
T
h
e 

Jo
u
rn

al
 o

f 
E
xp

er
im

en
ta

l 
M

ed
ic

in
e

ARTICLE

JEM © The Rockefeller University Press $8.00

Vol. 203, No. 9, September 4, 2006 2073–2083 www.jem.org/cgi/doi/10.1084/jem.20060245

2073

With the recent rise in obesity and related con-
ditions in North America, atherosclerosis is likely 
to remain a major cause of morbidity and mor-
tality for the coming decades. Understanding the 
underlying mechanisms for the onset of this dis-
ease may provide new strategies for delaying or 
preventing thrombotic complications associated 
with advanced atherosclerosis.

Atherosclerosis is initiated and accelerated 
by systemic risk factors such as elevated low 
density lipoprotein (LDL), hypertension, high 
blood sugar, and oxidation products from 
 smoking. Although the entire vascular endothe-
lium is exposed to these stimuli, atherosclerotic 
lesions develop preferentially at bifurcations, 
branch points, and inner curvatures of arter-
ies, suggesting that local factors contribute to 

disease susceptibility. It is widely accepted that 
the complex patterns of blood fl ow in these 
 regions expose the endothelium to “disturbed” 
hemodynamic forces (shear stress), and these 
may induce the expression of  proinfl ammatory 
genes (1–3). Our previous experiments in nor-
mocholesterolemic C57BL/6 mice focused on 
the transcription factor NF-κB and showed 
priming as well as a low level of activation of 
this signal transduction pathway in endothe-
lial cells located in atherosclerosis-susceptible 
regions of the ascending aorta (4). Consistent 
with these fi ndings, the expression level of 
vascular cell adhesion molecule–1 (VCAM-1) 
was elevated in atherosclerosis-predisposed re-
gions of the rabbit or mouse aorta, but was 
lower relative to expression induced by vari-
ous infl ammatory stimuli (4–6). Recent gene 
profi ling experiments with endothelial cells 
of the normal porcine aorta showed relative 
up- regulation of several other proinfl amma-
tory genes in the aortic arch, such as those of 
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 cytokines IL-1, IL-6, or the chemokine monocyte chemo-
tactic protein–1 (MCP-1), as well as antioxidative genes, 
including glutathione peroxidase or microsomal glutathione S-
 transferase 2 (7). In addition, changes in cell shape and pro-
liferation or lipoprotein transport and retention in the intima 
were reported in atherosclerosis-susceptible regions (4, 8–12), 
underscoring the dramatic biological changes that accompany 
the low-grade expression of proinfl ammatory genes in these 
areas. Consistent with the up-regulation of chemokines and 
adhesion molecules in the lesion-prone areas, intimal leuko-
cytes were found preferentially at several branch points of the 
normal rabbit aorta and in human carotid bifurcations, where 
accumulation of macrophages, dendritic cells, and T cells 
was reported (8, 13, 14). However, the abundance of these 
leukocytes in atherosclerosis-predisposed versus -resistant re-
gions and their relationship with atherosclerosis susceptibility 
have not been determined.

Genetic factors contribute to atherogenesis. In humans, it 
is well known that family history predicts cardiovascular 
events. Susceptibility to atherosclerosis also diff ers amongst 
inbred strains of mice. For instance, when fed an atherogenic 
diet, the susceptible C57BL/6 mice develop lesions in the 
aortic root (15), and apolipoprotein E–defi cient mice in the 
C57BL/6 background develop larger areas of lesions than in 
the resistant BALB/c or C3H/HeJ backgrounds (16, 17). 
Understanding the molecular basis for genetic susceptibility 
will likely lead to the identifi cation of key elements that con-
tribute to the development of atherosclerosis. Previous  studies 
showed a correlation between endothelial cell responses to 
systemic risk factors and the genetic susceptibility of mice to 
atherosclerotic lesion formation (18, 19).

Mouse models have led to an understanding of key mole-
cules involved in atherosclerotic lesion formation. They have 
demonstrated a critical role for proinfl ammatory genes, in-
cluding various adhesion molecules and chemokines such as 
VCAM-1 and MCP-1, which mediate the accumulation of 
leukocytes in arterial lesions (20, 21). Our hypothesis is that 
arterial biology at lesion-predisposed regions of the normal 
intima recapitulates aspects of the infl ammatory response in 
atherosclerosis, although at a lesser magnitude. The same mol-
ecules may mediate leukocyte recruitment and accumulation 
in the normal intima, and this infl ammatory milieu may con-
tribute to atherosclerotic lesion formation on introduction of 
atherosclerotic risk factors.

In this study, we demonstrated that in the normal intima, 
regions predisposed to atherosclerosis expressed relatively 
higher levels of several proinfl ammatory genes that have been 
implicated in atherogenesis and contained an abundance of 
dendritic cells. In contrast, macrophages and T cells were 
abundant throughout the entire adventitia (Adv). These data 
demonstrate for the fi rst time that cellular composition and 
distribution are diff erent in the intima and the Adv. The cor-
relation between susceptibility to atherosclerosis and abun-
dance of intimal (not adventitial) myeloid cells was not only 
topographic but also extended to strains with diff erent genetic 
susceptibilities to atherosclerosis. We also demonstrated that 

bone marrow–derived monocytes are recruited to the normal 
aortic intima and showed that the accumulation of intimal 
CD68+ cells is dependent on the expression of VCAM-1. 
These data demonstrate low-grade chronic infl ammation in 
atherosclerosis-predisposed regions of the normal arterial in-
tima and suggest that mechanisms contributing to this process 
are analogous to those found in atherosclerosis.

RESULTS

Proinfl ammatory genes are expressed in the normal intima 

of an atherosclerosis-prone region of the ascending 

aortic arch

We previously used immunostaining to demonstrate increased 
expression of VCAM-1 in endothelial cells located in regions 
of the mouse and rabbit aorta that are predisposed to ath-
erosclerotic lesion formation (4, 5). In this study, a real-time 
PCR approach was adopted to broaden the scope of gene ex-
pression by intimal cells in these regions, improve sensitivity, 
and obtain more quantitative data. Aortae of WT C57BL/6 
mice were perfused, pinned opened, and, after a brief colla-
genase treatment intimal cells (cells above the internal elastic 
lamina), were isolated using a dissecting microscope. Levels 
of mRNA in the lesser curvature and greater curvature of 
the ascending aortic arch (LC and GC, respectively), regions 
with high and low probability for atherosclerosis, respec-
tively (4, 5), were directly examined. We found that mRNA 

Figure 1. Comparison of intimal cell gene expression in regions of 

the normal C57BL/6 mouse ascending aorta with different suscep-

tibility to atherosclerosis. Real-time PCR was used to determine the 

mRNA levels of proinfl ammatory (A) and cell marker (B) genes. Expression 

levels for each gene were normalized to CD31, and GC values were com-

pared with the respective LC values (see Supplemental materials and 

methods). The mean ± SEM of eight independent experiments is plotted. 

***, P < 0.001; **, P < 0.01; and *, P < 0.05, indicating signifi cant differ-

ences between LC and GC values for each gene using the unpaired t test.
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 levels of adhesion and proinfl ammatory molecules E-selectin, 
VCAM-1, lectin-like oxidized LDL receptor–1 (LOX-1), 
MCP-1, and CSF-1 were expressed at signifi cantly higher 
levels in the LC relative to the GC (Fig. 1 A). One interpre-
tation of these data is that this pattern of mRNA expression 
represents diff erential gene expression by endothelial cells. 
This is likely the case for E-selectin, an adhesion molecule 
that is expressed selectively by endothelial cells. However, 
VCAM-1 can be expressed by endothelial and smooth mus-
cle cells (22), LOX-1 can be expressed by these cells as well 
as macrophages (23, 24), and chemokines/growth factors 
can be expressed by a variety of cells, including leukocytes. 
Therefore, diff erences in the abundance of intimal smooth 
muscle cells and leukocytes may also be responsible.

We therefore investigated the abundance of intimal 
smooth muscle cells and leukocytes in the LC and GC of the 
mouse ascending aortic arch. Real-time PCR experiments 
did not reveal diff erences in mRNA levels for the endo-
thelial intercellular adhesion molecule–2 (ICAM-2) or for 

the smooth muscle cell markers SMCα-actin and SM22α; 
however, mRNA levels of the panleukocyte marker CD45 
were elevated more than fi vefold in the LC (Fig. 1 B). These 
data suggest that in contrast to vascular smooth muscle cells, 
increased numbers of leukocytes are present in the intima 
of the LC. Levels of CD68, a myeloid cell marker, were 
 elevated by >9-fold in the LC intima, whereas T cell marker 
CD3 levels were increased by only 1.5-fold (Fig. 1 B). 
These data suggest that cells of the myeloid lineage are more 
abundant in the LC intima relative to GC. Because these cells 
can produce numerous cytokines and growth  factors, they 
may contribute to the elevated mRNA levels of LOX-1, 
MCP-1, and CSF-1 that were found in the LC of the 
 ascending arch.

Intimal myeloid cells, but not T cells, are abundant 

in atherosclerosis-susceptible regions of the aorta

En face immunoconfocal microscopy experiments were 
performed to determine the nature and abundance of 

Figure 2. The distribution and abundance of leukocytes in regions 

of the normal mouse aorta with different susceptibilities to athero-

sclerosis. (A) Shown are representative immunoconfocal images of the 

intima in the LC and GC of the ascending aorta, the Adv in these regions, 

and the IAO in the DT. Segments of aorta were stained with antibodies 

directed to CD68, macrophages (RAM) or CD3 (green), and nuclei were 

counterstained with PI (red). At a minimum, four experiments were per-

formed with each antibody. Bars, 50 μm. (B) The relative densities of 

RAM+ cells in the LC, GC, DT, and abdominal (Abd) aorta are shown. 

Means ± SEM of four experiments were normalized to LC values, which 

are represented as 100. (C) Total number of CD3+ T cells found in the LC 

and GC of the ascending aorta. Means ± SEM of four experiments are 

plotted. *, P < 0.001, indicating signifi cant differences from the LC value 

using the unpaired t test.
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 leukocytes in the aorta. Regions susceptible or resistant to 
developing lesions were examined, and the intima was com-
pared with the corresponding Adv. Representative data 
are shown in Fig. 2 A. The intima in the lesion-resistant 
GC was readily distinguishable from the lesion-susceptible 
LC by the shape, orientation, and density of propidium io-
dide (PI)–stained nuclei. GC nuclei were evenly spaced, 
oval shaped, and oriented at the direction of blood fl ow, 
whereas nuclei in the LC appeared irregular and randomly 
oriented. These diff erences are consistent with endothelial 

cell shape changes in response to disturbed blood fl ow (25), 
which were readily detectable in the silver nitrate–stained 
samples depicted in Fig. S1 (available at http://www.jem.
org/cgi/content/full/jem.20060245/DC1). The density of 
intimal cell nuclei in the LC appeared higher than in the GC 
(Fig. 2 A). To determine if this was caused by diff erences in 
endothelial cell numbers or leukocytes accumulated in the 
LC, we quantifi ed the endothelial cells and nuclei in the 
LC, GC, and descending thoracic aorta (DT). This analysis 
revealed that the number of endothelial cells (identifi ed by 

Figure 3. Expression of macrophage and dendritic cell marker 

genes in the aortic intima. (A) Relative gene expression levels deter-

mined by real-time PCR were derived from three or four independent 

experiments, as described in Fig. 1 for the LC, GC, and DT. The dashed line 

represents the normalized LC value of 1. Means ± SEM are shown. *, P < 

0.05; and **, P < 0.01, indicating signifi cant differences from LC values 

using one-way ANOVA (except for CD11c, which used the unpaired t test). 

U, undetectable mRNA levels. Note that similar values were obtained 

when a different normalizer gene than CD31, HPRT (reference 44) was 

used (Fig. S3). (B–E) Representative en face immunoconfocal microscopy 

images from three independent experiments show CD11c expression 

(green) and nuclei (red) in intimal cells. The same LC region is shown 

in B and C, with only the fl uorescein channel shown in C. Arrowheads 

indicate cell bodies. The GC and IAO are shown in D and E, respectively. 

(E, inset) Staining with nonimmune hamster IgG (negative control) is 

shown. (F) A representative immunoconfocal microscopy image from two 

independent experiments shows intimal cells in the LC region coexpress-

ing CD68 (red, Cy3) and CD11c (green, fl uorescein). The fl uorescein (G) and 

Cy3 (H) channels corresponding to the image in F are shown indepen-

dently, and cell bodies and processes that show more intense staining for 

CD11c (arrows) and CD68 (arrowheads) are indicated. (I) A representative 

image of the Adv shows predominance of CD68 staining and costaining 

for CD68 and CD11c in only occasional cells. Bars, 50 μm.
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staining of cell junctions with silver nitrate) was comparable 
in all regions (Table I and Fig. S1). In the GC and DT, 
the number of nuclei (identifi ed by staining with PI) was 
identical to endothelial cells, whereas in the LC it was 1.4-
fold higher (Table I). These data demonstrate that intimal 
leukocytes account for increased nuclear density observed 
in the LC.

Numerous CD68+ and rabbit antimacrophage (RAM)–
positive cells were found in the LC intima, whereas the 
GC region was essentially devoid of these cells (Fig. 2 A). 
CD68+ and RAM+ intimal cells were also observed in 
other atherosclerosis-susceptible regions, such as intercostal 
artery ostia (IAO; Fig. 2 A), celiac, mesenteric, and renal 
artery ostia, and in the aortic root (not depicted). CD68+ or 
RAM+ cells were present very rarely in straight segments 
of the DT and abdominal aorta. These observations were 
supported by quantifying the relative abundance of intimal 
RAM+ cells in diff erent regions of the aorta (Fig. 2 B). 
Real-time PCR studies detected more abundant mRNA 
expression of macrophage markers, CD14, and sialoadhe-
sin, in addition to CD68, in intimal cells of the LC rela-
tive to the GC and straight segments of the DT, excluding 
IAO (Fig. 3 A and Fig. S3, available at http://www.jem.
org/cgi/content/full/jem.20060245/DC1). The combined 
immunoconfocal and real-time PCR data demonstrated 
that resident intimal myeloid cells, including monocytes/ 
macrophages, accumulate preferentially in regions of the 
aorta that are susceptible to atherosclerosis in WT normo-
cholesterolemic mice.

In contrast to diff erences in the arterial intima, the Adv 
of both the LC and GC regions harbored abundant CD68+ 
(Fig. 2 A) or RAM+ (not depicted) cells. These data indicate 
that the accumulation of myeloid cells in lesion-prone areas 
applies only to the intimal layer. Intimal CD3+ T cells were 
occasionally found in the LC of the arch (Fig. 2 A). On av-
erage, only seven or eight cells were observed in the entire 
LC intima of the ascending aorta (Fig. 2 C), in contrast to 
several hundred CD68+ cells found in the same region (see 
Figs. 5 and 7). T cells were abundant in the Adv throughout 
the aorta (not depicted), which was consistent with a recent 
report (26).

Dendritic cells constitute the majority of myeloid cells 

accumulated in atherosclerosis-susceptible regions 

of the intima

CD68 is expressed by monocytes/macrophages, dendritic 
cells, and several other cell types (27–30). Because we ob-
served that CD68+ intimal cells frequently extended long, 
dendritic-like processes (Fig. 2 A), we investigated if intimal 
myeloid cells also express dendritic cell markers. Real-time 
PCR studies revealed that mRNA levels of CD11c, a pan-
dendritic cell marker, were elevated by >100-fold in the LC 
region relative to the GC and straight segments of the DT, 
where levels were barely detectable or undetectable (Fig. 3 A 
and Fig. S3). CD83, a marker for mature dendritic cells (31, 
32), also appeared elevated in the LC region, but a statisti-
cally signifi cant diff erence was observed only between the 
LC and the DT (Fig. 3 A). ICAM-2 expression was similar in 
all regions. Elevated expression in the LC region of CD11c 
was confi rmed by immunoconfocal microscopy. Abundant 
intimal CD11c+ cells with extended dendrites were found in 
the LC and near ostia of intercostal arteries of the DT but not 
the GC (Fig. 3, B–E). To assess the proportion of CD68+ 
cells that were also CD11c+, segments of the aorta were 
stained with antibodies against both antigens simultaneously. 
The majority of intimal CD68+ cells costained positive for 
CD11c (Fig. 3, F–H). Some cells stained more intensely for 
CD68 (red, as indicated by arrowheads), whereas in others 
CD11c staining (green, indicated by arrows) was brighter. 
 Costaining for CD11c of most CD68+ cells was also preva-
lent in the intima adjacent to IAO (Fig. S2 A, available at 
http://www.jem.org/cgi/content/full/jem.20060245/DC1). 
 Intimal CD68+ cells were rarely weakly positive or negative 
for CD11c. On the other hand, only occasional CD68+ cells 
in the Adv stained brightly for CD11c cells (Fig. 3 I), and 
these cells lacked the long dendritic processes. The specifi city 
of staining with each antibody was verifi ed in control ex-
periments (Fig. S2). Based on costaining of CD68+ cells for 
CD11c and the presence of long dendrites, we concluded 

Figure 4. Expression of CD68, CD3, and ICAM-2 by intimal cells 

isolated from the GC and LC regions of the ascending aorta from 

different strains of mice. Real-time PCR was used as described in Fig. 1. 

The GC/LC ratios obtained in different strains were compared. The dashed 

line represents the normalized LC value of 1. Means ± SEM are plotted 

for three or four experiments (C57BL/6, 129, and C3H strains) or eight 

experiments (BALB/c strains). *, P < 0.01; and **, P < 0.001, indicating 

signifi cant differences from the C57BL/6 strain using one-way ANOVA.

Table I. Number of nuclei or endothelial cells (EC) and nuclear 

density in different segments of mouse aorta

Nuclei/mm2 EC/mm2 Densitya

LC 3,415 ±74.4b, c 

nd = 6

2,431 ± 57.8 

n = 12

1.40

GC 2,691 ± 88.91 

n = 3

2,685 ± 93.25 

n = 10

1.00

DT 2,657 ± 103.3 

n = 3

2,549 ± 148.4 

n = 4

1.04

aNuclei/EC.
bMean ± SE.
cP < 0.001 when compared with the EC number in LC.
dTotal number of areas counted.
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that the  majority of CD68+ cells in the intima are dendritic 
cells, whereas in the Adv these cells are rare.

The abundance of intimal CD68+ cells correlates with strain 

susceptibility to atherosclerosis

Having found that the abundance of CD68+ cells in the intima 
of the normal mouse aorta correlates with the spatial suscepti-
bility to lesion formation, we investigated whether a correla-
tion also exists with strain susceptibility to  atherosclerosis. We 
compared the highly susceptible C57BL/6 strain to BALB/c 
and C3H, which are relatively resistant, and 129, which has 
intermediate susceptibility (16). Using real-time PCR, we de-
termined the ratio of CD68 mRNA expression in atheroscle-
rosis resistant to susceptible regions of the ascending aorta. In 
C57BL/6 and 129 strains, the CD68 expression ratio was sig-

nifi cantly lower than in the atherosclerosis-resistant BALB/c 
and C3H strains (Fig. 4). In contrast, diff erences were not 
found in the expression ratios of CD3 and ICAM-2. PCR 
data were supported by en face immuno confocal analyses, 
which showed lower numbers of intimal CD68+ cells in the 
LC of C3H versus C57BL/6 mice (Fig. 5 A) and very infre-
quent CD68+ cells in the GC of all strains. Similarly, lower 
numbers of intimal CD68+ cells were observed in the LC of 
BALB/c versus C57BL/6 mice (unpublished data). In the LC 
of C57BL/6 mice, intimal CD68+ cells extended from the 
aortic root to the arch (areas A, B, and C in Fig. 5, B and C), 
whereas in C3H mice these cells were found most consistently 
in the midportion of the LC (area B in Fig. 5, B and C). In 
some instances, intimal CD68+ cells were rarely seen in areas 
A and C of C3H mice. Despite these diff erences, CD68+ cells 

Figure 5. Immunoconfocal assessment of the abundance and dis-

tribution of intimal CD68+ cells in the ascending aorta of normal 

C57BL/6 and C3H mice. (A) The number of intimal CD68+ cells in the LC 

of C57BL/6 (C57) and C3H mice is plotted. Means ± SEM for four experi-

ments are shown. *, P < 0.001 using the unpaired t test. CD68+ cells were 

detected very infrequently in the GC of both strains. (B) A schematic dia-

gram of the en face ascending aorta indicating areas A, B, and C of the LC 

(shaded area). The coronary sinus (CS) and three valve leafl ets are indi-

cated. (C) Representative images of C57BL/6 and C3H mice aortae exam-

ine the abundance of CD68+ cells (green) and nuclei (red) in areas A–C of 

the LC intima and Adv. (D) Prominent CD68+ dendritic-like processes are 

evident in a high magnifi cation view of a C3H LC intima (left, green; right, 

fl uorescein channel only). Bars, 50 μm.
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in the intima of C3H mice exhibited similar morphological 
features, including long dendritic-like processes (Fig. 5 D), 
and nuclei in the LC region were irregularly oriented. The 
abundance of CD68+ cells in the Adv was indistinguishable 
between the two strains (Fig. 5 C), further supporting the 
notion that the correlation between abundance of CD68+ 
cells and predisposition to atherosclerosis is restricted to the 
intimal layer.

Intimal dendritic cells are derived predominantly 

from the bone marrow

The accumulation of intimal dendritic cells in regions of the 
aorta predisposed to atherosclerosis may result from local 
proliferation, recruitment of bone marrow–derived mono-
cytes from the blood, or both. To address these possibilities, 
BrdU labeling experiments were performed in C57BL/6 
mice. BrdU has a short half-life, and cells undergoing DNA 
synthesis (S phase of the cell cycle) are labeled only within 
the fi rst hour after BrdU injection (33, 34). The bone mar-
row is a site of monocytopoiesis, which is enhanced by hy-
percholesterolemia in swine (35), and mouse bone marrow 
myeloid Gr-1− progenitors and immature neutrophils that 
express low levels of Gr-1 can be labeled with BrdU (36). 
Using fl ow cytometry, we found that 13% of the total bone 
marrow–nucleated cells were labeled with BrdU 2 h after i.p. 
injection, and 25% of Mac-1+Gr-1− and 22% of Mac-1+Gr-1int 
myeloid precursors were labeled. These data are consistent 
with a published report (36). Fig. 6 A shows a typical time 
course of labeled leukocyte appearance in the blood after 
a single BrdU injection. Labeled leukocytes were not 
detected in the blood at 2 h. Therefore, we assessed local cell 
proliferation in the aorta at this time point and detected only 
occasional BrdU+ nuclei in the LC region (Fig. 6 B). BrdU-
labeled monocytes (Mac-1+Gr-1int) were detected in the 
blood between 8 and 24 h, whereas labeled neutrophils 
(Mac-1+Gr-1high) and T cells (CD3+) did not circulate dur-
ing this time frame (Fig. 6 A). A signifi cant increase in BrdU+ 
nuclei was observed in the LC region 24 h after BrdU injec-
tion (Fig. 6, B and C), indicating that BrdU+ monocytes 
were recruited to the LC intima. BrdU+ nuclei were not de-
tected in the GC, whereas occasional labeled cells (approxi-
mately six or seven) were found in the entire Adv of the arch 
at 24 h but not at 2 h. Based on these data, we concluded that 
low-grade recruitment of blood monocytes is the predomi-
nant mechanism for dendritic cell accumulation in the nor-
mal intima of regions predisposed to atherosclerosis.

Accumulation of CD68+ cells in the intima of the LC 

is dependent on VCAM-1 expression

The adhesion molecule VCAM-1 participates in the forma-
tion of early atherosclerotic lesions in hypercholesterolemic 
mice (37, 38), and we demonstrated that its expression is ele-
vated in the LC of the ascending aorta of normal mice (see 
Fig. 1 and [4]). We undertook to determine if the accumula-
tion of intimal CD68+ cells in atherosclerosis-predisposed 
regions of the normal aorta is dependent on VCAM-1. Using 

en face immunoconfocal microscopy, we compared the 
number of intimal CD68+ cells in the LC of VCAM-1–defi -
cient mice (Vcam-1D4D/D4D) with corresponding WT litter-
mates. These mice were bred over 10 generations into the 
C57BL/6 background. Intimal CD68+ cells were signifi -
cantly lower in Vcam-1D4D/D4D mice (Fig. 7, A–C). Interest-
ingly, the observed diff erences between Vcam-1D4D/D4D and 
WT mice were found only in the intima and not the Adv 
(Fig. 7, D and E), indicating that VCAM-1 participates in the 

Figure 6. Analysis of BrdU+ leukocytes in blood and the ascend-

ing aorta of C57BL/6 mice. (A) Blood leukocytes stained with anti-

BrdU, anti-CD11b, and anti–Gr-1 were analyzed by fl ow cytometry for 

the presence of BrdU+ monocytes and neutrophils at different times 

after injection of BrdU. (B) The number of BrdU+ nuclei in the intimal 

layer of the LC at 2 and 24 h after BrdU injection was determined by 

immunoconfocal microscopy. Each bar represents the mean ± SEM of 

four experiments. *, P < 0.05, using the unpaired t test. (C) Representa-

tive en face immunoconfocal images of the intima 24 h after BrdU injec-

tion demonstrate BrdU+ nuclei (arrowheads) in the LC (left) but not the 

GC (right). Bars, 50 μm.
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accumulation of CD68+ cells in the arterial intima but not in 
the Adv.

DISCUSSION

In this study, real-time PCR and en face immunoconfocal 
microscopy revealed spatial and quantitative correlations be-
tween dendritic cells residing in distinct regions of the normal 
aortic intima and the expression of proinfl ammatory genes, 
the topography of atherosclerotic lesion formation, and the 
genetic susceptibility of mice to atherogenesis. In contrast to 
the intima, leukocytes were abundant throughout the entire 
Adv in all mouse strains and were not found in the media. 
Our observations are in agreement with a study that revealed 
intimal macrophages near ostia of the rabbit aorta (8); how-
ever, we demonstrated that most intimal myeloid cells have 
dendrites and express dendritic cell markers. We also showed 
that the composition of myeloid cells in the intima is diff erent 
from the Adv because relatively few adventitial myeloid cells 
express CD11c.

In humans, macrophages, dendritic cells, and CD3+ T 
cells were found in the atherosclerosis-prone arterial intima of 
healthy children (14, 39, 40). Wick et al. called these sites 
vascular-associated lymphoid tissue based on the notion that 
the abundance of antigen-presenting cells and T cells impli-
cates their involvement in local immune surveillance against 
potentially harmful antigens (13). A protective role for inti-
mal dendritic cells has not been established in humans or 
mice. We observed relatively few intimal CD3+ T cells in the 
mouse aorta, which suggests that if mouse intimal dendritic 
cells encounter pathogens, they either exit the intima and mi-
grate to organized lymphoid tissues or initiate a local infl am-

matory response that recruits T cells. We observed abundant 
myeloid cells and T cells throughout the aortic Adv of nor-
mocholesterolemic C57BL/6 mice, which was consistent 
with a recent study by Galkina et al. (26). The formation of 
organized lymphoid tissues in the Adv during hypercholester-
olemia (26) may be part of the immune response to modifi ed 
lipoproteins that modulates disease progression. Throughout 
the normal Adv, lymphocytes are recruited via the microvas-
culature (26), which suggests that these microvessels are not 
subjected to local regulation by factors that predispose distinct 
regions of the intima to atherosclerosis.

We observed considerable diff erences in the abundance of 
CD68+ cells located in atherosclerosis-predisposed regions of 
the aortic intima in atherosclerosis-susceptible versus-resistant 
strains of mice, yet adventitial myeloid cells were abundant 
in all strains. This suggests that the abundance of intimal 
 myeloid cells is most likely caused by strain-specifi c gene 
expression by luminal endothelial cells rather than diff er-
ences in global responses to infl ammatory stimuli or intrinsic 
macrophage and dendritic cell defects. In support of this, Shi 
et al. demonstrated that chemotactic activity in conditioned 
media and MCP-1 protein secretion in response to modifi ed 
forms of LDL were substantially lower in cultures of aortic 
endothelial cells isolated from atherosclerosis- resistant C3H 
relative to susceptible C57BL/6 mice (19). Thus, it is con-
ceivable that the endothelium in atherosclerosis-predisposed 
regions of the aorta from resistant strains have attenuated re-
sponses to the local hemodynamic environment, resulting in 
lower levels of proinfl ammatory stimuli and reduced accu-
mulation of intimal macrophages.

There is evidence that during atherogenesis both the re-
cruitment of monocytes from the blood and cell proliferation 
in the intima contribute to the accumulation of macrophages 
in atherosclerotic lesions (41, 42). Our BrdU experiments in 
normocholesterolemic mice demonstrated that the prolifera-
tion rate of the resident intimal cells was very low. This is 
in agreement with previous experiments with normal rabbits 
(8). We also demonstrated that bone marrow–derived mon-
ocytes are recruited from the blood into the normal intima 
in regions predisposed to atherosclerosis. The expression of 
proinfl ammatory genes, such as VCAM-1, E-selectin, and 
MCP-1, may account for this low-grade infl ammation. In 
support of this hypothesis, considerably lower numbers of 
CD68+ intimal leukocytes were found in normocholester-
olemic VCAM-1–defi cient mice as compared with WT lit-
termates. In the setting of hypercholesterolemia, VCAM-1 
contributes to the formation of early atherosclerotic lesions 
(37, 38). These suggest that parallel molecular mechanisms 
underlie chronic infl ammation in atherosclerosis-susceptible 
regions of the normal aorta and in early atherosclerosis; how-
ever, infl ammation in normal and atherosclerotic vessels dif-
fers in magnitude.

Based on the close spatial and strain correlations be-
tween intimal dendritic cells and atherogenesis in mice, we 
propose that when systemic risk factors such as hypercho-
lesterolemia are introduced, intimal dendritic cells promote 

Figure 7. Immunoconfocal assessment of the abundance and dis-

tribution of intimal CD68+ cells in the ascending aorta of WT and 

Vcam1D4D/D4D (D4D) mice. (A) The numbers of intimal CD68+ cells in the 

LC are plotted. Means ± SEM for four pairs of WT and D4D littermates 

are shown. *, P < 0.01, using the paired two-tailed t test. (B–E) Represen-

tative en face immunoconfocal images of the intima (B and C) and cor-

responding Adv (D and E) in the LC in WT (B and D) and D4D (C and E) 

mice. All images are at the same magnifi cation. Bar, 50 μm.



JEM VOL. 203, September 4, 2006 2081

ARTICLE

 atherosclerotic lesion formation and contribute to the unique 
topographic distribution of lesions. Close correlations be-
tween areas of enhanced permeability to serum proteins and 
intimal mononuclear cell accumulations were described (43), 
and it is likely that intimal myeloid cells may readily accumu-
late oxidatively modifi ed lipoproteins, become activated, and 
secrete proinfl ammatory factors that initiate and amplify an 
infl ammatory response. In addition to a pathogenic role, the 
cellular composition of the intima may serve as a predictive 
marker for atherosclerosis. Future studies will investigate the 
potential functions of intimal dendritic cells.

MATERIALS AND METHODS
Mice. Female and male C57BL/6, 129X1/SvJ (129/SvJ, termed 129), and 

BALB/c strains, as well as the C3.SW-H2b/SnJ congenic strain (designated 

C3H), were used at ages between 3–6 mo. Vcam1D4D/D4D mice and WT lit-

termates (in the C57BL/6 background) were generated by heterozygous 

inter crosses and used at the age of 12 mo. Mice were bred and housed at the 

University Health Network Animal Facility and were fed standard rodent 

chow. All procedures were performed according to the guidelines of the 

Canadian Council on Animal Care.

Antibodies and reagents. RAM antiserum (Accurate Chemical); biotin-

conjugated anti–mouse antibodies targeting CD11c, CD3, GR-1 (BD 

 Biosciences), and CD68 (Serotec); FITC–anti-BrdU, –anti-CD11c (BD Bio-

sciences), and PE–anti-CD11b (Caltag Laboratories) antibodies and secondary 

antibodies; biotin–anti–rabbit IgG (Jackson ImmunoResearch Laboratories); 

and antifl uorescein–horseradish peroxidase (HRP; Invitrogen) were used. 

BrdU and PI were purchased from Sigma-Aldrich, TOTO-3 was obtained 

from Invitrogen, a BrdU detection kit was purchased from BD Biosciences, 

and Tyramide signal amplifi cation kits (TSA, Fluorescein, or Cyanine3) were 

obtained from PerkinElmer. All the reagents for real-time PCR, including 

the TaqMan gene expression assay mix for LOX-1, MCP-1, CSF-1, CD14, 

CD11c, CD83, and sialoadhesin were purchased from Applied Biosystems.

En face immunoconfocal microscopy of the aorta. Mice were per-

fused at 100 mm Hg via the left ventricle with ice-cold PBS for 5 min fol-

lowed by 4% paraformaldehyde in PBS for 10 min. Aortae were harvested, 

and the surrounding adipose tissue was dissected while immersed in cold 

PBS. After further fi xation in 4% paraformaldehyde for 30 min at 4°C, and 

permeabilization with 0.2% Triton X-100 and 0.1 M glycine in PBS for 

7 min at 22°C, single or double immunostaining was performed according 

to the guidelines of the Tyramide amplifi cation kit. Essentially, after quench-

ing endogenous peroxidase activity with 3% H2O2, tissue segments were 

 incubated with anti-CD32/-CD16 Fc-block (1:100; BD Biosciences) and 

10 μg/ml nonimmune mouse IgG (Sigma-Aldrich) and IgG corresponding 

to the species of the primary antibody. Primary antibodies (for single or dou-

ble staining) were incubated overnight at 4°C. Negative controls included 

isotype control IgG of the appropriate species. Incubation with biotinylated 

secondary antibodies for 1 h at 22°C was performed if the primary antibody 

was not biotin conjugated. Samples were then incubated with streptavidin-

HRP, followed by FITC-conjugated Tyramide. For double staining for 

CD68 and CD11c, Cy3-Tyramide was used in conjunction with biotin–

anti-CD68. After quenching the remaining HRP activity with 1% H2O2, 

1 μg/ml anti-FITC–HRP (for 30 min) and FITC-Tyramide were used to 

reveal FITC–anti-CD11c staining. Nuclei were stained with 2 μg/ml PI or 

0.2 μM TOTO-3 for single or double staining, respectively. The arch was 

opened in a highly reproducible manner (5), and other segments were cut 

longitudinally. Flattened segments of the aorta were mounted on glass 

slides with mounting media (Dako Fluorescent; DakoCytomation). En face 

 immunofl uorescence images were obtained with confocal microscopes, one 

(MRC-1024ES; Bio-Rad Laboratories) equipped with a krypton/argon 

 laser and 40× or 60× (NA 1.4) oil objectives (Nikon), and the other 

(Flowview FV-1000; Olympus) equipped with 40× (NA 1.0) and 60× (NA 

1.4) oil objectives (Olympus).

Silver nitrate staining of endothelial cell junctions. Mouse aortas were 

pressure perfused via the left ventricle with PBS for 5 min, followed by 

AgN03 (0.125% in H2O) for 30 s, PBS for 1 min, and 4% paraformaldehyde 

for 10 min.

Real-time PCR and primers synthesis. Gene expression was assessed 

using real-time PCR only in intimal cells isolated from the LC, GC, and DT 

regions of the mouse thoracic aorta (see Supplemental materials and meth-

ods, available at http://www.jem.org/cgi/contente/full/jem.20060245/

DC1). Primers (TaqMan MGB probes; Applied Biosystems) were purchased 

or designed (see Table S1, available at www.jem.org/cgi/content/full/

jem.20060245/DC1) using software (Primer Express; Applied Biosystems). 

The SM22α and SMCα-actin primers were provided by S. Hanada and 

M. Husain (Toronto General Research Institute, Toronto, Canada). Real-time 

PCR reactions were performed using the default PCR cycle on a sequence 

detection system (ABI Prism 7900 HT; Applied Biosystems), and amplifi ed 

DNA was detected by SYBR Green (Applied Biosystems) incorporation or 

measurement of fl uorogenic signal from FAM-labeled TaqMan MGB 

probes. Dissociation curve analyses were performed to confi rm specifi city of 

the SYBR Green signals in each experiment. Quantifi cation of relative 

amounts of genes of interest was performed using software (Sequence Detec-

tion Systems 2.0; Applied Biosystems) and the comparative standard curve 

method or the Ct method when the effi  ciency of primers was comparable. 

Data were normalized to CD31 or the housekeeping gene HPRT, and gene 

expression in the GC and DT regions were compared with the LC (see Sup-

plemental materials and methods).

BrdU injections and analysis of blood leukocytes by fl ow cytometry. 

Mice were injected i.p. with 2 mg BrdU (0.2 ml diluted in sterile PBS). 

 Approximately 0.1 ml of blood was collected from the retro-orbital plexus, 

and bone marrow cells were collected from femurs. Leukocytes were surface 

stained for Mac-1, Gr-1, and CD3 after lysis of red blood cells. Staining of 

nuclei with anti-BrdU antibodies was performed after fi xing/permeabilizing 

the cells and digesting with DNase I according to the protocol provided in 

the BrdU fl ow kit (BD Biosciences). Analyses were performed with a fl ow 

cytometer (EPICS-XL; Beckman Coulter).

Statistical analyses. The unpaired and paired t tests were used when com-

paring diff erences between two groups. In experiments with multiple groups, 

diff erences were fi rst evaluated using one-way analysis of variance (ANOVA), 

and the Tukey-Kramer multiple comparison test was used to determine dif-

ferences between pairs.

Online supplemental material. Supplemental materials and methods pro-

vides. Fig. S1 depicts an analysis of endothelial cells and nuclei in the LC 

and GC regions of the ascending arch. Fig. S2 shows double staining of the 

intimal cells of IAO with CD68 and CD11c and the corresponding controls. 

Fig. S3 depicts the expression of macrophage and dendritic cell marker genes 

in the aortic intima. Table S1 provides the sequence of primers designed 

for real-time PCR. Online supplemental material is available at http://

www.jem.org/cgi/content/full/jem.20060245/DC1.
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