
had elevated expression of inflammasomes such as AIM2 and NLRP3 compared to the control group.121 The protein 
expression levels of GSDMD, NLRP3, caspase-1 and IL-1β were markedly elevated in atypical hyperplasia and cancer 
tissues compared to benign endometrial tissues. Therefore, GSDMD may play a significant role in the progression of EC 
by regulating pyroptosis (Figure 2).

Figure 2 The pathophysiological mechanisms of pyroptosis-related signaling pathways in the progression of EC.
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The precise biochemical pathways implicated in tumor-associated macrophages (TAMs) polarization in extracellular 
matrix cancer (EMC) are not fully defined. It is widely believed that IL-1β modulates the immune response against 
tumors and triggers an inflammatory response.122,123 Immune cells such as lymphocytes, antigen-presenting cells, 
macrophages and neutrophils release several pro-inflammatory mediators such as IL-1β and IL-18.123 The activation 
of IL-1β is regulated by inflammasomes such as NLRP3, which further facilitate the conversion of pro-IL-1β into its 
active form.124 Abais et al indicated that the activation of OS can activate the NLRP3 inflammasome axis, resulting in the 
overproduction of ROS, specifically in macrophages.125

The identification of safe and effective treatments for activating pyroptosis in EC is of paramount importance. ROS is 
an upstream mechanism that mediates cellular pyroptosis.126 The production levels of ROS are drastically elevated in EC 
compared to normal endometrial tissue. Elevated ROS can further induce cell death by stimulating signaling pathways 
associated with pyroptosis in EC cells.127 The NLRP3 inflammasome induces damage to the host by inflammatory events 
including TNF-α exposure, NF-κB pathway activation and ROS accumulation.125 The expression of inflammasome 
components including NLRP3 and caspase-1 was significantly augmented in EC tumor tissues compared to benign 
tissues. ROS are bioproduct molecules characterized by their high reactivity, which can further induce OS and damage 
several physiological constituents.128 In addition, ROS activate intracellular signaling pathways, which promote cell 
proliferation, survival and migration.129 Accumulating evidence indicates that the excessive accumulation of ROS within 
cells can induce cell damage, cellular dysfunction and cell death.130–132 Several lines of studies have revealed that 
NLRP3 inflammasomes regulate ROS production through different regulatory mechanisms. This can either inhibit tumor 
growth by activating cellular stress and death or increase angiogenesis, inflammation and immune suppression, which can 
advance tumors.133–135 Recently, Zhu et al revealed that macrophage NLRP3 deletion reduced cytotoxic T cells in EM 
tumors, possibly due to altered TAM-lymphocyte interactions.136 The study confirms prior findings that macrophage 
NLRP3 signaling regulates the differentiation of T cells.

The immune-regulating thioredoxin interacting protein (TXNIP) has been associated with cardiovascular and 
neurological disorders.137–140 Studies have consistently indicated that TXNIP is downregulated in a variety of 
cancers.141 Several lines of studies also suggest that TXNIP expression is decreased in tumors.142–144 An innovative 
investigation carried out by Kim et al revealed that downregulation of TXNIP may further accelerate the progression of 
EC.145 Therefore, the TXNIP gene is considered a potential tumor suppressor.146 Growing evidence indicates that the 
expression of TXNIP is markedly downregulated in several cancers including lung, liver and breast cancers.147–149 The 
upregulation of TXNIP has been demonstrated to hinder the proliferation of cancerous cells.150 TXNIP has profound 
pathogenic significance and is interconnected with the cellular response to ROS. Normal cells typically produce low and 
stable levels of ROS, which are naturally occurring byproducts of oxygen metabolism. Therefore, the ROS/TXNIP 
signaling axis may play a contributory role in the progression of EC.

Several mechanisms have been implicated in the loss of viability of cells including autophagy and pyroptosis.151 

Multiple pathological mechanisms are involved in the activation of pyroptosis.152 Researchers have discovered that 
pyroptosis can be used as a biomarker for diagnostic and predictive purposes in uterine corpus endometrial carcinoma 
(UCEC).153,154 Previous studies have linked pyroptosis to the advancement of cancer.116 Yu et al found a correlation 
between the glutamyl hydrolase (GGH) expression level of T helper type 2 (Th2) cells and the low infiltration of cell 
adhesion molecule 56 (CD56) killer cells.155 This association suggests a mechanism for driving the progression of 
UCEC. Zheng and his colleagues report that neural PAS domain protein 2 (NPAS2) can further induce UCEC by 
infiltrating immune cells into tumors.156 Liu et al designed and validated a Treg-related risk signature (TRRS) for 
predicting the outcome of UCEC and immune status.157 TRRS could be used to provide personalized treatment for 
UCEC patients based on their prognosis. A comprehensive review of the references revealed that pyroptosis is 
a significant factor in the advancement of inflammatory or malignant tumors. Intriguingly, Huang et al identified 47 
genes that contribute to the progression of UCEC by regulating pyroptosis-related signaling pathways.154 Furthermore, 
42 genes associated with pyroptosis were validated for their essential role in the development and progression of UCEC. 
Eight pyroptosis-related genes were used to develop pyroptosis-mediated gene models to predict the survival of patients 
with UCEC.
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Research has shown that interferon regulatory factor 2 (IRF2) promotes the stimulation of GSDMD by inducing 
pyroptosis.158 Inflammatory vesicles activate the caspase-1 pathway, which further leads to focal death. It is believed that 
pyroptosis is caused by caspase-11 substrates that generate non-selective pores in the cytoplasmic membrane region, 
resulting in cell enlargement, ruptures and the release of proinflammatory mediators.25,159,160 A growing body of 
evidence indicates that GSDMD and GSDMB play a key role in the activation of pyroptosis in cancer, which enhances 
the preventative potential of UCEC.161,162 Selenoprotein GPX4 is a glutathione peroxidase with inhibitory properties for 
lipid peroxidation.163 It has been proven that GPX4 activates cancerous cells to initiate apoptosis.164–166 Guerriero et al 
demonstrated that GPX4 suppressed macrophage pyroptosis in mice model.167 The augmented level of GPX4 could 
efficaciously suppress pyroptosis in UCEC. Targeting the GPX4 inducers may alleviate the symptoms of UCEC 
associated with pyroptosis and improve patient survival. Previous studies have demonstrated that charged multivesicular 
body protein 2A (CHMP2A) deficiencies can promote the formation of autophagic vesicles and activate pyroptosis.168 

The actual role and function of CHMP2A in EC remains unclear. Current studies have revealed that the identification of 
low levels of CHMP2A expression in UCEC patients is associated with poor survival, suggesting that inhibiting 
CHMP2A could serve as a therapeutic target in this disease.154 Therefore, pyroptosis-related genes have a significant 
role in the pathogenesis and advancement of UCEC.

The innate immune response to bacterial LPS relies on toll-like receptor 4 (TLR4) and nuclear factor kappa B (NF- 
kB) pathways.169,170 TLR4 senses LPS and activates the NF-kB signaling pathway, which modulates the creation of 
several pro-inflammatory mediators and immune response genes through the NLRP3 inflammasome domain.171 In 
addition, macrophages activate the TLR4/NF-kB pathway via NLRP3 inflammasome, which may alter pro- 
inflammatory molecules and other immune-regulating genes.172 EMC cells co-cultured with NLRP3-depleted macro-
phages exhibit increased growth, invasion, and migration potential.136 It was observed that the expression level of 
NLRP3 was downregulated in EMC macrophages. NLRP3 depletion might be a key molecular mechanism responsible 
for the impact of cancer biology on macrophages.

Figure 3 The schematic strategy for the pharmacological induction of pyroptosis-mediated cancer cell death for the therapeutic regulation of EC.
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Caspases 11 is one of the exciting members of the Caspases family. Nobuhiko et al confirmed that Caspases sense 
bacterial LPS, mediate immune responses and trigger pyroptosis.173 LPS and caspase-11 bind to lipid A in gram-negative 
bacteria with their caspase-activated recruitment domain (CARD).174 LPS and TLR4-MD2 display a similar affinity 
through electrostatic adsorption to most of the positive charges found in the CARD domain.175 Caspases-11 can 
recognize LPS directly without an NRL-like scaffold. Caspase-11 fragments when LPS interacts with its CARD 
domain.176 TLRs are activated in inflammatory tissues, which further induces cell death by activating caspase-11.177 

The strong association between gram-negative anaerobes and periodontitis indicates that caspase-11-dependent pyrop-
tosis plays a significant part in the advancement of EC. Therefore, caspase-11 has excellent potential as a focus for 
therapeutic intervention in the treatment and management of EC (Figure 3). Nevertheless, the actual function of caspase- 
11-dependent pyroptosis in the development of EC remains unknown. The significance of caspase-11 in EC needs to be 
further investigated and confirmed.

Endogenous ATP binds to P2X7 receptors, which are present at high nanomolar and low micromolar levels in the 
extracellular fluid of epithelial cells.178 P2X7 is a receptor for P2 nucleotides located on the cell membrane and is activated by 
ligands. Extracellular ATP activates the P2X7 receptor, which creates channels in the plasma membrane that allow the passage 
of cations up to 900 kDa. Multiple evidence indicates that stimulation P2X7R facilitates the formation of NLRP3, which is an 
intracellular multimeric protein complex that triggers inflammatory responses and cell death (pyroptosis and apoptosis) by 
activating caspase-1.36,179–182 Caspase-1 pathway activation fosters GSDMD-mediated pyroptosis, leading to the production 
of pro-inflammatory mediators including IL-1β and IL-18.183 Li et al have shown that the expression of the P2X7 receptor is 
downregulated in epithelial cancer cells of the ectodermal, urinary sinus, and distal paramesonephric duct.184 Kim et al 
demonstrated that epithelial cancer cells from the ectodermal, urogenital sinus, and distal paramesonephric ducts express 
reduced P2X7 level.185 Therefore, the downregulation of P2X7-dependent pyroptosis contributes to the progression of EC.

The endometriosis syndrome is a chronic inflammatory condition associated with a mechanism reliant on estrogen that 
affects approximately 10% of pregnant women.186 Endometriosis of the ovary is the predominant manifestation of endome-
triosis and can induce sterility and dysmenorrhea.187 The inflammasome is a complex composed of several proteins including 
Nod-like receptors (NLRs). These proteins are responsible for detecting pathogen-associated molecular patterns and mole-
cular processes that disrupt homeostasis. Inflammasomes such as NLRP3, which contain nucleotide-binding oligomerization 
domains, leucine-rich repeats and pyrin domains, have been implicated in the development of endometriosis.188–191 Recently, 
Zhang et al showed that NLRP3 inflammasome-mediated pyroptosis induces Notch signal activation in endometriosis.192 In 
addition, Hang et al have reported that E3 ubiquitin ligase tripartite motif-containing 24 protein (TRIM24) deficiency 
promotes NLRP3/caspase-1/IL-1β-mediated pyroptosis in endometriosis.193 Intriguingly, Zhao et al suggest that astrocyte 
elevated gene-1 (AEG-1) exacerbates inflammation by facilitating the development of NLRP3 inflammasome in endometrial 
lesions in mice.194 The NLRP3 receptor is an intracellular receptor that detects both external and internal stimuli. The NLRP3 
inflammasome complex is formed by the interaction of this substance with ASC and caspase-1. The combination stimulates 
the secretion of pro-inflammatory cytokines IL-1β and IL-18, enhancing the immune response and pyroptosis.35 Prior research 
has shown the distinct function of NLRP3 inflammasome in triggering the activation of mast cells (MCs) during the 
autoinflammatory response.195 Anti-cytokine therapy targets NLRP3 inflammasome activation and IL-1β production.196 

Nevertheless, the precise processes by which the NLRP3 inflammasome influences the formation of ectopic endometrium 
remain unclear. The groundbreaking research of Guo et al has shown that endometriosis is associated with the activation of the 
NLRP3 inflammasome by estrogen via a nuclear-initiated signaling pathway.197 In summary, inflammasome and pyroptosis 
contribute to the development and advancement of endometriosis.

Molecular and genomic profiling in EC is becoming increasingly popular.198–200 The L1 cell adhesion molecule (L1CAM) 
is frequently mutated in endometrial cancer.201 Kommoss et al have demonstrated L1CAM) to be a significant indicator of 
high-risk disease in EC.202 Recently, Giannini et al reported that L1CAM has a prognostic role in stage EC, thus providing 
a potentially useful tool for tailoring the need for adjuvant therapy.203 L1CAM expression influences survival outcomes in 
stage-I EC. Recently, it has been shown that specific genetic markers L1CAM, Annexin 2, insulin-like growth factor receptor, 
epidermal growth factor receptor, etc) and aberrant molecular signaling pathways could be key players in metastatic processes 
in EC cells, although further clinical trials are required to confirm their prognostic value of EC in clinical practice.204,205 It was 
found that high L1CAM expression correlated with worse disease-free survival (HR 4.11, 95% CI 1.02–16.59, p = 0.047) and 
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overall survival (HR 3.62, 95% CI 1.32–9.31, p = 0.012). High L1CAM level was also associated with a more aggressive 
FIGO grade and with older age. However, the role and significant relationship of L1CAM with pyroptosis is still unclear. The 
published paper indicates that L1CAM-regulated inflammasome or pyroptosis may play a possible role in EC progression. 
However, further studies are highly required to elucidate the contributory role of L1CAM-regulated pyroptosis in the 
pathogenesis and progression of EC.

Therapeutic Regulation of EC via Pyroptosis-Dependent Signaling Pathways
Hydrogen (H2) may suppress tumor formation and protect normal healthy cells. Recent studies have shown that H2 can 
be applied in the treatment of a variety of diseases including cancer, metabolic diseases and organ ischemia/reperfusion 
injury.206–208 Numerous studies also suggest that H2 impedes tumor cell activity, proliferation, invasion and migration 
dose- and time-dependently and promotes apoptosis in cervical, breast and cutaneous melanoma.209–211 Further evidence 
also indicates that H2 can significantly alleviate the progression of lung cancer, colon cancer, ovarian cancer, thymic 
lymphoma, Ehrlich ascites tumor cells, oral squamous cell carcinoma (OSCC) and fibrosarcoma cells, reduce tumor 
volume and weight and suppress tumor growth in xenografted mice.209,212–215 In addition, H2 has been shown to mitigate 
radiotherapy and chemotherapy-induced renal toxicity.216 The published work of Liu et al showed that H2 stimulates 
pyroptosis by activating the ROS-NLRP3-caspase-1 signaling pathways in the EC.120 Thus, H2 induces GSDMD- 
dependent pyroptosis, which may enhance the effectiveness of cancer therapies that target GSDMD. The pharmacolo-
gical efficacy of H2 in inducing pyroptosis-dependent cancer cell death for therapeutic regulation of EC requires further 
study.

Inflammasomes consist of NLR family proteins, leucine-rich repeat and pyrin domain-containing (NLRP) 1b, 
NLRP9b, NLRP6, NLRP3, or NLR family caspase recruitment domain (CARD)-containing protein (NLRC) 4, which 
sense danger-related, pathogen-related and homeostasis-altering molecular patterns.217,218 Prior research has uncovered 
that the NLRP3 inflammasome contributes to the development of endometriosis.219 Several lines of studies have 
indicated that prolonged endometriosis can further result in the advancement of EC.220,221 The NLR NLRP7 is associated 
with myometrial invasion in human endometrial cancerous tissues and with endometriosis. Furthermore, endometrial cyst 
contents stimulate NLRP3 inflammasome in a stressful environment more strongly than cultured cells. The pharmaco-
logical strategy of suppressing the overactivation of NLRP3 inflammasome may be more effective in the management of 
EC. MCC950 can not hinder the major anti-microbial inflammasome components including NLRC4 and NLRP1. Osoku 
et al showed that the expression level of NLRP3 was significantly augmented compared to other NLRs in OE samples 
and CSCs.121 Researchers have discovered that overactivation of the inflammasome and proteins involved in pyroptosis 
leads to cell death, alleviates the development of EC and offers potential therapeutic targets. Furthermore, the researchers 
discovered that MCC950 effectively suppressed the activation of oxidative stress in granulosa cells of the mouse model 
with endometriosis. However, the exact pharmacological effects and underlying molecular mechanisms of NLRP3 
inflammasome blocker MCC950 in alleviating the progression of EC remains unclear. Therefore, extensive research is 
strongly required to explore the pharmacological actions of MCC950 to discover promising anti-cancer drugs for the 
treatment and management of EC.

Long non-coding RNA (lncRNA) refers to RNA fragments longer than 200 nucleotides that are not genetically coded for 
protein synthesis.222,223 The significant role and function of lncRNA in biology was previously thought to be undefined. It has 
recently been demonstrated that lncRNA plays an important role in the regulation of cancer. Current studies indicate that 
lncRNA may also serve as a biomarker for the detection and prediction of a variety of cancers including EC.224,225 Studies 
have revealed that the long non-coding RNA small nucleolar RNA host gene 4 (SNHG4) regulates the epithelial- 
mesenchymal transition (EMT) signal and exhibits antitumor properties in esophageal cancer by acting on specificity protein 
1 (SP-1) transcription factor.226 It has been demonstrated that long non-coding RNA SLERT controls the BDNF/TRKB 
pathway to facilitate the spread of EC cells.227 Further research into lncRNAs will provide new insight into the potential role of 
new lncRNAs in EC. Recently, Shan et al reported that ENST00000534735 suppresses the proliferation and migration of EC 
cells and promotes programmed cell death and inflammatory cell death by the OSBPL3 protein via regulating the APMK/ 
SIRT1/NF-κB signaling pathway.228 It was found that the high ENST00000534735 expression resulted in a considerable 
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elevation in levels of cleaved caspase-1, GSDME-N and NLRP3. Conversely, the reduction of ENST00000534735 led to 
a decrease in the expression of cleaved caspase-1, GSDME-N and NLRP3 in HEC-1A and Ishikawa cells.

Previously, Mao et al revealed that the TFEB-ERRα pathway stimulates the alteration of lipid composition and 
promotes the development of pseudopodia in EC cells, resulting in enhanced cell membrane fluidity. This process 
facilitates the invasion and metastasis of EC.229 Further studies are required to fully understand the process by which 
ERRα promotes resistance to chemotherapy. Tumor cells have an enhanced glycolytic capacity in order to meet their 
higher energy requirements. Furthermore, there is a correlation between the rate of aerobic glycolysis and the develop-
ment, advancement and resistance to drugs in cancer.230 Zeng et al found that miR-211-5p promotes cancerous effects in 
low-metastatic melanoma tumor cells by inhibiting pyroptosis and increasing glycolysis. This is achieved by modulating 
the expression of the targeted gene guanine nucleotide-binding protein subunit α-15 (GNA15).231 ERRα plays an 
important role in regulating energy metabolism. Analysis of the cancer genome atlas (TCGA) dataset revealed that 
genes associated with ERRα are engaged in the process of glucose metabolism and regulated cell death. The data clearly 
suggested that the excessive production of ERRα may stimulate glycolysis, elevate the ECAR in EC cells and promote 
pyroptotic resistance. This may indicate the primary interaction between the metabolic shift towards glycolysis and the 
activation of pyroptosis in endothelial cells triggered by chemotherapy. ERR+ cells exhibited a high IC50 for cisplatin 
(DDP) compared to EC cells lacking ERR+. It has been shown that the overexpression of ERRα causes resistance to 
DDP by suppressing pyroptosis and inducing glycolytic reprogramming in EC cells. It was discovered by Daniela et al 
that ovarian cancer cells that are resistant to chemotherapy showed increased sensitivity to glucose deprivation. The drug- 
resistant cells also rely heavily on glucose to maintain their viability.232 A study revealed that hepatocellular carcinoma 
cells exhibited an increase in glycolytic metabolism, which is associated with resistance to sorafenib.233 He and his 
colleagues examined the possible involvement of metabolic reprogramming in the development of drug resistance in 
osteosarcoma and the specific molecular mechanisms that regulate this phenomenon. The scientists demonstrated 
a correlation between elevated ERRα expression and the metabolic reprogramming of osteosarcoma cells that are 
resistant to treatment. Targeted suppression of ERRα expression reverses the metabolic mode transformation.234 Thus, 
the overexpression of ERR in patient-derived EC increases resistance to pyroptosis and upregulates glycolysis-related 
genes in tumor cells.

Conclusion, Limitations and Future Directions
Pyroptosis induced by caspases involves cytoplasmic pore formation, cell lysis, membrane denaturation and secretion of several 
intracellular components. Multiple diseases have been associated with pyroptotic cell death, which has attracted considerable 
attraction from researchers and clinicians. Recent studies have increasingly concentrated on the contributing roles and functions 
of inflammasome and pyroptosis-regulated cell death in EC tumors. Our study provided an understanding of the intricate 
molecular processes of pyroptosis-related signaling pathways, which may offer new therapeutic approaches for the treatment and 
management of EC. Thus, targeting pyroptosis can deliver an innovative strategy for the treatment and regulation of a variety of 
cancers including EC. Current researches suggest that pharmacologically inducing pyroptosis-dependent cancer cell death can 
efficaciously suppress the formation of malignant tumors and provide a new treatment option for EC. Currently, research focuses 
primarily on compounds that activate inflammasomes such as NLRP3 and caspase-1 and promote pyroptosis, which could be 
useful for the treatment of EC. There are still many unresolved issues in the study of pyroptosis. The present and future 
implications of pyroptosis-mediated cell death in EC research are only beginning to be explored. A limited body of research has 
specifically investigated the molecular regulator of GSDMD, a key pyroptosis executor in EC. Furthermore, the precious 
function and role of non-canonical inflammasome and GSDME-dependent pyroptotic signaling pathways in the development of 
EC have not yet been explored. Therefore, more research is highly required to understand and clarify the contributory role and 
function of molecular mechanisms of non-canonical inflammasome and apoptotic-mediated pyroptosis in the progression of EC. 
In addition, extensive research on pyroptosis should also be conducted to uncover new possibilities and avenues for the 
therapeutic regulation of EC. Specific potential candidates have shown promise as prospective therapeutic agents for the 
induction of pyroptosis-mediated cancerous cell death in the therapy and control of EC. However, additional investigation is 
required to comprehend the processes better and develop targeted therapies for inflammasome activation and pyroptosis in EC.
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