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Euler-Lagrange computational fluid dynamics
for (bio)reactor scale down: An analysis
of organism lifelines

The trajectories, referred to as lifelines, of individual microorganisms in an in-
dustrial scale fermentor under substrate limiting conditions were studied using an
Euler-Lagrange computational fluid dynamics approach. The metabolic response
to substrate concentration variations along these lifelines provides deep insight in
the dynamic environment inside a large-scale fermentor, from the point of view
of the microorganisms themselves. We present a novel methodology to evaluate
this metabolic response, based on transitions between metabolic “regimes” that can
provide a comprehensive statistical insight in the environmental fluctuations experi-
enced by microorganisms inside an industrial bioreactor. These statistics provide the
groundwork for the design of representative scale-down simulators, mimicking sub-
strate variations experimentally. To focus on the methodology we use an industrial
fermentation of Penicillium chrysogenum in a simplified representation, dealing with
only glucose gradients, single-phase hydrodynamics, and assuming no limitation in
oxygen supply, but reasonably capturing the relevant timescales. Nevertheless, the
methodology provides useful insight in the relation between flow and component
fluctuation timescales that are expected to hold in physically more thorough simu-
lations. Microorganisms experience substrate fluctuations at timescales of seconds,
in the order of magnitude of the global circulation time. Such rapid fluctuations
should be replicated in truly industrially representative scale-down simulators.
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1 Introduction

Nonideal mixing in industrial bioreactors may lead to several
large-scale gradients, for example in substrate concentration, in
dissolved oxygen (DO) concentration and in pH. From the point
of view of the organisms, these spatial gradients in the reactor
translate to temporal variations in their observed environment
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com), Bio Separation Technology, Department of Biotechnology,
Delft University of Technology, van der Maasweg 9, 2629HZ Delft,
the Netherlands

Abbreviations: CFD, computational fluid dynamics; DO, dissolved oxy-
gen; E, excess (regime); L, limitation (regime); S, starvation (regime);
SD, scale down

to which they are continuously subjected [1], and which will
influence their metabolism. In order to properly assess the per-
formance and feasibility of industrial bioprocesses upfront, the
influence of these variations must be taken into account. This
can be done via the use of so-called “scale-down (SD) simula-
tors” [2, 3]. The design parameters and operating conditions of
these simulators are currently often chosen on the basis of in-
tuition or engineering correlations, for example the circulation
rate is often based on the vessel mixing time [4–7], or chosen
as a variable [8, 9]. Whether the magnitude and frequency of
fluctuations observed by organisms based on this assumption
are representative is, however, questionable.

A more rational design of SD simulators requires deeper in-
sight in the large-scale conditions to which organisms are ex-
posed. Unfortunately, industrial equipment is typically poorly
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accessible for detailed measurements. With state of the art com-
putational fluid dynamics (CFD), it is possible to obtain detailed
insight in the environment inside the fermentor [10–12]. Of
course, such methods involve several assumptions in the mod-
elling of turbulent and multiphase flows and are not perfect
in their accuracy, but they provide a significant step forward
compared to the information that is currently available experi-
mentally.

Several authors have suggested the use of CFD to tune SD
simulators [10, 13–15], in particular the use of Euler-Lagrange
CFD. In the Euler-Lagrange method the biomass phase is repre-
sented by a set of individual particles, which provides the most
straightforward way to study the environmental variations from
the perspective of the microorganisms. For each particle, a con-
dition versus time series describing the observations of a single
microorganism is recorded, referred to as a lifeline, a term coined
by Lapin et al. [16]. Although the focus here is on the extracellular
environment, lifelines for intracellular conditions can similarly
be attained [10, 16].

Since the pioneering work of Lapin, who first presented the
Euler-Lagrange methodology [10, 16], only few authors have
applied this method, and little attention has been devoted to
analysing fermentation simulations from the unique microbial
perspective offered by the approach. Lapin et al. and Delvigne
et al. [13] showed lifeline plots, but did not quantify fluctuation
frequencies. Some initial quantification of substrate concentra-
tion variations, considering both frequency and magnitude, has
been conducted by McClure et al. [17]. Still, to our knowledge, no
extensive statistical analysis of CFD-based lifelines has been pub-
lished to date. Such substrate concentration fluctuation statistics
are of great value for the design of representative SD simulators
as they provide deeper insight in what conditions organisms ex-
perience in industrial scale fermenters and can therefore provide
a basis of design for industrially representative SD simulations.
The major challenge in this respect is to transform the large
amount of simulation data to a manageable set of statistics. This
paper aims at developing a methodology to address this issue.
As such, we do not claim that the CFD results shown in this
paper are a complete representation of the fermentation envi-
ronment. For instance, we ignore the presence of a bubbly flow
and the associated oxygen transfer, assuming sufficient oxygen
is present. Furthermore, the complex, transient rheology of the
broth is omitted. These simplifications do, however, not affect
the methodology we develop; to illustrate what organisms may
encounter in a large-scale fermentor it suffices to roughly cap-
ture the relevant timescales of mixing and reaction. In this paper,
we present a methodology to collect statistics insight in environ-
mental (substrate) variations observed by microorganisms that
may serve as a basis of design of SD simulators.

2 Materials and methods

We applied an Euler-Lagrange CFD approach to study the ex-
tracellular environment in an industrial scale fermentor from
the microbial viewpoint, focussing on the extracellular glucose
concentration Cs (mol/kgbroth). All other conditions are assumed
constant or noninfluential in this study. Extracellular variations
in Cs lead to variations in the biomass specific substrate uptake

rate qs (mols/Cmolx/hr) for each individual organism. Since we
are interested in the response of the microorganism, the lifelines
are expressed in terms of qs versus t.

Our study is based on a 54 m3 Penicillium chrysogenum fer-
mentation in a reactor formerly operated by DSM. To predict the
dynamic response of qp , the biomass specific penicillin produc-
tion rate, we apply the dynamic gene regulation model developed
by Douma et al. [18] for strain DS12975. Originally, this model
was developed for slow dynamics in an otherwise ideally stirred
fermentor, rather than the rapid variations induced by imper-
fect mixing. Whether or not the predictions of the Douma model
hold for rapid extracellular dynamics is an issue not further ad-
dressed in this work. We have refrained from the use of more
complex kinetic models [10] in order to focus on lifeline analysis.

2.1 Biomass specific kinetics

The substrate uptake rate of P. chrysogenum is modelled using a
hyperbolic relation, Eq. (1)

qs = qs,max ·
(

Cs

K s + Cs

)
(mols/Cmolx/s) (1)

De Jonge et al. [5] determined values of qs,max = 12.47 ·
10−6 mols/Cmolx/s and K s = 7.8 · 10−6 mols/kg for DS12975.
The qpdynamics follow from Eq. (2) [18]. Growth, production,
and maintenance are linked to qs via the Herbert–Pirt, Eq. (3).

dqp

dt
= β · max (0, μ)

1 +
(

Cs
K p

)2 − (K dE + |μ|) qp (2)

qs = μ

Ysx
+ qp

Ysp
+ ms (3)

In Eq. (3), the term qp/Ysp is small and can be safely neglected
to make μ a function of Cs only. Some modifications to the
model parameters and equations had to be made in order to
reconcile the work of Douma and De Jonge, and to prevent
nonphysical responses at very low qs. These alterations are
detailed in Section A of the Supporting Information.

2.1.1 Oxygen dynamics
We currently assume sufficient oxygen is supplied and do not
consider DO gradients. It is known for several P. chrysogenum
strains that qp is affected below DO ≈ 0.08 mol/m3 and pro-
duction may be lost below 0.026 mol/m3. The reversibility of
this loss is disputed [4, 19, 20]. How low DO affects qs is not
well known; Henriksen et al. observed no significant change in
μ and the residual glucose concentration for low DO [20] while
McIntyre et al. did observe a significant reduction in Cx under
complete starvation [21] (they did not report on residual glu-
cose concentrations). We have no data available regarding DO
levels for the 54 m3 fermentor. However, in a comparable peni-
cillin process in a 150 m3 vessel, the registered DO in the top
was approximately a factor 2 lower than in the bottom, with a
minimum of 0.05 mol/m3 toward the end of the fermentation.
Although the lowest values were below the level at which qs may
be affected and we cannot comment on the possible formation of
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local depletion pockets, these values do not indicate very serious
oxygen limitation in the 150 m3. Hence, we do not expect serious
limitations in the smaller vessel either.

2.1.2 Metabolic regimes
Both qs and μ are nonlinear functions of Cs , saturating for
Cs → ∞. For Cs > 19K s, qs > 0.95qs,max and both qs and μ

become largely insensitive to Cs variations. We regard the do-
main Cs > 19K s to be a single “metabolic regime” (a domain
in the Cs—space characterized by a certain consistent metabolic
response—in this case insensitivity to variations), referred to as
the (substrate) excess regime (E). Practically, qs can be assumed
independent of the extracellular Cs, for organisms exposed to
excess conditions. In the domain Cs < K s/19, qs is a linear func-
tion of Cs with a magnitude qs < 0.05qs,max . The low absolute
magnitude of qs in this regime means fluctuations can safely be
neglected (We further discuss this assumption in Section A of the
Supporting Information). We refer to this low qs regime as the
starvation regime (S). The domain between excess and starvation
is classified as the limitation regime (L); here, Csfluctuations do
lead to nonnegligible variations in qs. The above considerations
lead to the following distinction:

(i) E: (qs > 0.95qs,max).
(ii) L: (0.05qs,max < qs < 0.95qs,max).

(iii) S: (qs < 0.05qs,max).

This categorization forms the basis of our lifeline analysis. We
will consider two indicators: The exposure time to each of these
regimes, and the magnitude of fluctuations within the L, where
qs is sensitive to Cs variations.

2.2 Simulation setup

We considered a 54 m3 fermentor (height H = 7.7 m, diam-
eter T = 3.0 m) with two Rushton turbines (8-blade bottom,
6-blade top, diameter D = 1.3 m) operating at Ns = 1.63 s−1

and four baffles of width T/10. Substrate solution was fed at
the fermentor top with a rate of F = 0.37 mols/s, the broth
density was ρbroth = 1000 kg/m3 with biomass concentration
Cx = 1.96 Cmolx/kg (55 g/kgbroth dry matter). In the industrial
study of Goldrick et al. [22] the broth weight and F were con-
stant after 80 h−1 with Cx approximately constant after 150 h−1.
The process at hand had a shorter filling stage (≈ 1 day) and
higher Cx, but qualitatively similar dynamics apply. As such, our
simulation choices (constant H, F , Cx) represent the mid/late
fermentation stage. The feed rate F was set to optimize qp under
the assumption of ideal mixing conditions (Section 3.1) to facil-
itate comparison of the predicted qp under ideal and non-ideal
conditions. Half of the tank was modelled by imposing periodic
boundary conditions. This does impose 2 adjacent glucose feed
locations rather than a single feed. Due to compartment forma-
tion (zoning) by Rushton turbines the glucose gradient is mostly
axial in this case [10,23–25] and the duplicate feed points do not
result in a significantly different concentration field.

Mixing experiments have been performed by DSM by supply-
ing concentrated H2SO4 via the top and measuring pH response

Table 1. Experimental values for the circulation time under differ-
ent flow conditions

Fluid Usup,gas [m/s] τcirc [s]

Water 0 19.26
Water 0.05 42.8
Broth 0 77
Broth 0.05 25.6

Usup,g, superficial gas velocity. Numerically, τcirc = 18.2 s for the non-
aerated water case (see Section B of the Supporting Information for
details).

with a probe mounted near the bottom. These experiments have
been performed aerated and nonaerated water and broth (a strain
similar to DS12975) as working fluids. The circulation behaviour
was quantified by measuring the time lag between feeding and
detection, this lag time is half the representative circulation time
for a single loop in the vessel and is given in Table 1 for several
situations. The circulation time is related to the 95% mixing
time (τ95) via the rule of thumb τ95 ≈ 4τcirc [26]. No full tracer
response curves were available for the industrial vessel, hence we
could not validate τ95 and mixing dynamics.

Penicillin broth is viscous and shear thinning, and high aer-
ation rates are employed. Modelling of these complex fluid dy-
namics has been attempted with varying success [24,27,28]. For
example, the mixing time was strongly overpredicted by Moila-
nen et al [28], being very sensitive to stagnant zones and hence
rheology–turbulence interaction. Furthermore, bubble size pop-
ulation balances are typically developed and validated for air-
water flows and their applicability to broths is poorly tested.
Further developments regarding the simulation of transitional,
aerated, non-Newtonian flows are required for the reliable sim-
ulation of viscous fermentations. As we wish to focus on the
analysis of organism lifelines rather than the physics of bioreac-
tors here, we opted to simplify the physics in our simulation by
modelling a single-phase water situation.

This assumption is further justified by considering that the
circulation time under fermentation conditions is reasonably
close to that in nonaerated water (Table 1). Van ’t Riet and
van der Lans [29] argue that the mixing time for a gas flow
number 0.07 < Q g/ND3 < 0.2 is approximately equal to that
under nonaerated conditions. Furthermore, aeration influences
the spatial mixing behaviour due to a change in the dominant
transport mechanism [26, 30]. The difference in τcirc and flow
pattern will affect details in the glucose gradient and residence
time distributions in Section 3.6.2 but as the difference between
τcirc and the reaction timescale (Section 3.2) is large in both
cases, the observations are expected to hold at least qualitatively.
The applied simplifications do not compromise the goal of our
current work; to show how the data from Euler–Lagrange CFD
can be analyzed in order to study to which extracellular variations
microorganisms are subjected.

2.3 Hydrodynamics

We applied the well-validated RANS approach used by sev-
eral earlier studies: The k − ε model for turbulence modelling
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Figure 1. Gradients in the Eule-
rian simulation of a 54 m3 fer-
mentor; (A) log-contours of Cs

K s
.

(B) Volumetric distribution (lin-
ear scale) of the specific sub-
strate uptake regimes. Red: E,
with μ > 0.95qs,max; Blue: S μ <

0.05qs,max; Yellow: L.

in combination with the multiple-reference frame for impeller
rotation [31, 32]. Substrate transport is modelled by Eq. (4) as
follows:

∂Cs

∂t
+∇ · (uCs) = −∇ · (−

((
D + νt

Sc t

)
∇ Cs

)
+Ss (4)

The turbulent Schmidt number Sc t was set to 0.2to achieve
agreement between the computed and experimental mixing
time, as noted by [24, 25, 33]. In all other aspects, we fol-
lowed the recommendations by Gunyol and Mudde [31] for
flow modelling. Np = 175 000 particles were tracked for 1700
s flow time. These numbers were chosen to ensure a rapid con-
vergence of the statistics. Computationally, the particles were
treated as massless tracers, instantly adapting to the convective
flow velocity [16]. Turbulent motions were superimposed on the
convective velocity using the discrete random walk model. For
each particle, qs was stored every �t = 0.03 s, yielding the or-
ganism lifelines. Further details on the CFD settings and particle
tracking method can be found in Section B of the Supporting
Information.

3 Results and discussion

We begin with a reactor-level analysis, to establish a background
on which to project observations from the microbial perspective.

3.1 The ideal mixing reference

The steady-state ideal mixing assumption, yielding Eq. (5), gives
a residual glucose concentration Cs,res = 3.06 · 10−6 mol/kg.

F = V ρ · Cx · qs,max

(
Cs,res

K s + Cs,res

)
. (5)

From Eqs. (1)–(3) steady values of qs = 3.51 · 10−6

mols/Cmolx/s, μ = 0.045 h−1 and qp,ideal = 5.2 · 10−4

molp/Cmolx/h are obtained. As noted earlier, we assumed
Cx, F , H in these calculations. Whether Cx is truly constant
despite a positive μ depends on dilution effects and on cell death
kinetics, which we do not explicitly consider here. As a constant
Cxfacilitates a more direct comparison of qp under homoge-
neous and heterogeneous substrate conditions by making Cs the
only variable, the constant Cx assumption is made mainly for
practical reasons.

3.2 Reactor level simulation results

Eulerian perspective: Cs, qs, and μ: The representative
timescale for substrate consumption reads τr,s = Cs

Cx ·qs
= 0.444

s for the ideal mixing case; significantly shorter than τcirc ≈ 19 s.
The consequence is a substrate concentration gradient spanning
orders of magnitude (Fig. 1A). Due to rapid consumption in the
top, organisms are exposed to starvation conditions in a signif-
icant region of the vessel. This is reflected in the spatial regime
distribution, Fig. 1B.
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Table 2. Volumetric distribution of the metabolic regimes in the
fermentor

Case % Starvation % Limitation % Excess

Eulerian 57.0 36.2 6.8
Lagrangian, raw 57.4 35.9 6.7
Lagrangian, filtered 58.2 34.7 7.1

The turbulence-filtered Lagrangian case is detailed in Section 3.6.1.

Because diverging jets of a Rushton impeller act as a barrier
against axial mixing [34], a Cs jump is expected in the impeller
plane. Consequentially, the limitation-starvation boundary co-
incides with the top impeller here; a twofold increase in F is
required for the boundary to cross this barrier. Unfortunately,
we lack experimental data to verify such details of the substrate
gradient. Using a similar setup, Gunyol et al. showed a good
prediction of the substrate gradient in a 22 m3 S. cerevisiae fer-
mentation [25], giving confidence in the approach. The strong
gradient observed here is mainly a consequence of the low K s

value. Even when qs is significantly lower in practice, for example
due to oxygen limitation, a strong gradient is still expected: very
large changes in qs or Cs are required to yield τcirc ≈ τrxn.

Both qs and μ, being instantaneous functions of Cs, are widely
distributed in the reactor. Still, the average qs and μ̄ are equal to
the value under ideal mixing conditions as a simple consequence
of the overall substrate uptake balance. In contrast, the mean
substrate concentration Cs,c = 34.4 · 10−6 mol/kg, over a factor
10 higher than the ideal mixing value. This results from the
saturated qs in the top as a consequence of poor mixing, with
high Cs regions strongly impacting Cs,c. Close to the feed, Cs and
qs are essentially decoupled allowing for these high Cs regions to
exist.

3.3 qp under fluctuating conditions

For illustrative purposes the possible impact of fluctuations we
determine qp under fluctuation conditions. The resolved flow-
time of 1700 s is, however, much shorter than the adaptation time
of qp, τqp = 1

K dE+ |μ| ≈ 20 h. Assuming statistical similarity, we

combined the 175 000 resolved lifelines to form 1400 lifelines
spanning t ≈ 59 h. Assuming constant Cx, F , H based on [22],
a steady state of qp = 0.77 · 10−4 molp/Cmolx/h is reached un-
der nonideal conditions; an 85% reduction compared to the ideal
mixing estimation. Owing to the large difference between τcirc

and the τqp no notable heterogeneity in qp within the popula-
tion was observed. Using a steady Cs,c = 34.4 · 10−6 mol/kg
yields qp = 0.29 · 10−4 molp/Cmolx/h, clearly showing that the
Eulerian mean is not a representative parameter.

3.4 Validation of the Lagrangian point of view

The mean substrate concentration observed from population
point of view, Cs,P = 32.9 · 10−6 mol/kg agrees well with the
Eulerian Cs,c = 34.4 · 10−6 mol/kg indicating that the particles
are properly, spatially homogeneously, distributed. The small

Figure 2. Frequency spectrum of glucose variations, summed for
175 000 particles.

difference is attributed to weaknesses in the particle turbulence
model (see Section B of the Supporting Information). There is
a similar level of agreement in the spatial regime distribution
(Table 2). Turbulence filtering of the particle tracks, required
for a tractable lifeline analysis (Section 3.6.1), affects the regime
distribution slightly but with a maximum 5% difference from
the Eulerian distribution the margin is acceptable.

3.5 Dynamics of individual lifelines: Fourier analysis

The suggestion to decompose organism lifelines using Fourier
analysis has been made in several unpublished talks by Reuss.
There are reasons to be sceptical toward the applicability of
Fourier analysis for this particular case as the circulation times
of particles inside a stirred tank are widely distributed [14, 35]
and no dominant circulation frequencies are expected.

We took the Fourier transform of each individual qs-series,
after subtracting the series mean qs and multiplication with a
Blackman window function [36]. The per-track frequency spec-
tra were summed, yielding Fig. 2. As expected, no frequencies
stand out due to the wide circulation time distribution (Section
3.6.2), and no more direct insight is gained in the frequency
domain. A specific issue is that the applied approach does not
discriminate between fluctuation amplitudes; all fluctuations—
regardless of their amplitude—are summed in the composite
spectrum. There may be ways to overcome this, but it is unlikely
to yield a simpler or clearer picture than a conditional analysis in
the time-domain. We hence have chosen to discard the Fourier
analysis in favour of a time-domain approach, where we dis-
criminate variations based on the metabolic regimes described
in Section 2.1.2.

3.6 Dynamics of the individual lifelines: Metabolic
regime analysis

3.6.1 Lifeline analysis methodology
Our analysis of microorganism lifelines draws heavily from
the techniques used in circulation time determination [14, 35],
which are based on consecutive crossings of a region in space.
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Figure 3. Processing steps to determine residence times and tran-
sitions. (A) Original qs signal. (B) Regime-signal based on the
regimes of Section 2.1.2. (C) Graphical depiction of the 6 possible
transition patterns. Each transition is coded by the regime of ori-
gin (first), the regime the organism resides in (middle), and the
regime of destination (last). E: excess; L: limitation; S: starvation.

Since microorganisms have no notion of their physical location,
we use qs − space as a more relevant space for the determina-
tion of residence time/circulation time distributions regarding
variations in qs. Using the regimes of Section 2.1.2 as a basis,
the regime residence time is defined as the time spent by a mi-
croorganism inside a certain regime, between two consecutive
crossings of the regime boundaries. A second central concept in
our analysis is transition patterns: These are determined by the
nature of the two consecutive crossings.

After preprocessing with turbulence filters (explained later in
this section), the qs

qs,max
(t) series as shown in Fig. 3A, is converted

to regime series, Fig. 3B. From this series, it is straightforward
to determine the regime residence time, the time between two
boundary crossings, and the transition pattern: the nature of
the two successive crossings. We distinguish between six of such
transition patterns as follows:

(i) LEL: From limitation, in excess, to limitation.
(ii) ELE: From excess, in limitation, to excess.

(iii) ELS: From excess, in limitation, to starvation.
(iv) SLE: From starvation, in limitation, to excess.
(v) SLS: From starvation, in limitation, to starvation.

(vi) LSL: From limitation, in starvation, to limitation.

Here, the middle letter indicates the regime in which the parti-
cle is residing, the first and last their origin and fate, respectively.
For example, a 6-s “ELE” event means that a particle originates
from excess, spends 6 s in limitation, and then returns to excess.
Graphically, the patterns are depicted in Fig. 3C. Due to the phys-
ical distance, no direct crossings between excess and starvation
(SES or ESE) have been observed. Discriminating between the
different transition patterns provides insight in how microor-
ganisms move between regimes and how the regime-residence
time is linked to their trajectory.

Turbulence filters are applied on the qs
qs,max

(t) signal, consisting

of a moving-average smoothing and low-amplitude filtering step.
These are applied to remove rapid, low amplitude oscillations qs

caused by turbulent movements. These skew the residence time
statistics by introducing sharp peaks at short timescales, prob-
ably with limited metabolic impact, and which will be difficult
to reproduce in SD simulators explicitly. Details of the filter-
ing procedure and a brief analysis of turbulent qs oscillations
are presented in Section C of the Supporting Information. To
summarize, our regime analysis consists of four steps as follows:

(i) Nondimensionalise qs with qs,max.
(ii) Turbulence filtering: smoothing/amplitude filter.

(iii) Conversion to regime vector.
(iv) Determination of transitions and residence times.

3.6.2 Per-regime residence time distributions
The key figure in the regime residence time discussion is Fig. 4,
showing the excess and starvation residence time distributions
(Fig. 4A and B) and distribution for the four different limitation
transitions (Fig. 4C and D). For a more direct comparison
between the curves, the distributions are nonnormalized.
The distribution for the E, “LEL” (Fig. 4A and B), is rather
straightforward: Initially there is a gradual increase in counts,
associated with trajectories directly crossing the “LEL” regime,
of varying duration. The constant slope in the log-lin plot (Fig.
4B) is indicative of an exponential decay for t > 5 s representing
circulation inside the excess region, with the probability of
leaving the regime at a certain time becoming independent of
the incoming trajectory.

As shown in the log-lin plots, all six distributions show similar
exponential decay behaviour at long timescales. The long-time
behaviour of the starvation distribution, “LSL,” is particularly
interesting. After an initial peak, in Fig. 4B two slopes are
distinguished; for tres < 10 s the distribution exhibits decay at a
slope roughly equal to that of the “LEL” distribution, gradually
changing to a much weaker slope for tres > 20 s, indicating two
circulation modes with different representative timescales. These
modes can be understood from the regime distribution com-
bined with the flow field (Fig. 5). Particles move from limitation
to starvation at the top impeller, where three situations can occur
as follows: (i) The particle follows the upward-circulation loop
and is exposed to starvation conditions briefly before reentering
to limitation. (ii) The particle follows the downward circulation
loop. Upon returning to the impeller it can move back to limita-
tion, or recirculate in starvation. (iii) The particle crosses to the
bottom impeller region and recirculates under starvation condi-
tions for a long time. The recirculation behaviour at tres < 10 s is
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www.els-journal.com Eng. Life Sci. 2016, 16, 652–663 www.biotecvisions.com

Figure 4. (A, B) Nonnormalized residence
time distributions for the excess (LEL) and
starvation (LSL) regime. Dashed lines: the
two dominant circulation modes for the
‘LSL’ distribution. (A) Short timescales,
(B) long times. (C, D) Nonnormal-
ized residence time distributions for the
four different transitions patterns through
the L. (C) Short timescales, (D) long
times. The mean residence times are
τr,LEL = 3.65, τr,LSL = 9.37, τr,ELE =
4.67, τr,ELS = 6.45, τr,SLE = 5.39,

τr,SLS = 3.77.

associated with option ii, the behaviour at tres > 20 s with option
iii, with overlap in between. The sharp peak at tres ≈ 0.7 s in Fig.
4A is associated with option i; all particles in the upward loop of
the top impeller outflow are very briefly exposed to starvation
conditions (Fig. 5). Similarly, trajectories originating from, and
moving back to starvation via the downward circulation loop of
the top impeller, result in an “SLS” peak at tres ≈ 1 s (Fig. 4C).
Considering the four different limitation residence time distri-
butions, details such as the abovementioned “SLS” peak yield
differences at short times (Fig. 4C), but the four distributions
shown an equal-sloped decay after approximately 5 s. This
is again consistent with the notion that particles end up in
origin-independent recirculation behaviour if not crossing the
limitation zone directly.

From summation of the counts it follows that 39% of the
trajectories starting in excess move back to excess (the “ELE”
transition). Similarly, 80% of trajectories starting in starvation
are of the “SLS” type. Clearly, on many occasions organisms
will repeatedly oscillate between limitation and starvation con-
ditions before being exposed to excess conditions. In contrast,
prolonged oscillation between excess and limitation is less likely.
Evidently, such sequential regime transitions should be reflected
in an experimental SD setup.

3.6.3 qs dynamics in the Limitation regime
When exposed to limitation conditions, the magnitude of qs

influences the metabolism of a microorganism. We study the

duration and magnitude of these intralimitation variations by
considering (i) the time between registrations of qs

qs,max
= 0.5,

referred to as the arc time (τarc) and (ii) the relation between τarc

and the observed extreme value qs
qs,max

over the arc trajectory.

3.6.3.1 Arc-time distribution. The arc time provides a
timescale for the duration of fluctuations within the L. We dis-
tinguish between arcs moving up from the baseline qs

qs,max
= 0.5

with timescale τarc,+, and moving down with timescale τarc,−.
Note that the distribution in τarc presented here is only valid
when using qs

qs,max
= 0.5 as a baseline; a different baseline may

be chosen, as long as it is consistent between the simulation and
SD experiment.

In Fig. 6A, the distributions for τarc,+ and τarc,− are shown,
again nonnormalized. The average arc times τarc,+ = 3.14 s and
τarc,− = 1.11 s, demonstrating an asymmetry in the up- and
downward trajectories. These numbers are understood from the

qs
qs,max

histogram (Fig. 6B), showing that in the majority of the

limitation region, qs > 0.5qs,max . In view of brevity, we will not
further delve into this distribution. Of all trajectories, 73% move
upward. This is in part due to the asymmetric qs distribution
mentioned above, and in part due to the action of the top im-
peller. Most particles moving down from qs

qs,max
= 0.5 are drawn

into starvation, leading to few downward trajectories fully within
the limitation region.

3.6.3.2 Magnitude of qs variations. The magnitude Marc is
defined as the maximum observed value of qs

qs,max
along an arc
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Figure 5. Metabolic regimes (equal to Fig. 1) with superimposed
velocity vectors. The vectors only show flow direction, not magni-
tude.

trajectory, minus the baseline: Marc = max
(

qs
qs,max

)
arc

− 0.5.

Figure 7 shows the probability distribution of Marc as a function
of τarc for upward (top) and downward (bottom) trajectories.
The colour scale represents the fraction of counts in each bin,
for each τarc, and the mean Marc versus τarc is superimposed by
the solid lines. Despite considerable spread around the mean,
there is clear a connection between Marc versus τarc that can be
exploited for SD purposes. The continuous nature of the Marc

versus τarc relation is consistent with the notion that qs is strongly
heterogeneous within the top circulation loop, where limitation
oscillations take place.

To determine the temporal symmetry of the individual arcs
we record at which time tmax

τarc
the value of Marc is registered. The

arcs are (on average) symmetric if tmax
τarc

= 0.5. For downward
trajectories this is indeed the case. In contrast, upward trajecto-

ries give tmax
τarc,+ = 0.4; on average, 40% of the duration is used

Figure 6. (A) Distribution of τarc,+ (black) and τarc,− (gray), the
duration of upward and downward fluctuations in qs, compared
to qs/qs,max = 0.5. Only trajectories completely within the L are
counted. (B) Normalized histogram of qs/qs,max in the limitation
domain of the reactor.

to change from qs
qs,max

= 0.5 to max
(

qs
qs,max

)
and the remaining

60% to move back to qs
qs,max

= 0.5.

In nonideal reactors, both consumption by the microorgan-
isms, and dilution by counter-current mixing of a substrate-rich
and substrate-lean stream contribute to the qs dynamics ob-
served by organisms. In (ideal plug flow/batch) SD simulators
only consumption contributes to the decrease of qs. Hence, it
is interesting to compare how much qs

qs,max
decreases in a given

time t in the simulations, and how much it can decrease by
consumption alone (for Cx = 1.96 Cmolx/kg).

Due to the arc shape, the time t available to change from

max
(

qs
qs,max

)
arc

to qs
qs,max

= 0.5 is 0.6τarc,+ for upward arcs and

0.5τarc,− for downward arcs. These timescales are compared with
the time required to make the same change by consumption alone
in Fig. 7C where the solid lines are the simulation timescales, the
dashed lines the consumption timescales. The agreement be-
tween the curves is striking; the rate of change in qs in industrial
fermentors seems to closely follow the maximum rate of change
that can be achieved by consumption alone. Naturally, the agree-
ment breaks down near the regime boundaries, considering only
trajectories within the limitation region. The significance of the
above observation is further discussed in the Section 3.7.
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Figure 7. (A) Evolution of Marc, the max-
imum qs/qs,max observed during a fluctu-
ation, as a function of fluctuation dura-
tion τarc for upward fluctuations with re-
spect to qs/qs,max = 0.5, (B) Same as A,
for downward fluctuations. The color bar
gives the bin fraction of Marc at time τarc.
Bin fractions sum to 1 for each time in-
stance. Solid lines: Marc versus τarc. (C)
Comparison between the rate-of-change in
qs in the industrial simulation, and the
rate of change achievable by consumption
alone. Red line: Marc,+ vs. 0.6 · τar c,+. Blue
line: Marc,− vs. 0.5 · τarc,−. The factors 0.6
and 0.5 arise from the average arc shape.
Dashed lines: Time required for a given
change in qs by substrate consumption
alone, at C x = 1.96 Cmol/kg.

3.7 Design of scale down simulators: Outlook

We have provided a comprehensive statistical analysis of the
magnitude and duration of variations in simulated extracellular
substrate concentrations in industrial bioreactors. The next chal-
lenge is to translate these statistics to design parameters for SD
simulators. These are typically operated by imposing feed vari-
ations in a single vessel [5], or by using multiple compartments
with exchange loops [2, 26]. There are 5 degrees of freedom
for SD simulator design and operation [26], whose value can
be determined based on the statistical distributions from our
analysis.

In our simulations extracellular conditions fluctuate at
timescales of seconds. However, current SD simulators typi-
cally employ fluctuation timescales of 100 − 500 s [2, 4, 5, 7, 9]
based on τ95 [6]. We consider τcirc to be more representa-
tive for extracellular substrate variations between the extreme
values, with smaller fluctuations occurring at even shorter
timescales.

An important question is whether the current generation of
SD simulators can replicate variations on such short timescales.
When the generally applied assumption of ideal mixing (with
varying feed) or ideal plug-flow holds, the rate of change in the
extracellular substrate environment is limited by consumption
to qs · Cx. For substrate variations within the L, the observed rate
of change in our simulation closely follows the maximum rate
of change achieved by consumption alone (Section 3.6.3).

Furthermore, the time required to change from qs
qs,max

= 0.95

to qs
qs,max

= 0.05 by consumption alone is 8.13 s, while the mean

residence time for this “ELS” transition reads τres, ELS = 6.45
s. In nonideal systems, the local rate of change observed by an
organism locally is the sum of consumption and mixing, which
may locally exceed the rate of change by consumption alone. This
dilution effect results in an average “ELS” transition that is faster
than an “ELS” transition by consumption alone. This has a far-
reaching consequence: to mimic τres, ELS in an ideal SD simulator,
it must operate at a Cx higher than the industrial fermentation
it replicates. This is a direct consequence of the kinetics and is
not influenced by simplifications we made in our simulations.

If, for example, oxygen depletion would reduce qs and hence
increase τres, ELS, a similar decrease in qs should naturally occur
in a well-designed SD simulator.

We note that a more comprehensive CFD and metabolic sim-
ulation is required for a true quantitative assessment of the pro-
cess. Still, our approach already yields important insight in the
data analysis procedure for Euler–Lagrange simulations, provid-
ing lessons regarding the design, operation, and limitations of
practical SD simulators. With the presented analysis technique,
we acquire insight in the frequency distributions of substrate
concentration variations that an SD simulator should repli-
cate, and the challenges associated with this replication. Due
to the general nature of a CFD approach, we are confident that
these limitations also hold for other organisms, and when in-
cluding more complex hydrodynamics. With this, we pose a
challenge upon the SD community to design a SD simulator
that can truthfully mimic variations in large scale bioreactors,
at the right magnitude and duration. This can be achieved by
running at/above industrial Cx or otherwise by decoupling dqs

dt
from qs itself. This may (for example) be done by constructing
a deliberately nonideal system, by adding an additional dilution
stream (with cell retention at the outlet), or by enabling counter-
current exchange between a glucose-rich and poor plug flow
reactor.

4 Concluding remarks

We outlined a novel approach to analyse the data acquired by
Euler–Lagrange CFD simulations of bioreactors. The Euler–
Lagrange approach offers the possibility to analyze substrate
concentration variations from the microbial point of view.
The obtained qs(t) series, referred to as lifelines, are divided
into metabolic regimes which represent a certain consistent re-
sponse in an organism’s metabolism to the extracellular sub-
strate concentration. By recording the residence time distri-
bution within each regime, how microorganisms switch be-
tween regimes, and the duration and magnitude of uptake
variations within these regimes, we provide a comprehensive
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statistical assessment of the substrate fluctuations experienced
by organisms in an industrial scale fermentation. This infor-
mation provides a basis for the design of scale-down simu-
lators: lab-scale studies aimed at mimicking industrial scale
conditions.

We studied the fermentation of P. chrysogenum in a 54
m3 stirred vessel with simplified hydrodynamics, neglect-
ing aeration and non-Newtonian rheology, and assuming
no oxygen limitations. The calculated circulation time was
in good agreement with the experimental value in water
and, despite the simplifications, in reasonable agreement with
that in aerated broth. Hence, we are confident the dura-
tion and amplitude of substrate concentration variations ob-
served in the CFD simulations are of the correct order of
magnitude.

Due to the low K s value for P. chrysogenum, a steep substrate
concentration gradient was observed, with 57% of the vessel
depleted of substrate. Microorganisms alternate between regions
with excess substrate and substrate depletion on timescales of
seconds to tens of seconds; of the same order of magnitude as
the global circulation time. The rate of change in conditions
along the trajectory follows the rate of change expected from the
substrate consumption rate qs with the addition of local dilution
effects. This dictates that a SD simulator should operate at least
at the industrial biomass concentration, or that the local rate of
change in substrate concentration should be decoupled from qs

to allow for more rapid variations than allowed by consumption
alone.

The next step toward rational design of scale-down simulators
is to use this CFD data as a basis of design. However, the rapid
substrate concentration dynamics observed may prove difficult
to replicate in typical SD simulators, specifically in the commonly
applied multicompartment approach.

Practical application

Scale-down simulators are a popular tool to study mi-
croorganisms under industrially representative conditions.
However, little is typically known about the conditions mi-
croorganisms encounter in industrial fermentors. Conse-
quently, there is no basis for the rational design of scale-
down simulators, and it is doubtful whether such simula-
tors properly represent industrial conditions.

We have developed a CFD approach that allows to
computationally study the dynamic environment in large-
scale fermentors, from the organism’s point of view. From
this perspective, we obtain easy access to the magnitudes
and timescales of fluctuations in the fermentation environ-
ment, as experienced by the microorganisms.

These statistics provide a basis for the rational design of
scale-down simulators, that truthfully mimic the variations
in the environment (for example in nutrient concentration,
temperature, pH), as experienced by microorganisms in
industrial scale fermentors.

Nomenclature

Cs [mol/kg] Substrate concentration (in broth)
Cx [Cmolx/kg] Biomass concentration (in broth)
D [m] Impeller diameter
D [m2/s] Diffusion coefficient
ds [m] Diameter of stirrer shaft
F [mol/s] Substrate feed rate
H [m] Broth height
k [m2/s] Turbulent kinetic energy
kdE [h−1] Enzyme decay rate
K s [mols/kg] Affinity constant for substrate
K p [mols/kg] Substrate repression constant.
Ysx [Cmolx/mols] Max. biomass yield on substrate
Ysp [molp/mols] Max. product yield on substrate
ms [Cmols/Cmolx/hr] Maintenance coefficient
M [Nm] Impeller torque
Marc [-] Maximum magnitude of fluctuation

along an arc
Ms [g/mol] Molar mass of substrate
Nc [-] Total number grid cells
Np [-] Total number particles
Ns [s−1] Impeller speed
qp [molp/Cmolx/hr] Specific formation rate of product
qs [mols/Cmolx/s] Specific uptake rate of substrate
Q g [m3/s] Gas flowrate
rs [mols/m3/s] Volumetric reaction rate of substrate
Ss [mols/kg/s] Source term of substrate
T [m] Tank diameter
t [s] Time (general)
u [m/s] Velocity vector
Usup ,gas [m/s] Superficial gas velocity
|U| [m/s] Velocity magnitude
V [m3] Broth volume
qs,max [mols/Cmolx/s] Max. biomass specific uptake rate of

substrate
β [mol/Cmolx/hr] Reaction constant
�t [s] Timestep
�C [m] Off-bottom clearance
ε [m3/s] Turbulent energy dissipation
μ [h−1] Specific growth rate
νl [m2/s] Kinematic molecular viscosity
νt [m2/s] Kinematic turbulent viscosity
ρ [kg/m] Density
τr,s [s] Uptake timescale of substrate
τlg [s] Lagrangian timescale
τcirc [s] Circulation timescale
τ95 [s] Mixing time
τarc [s] Arc-time
τres [s] Residence time
τres, A [s] Mean residence time, regime A.
τqp [h] Adaptation time of qp

arc [-] Quantity along arc
c [-] Gridcells (Eulerian)
ef f [-] Effective
id [-] Ideal mixing
p [-] Product
P [-] Particles (Lagrangian)
res [-] Residual
s [-] Substrate
SS [-] Steady state
t [-] Turbulent
T [-] Tank
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x [-] Biomass
E [-] Excess (regime)
L [-] Limitation (regime)
S [-] Starvation (regime)
ȳ [-] Volume-average of y
p (y) [-] Probability of y
P (y) [-] Probability of y (cumulative)
σ(y) [-] Standard deviation of y
Po [-] Power number
Re [-] Reynolds number
Sc [-] Schmidt number
Sct [-] Schmidt number, turbulent
St [-] Stokes number

We want to thank our colleagues at ECUST Shanghai, DSM, and
DSM Sinochem Pharmaceuticals and the DSM Biotechnology Cen-
ter for our fruitful collaboration. Thanks to Dr. Walter van Gulik
and Prof. Ju Chu for hosting discussions and exchanges between the
different project partners. This work has been conducted within a
multiparty research project, between DSM Sinochem Pharmaceuti-
cals, TU Delft, East China University of Science and Technology and
Guojia, subsidized by NWO and MoST (NWO-MoST Joint pro-
gram 2013DFG32630). All sponsors are gratefully acknowledged.

The authors have declared no conflicts of interest.

5 References

[1] Enfors, S.-O., Jahic, M., Rozkov, A., Xu, B. et al., Physiological
responses to mixing in large scale bioreactors. J. Biotechnol.
2001, 85, 175–185.

[2] Neubauer, P., Junne, S., Scale-down simulators for metabolic
analysis of large-scale bioprocesses. Curr. Opin. Biotechnol.
2010, 21, 114–121.

[3] Wang, G., Tang, W., Xia, J., Chu, J. et al., Integration of micro-
bial kinetics and fluid dynamics toward model-driven scale-up
of industrial bioprocesses. Eng. Life Sci. 2015, 15, 20–29.

[4] Vardar, F., Lilly, M. D., Effect of cycling dissolved oxygen con-
centrations on product formation in penicillin fermentations.
Eur. J. Appl. Microbiol. Biotechnol. 1982, 14, 203–211.

[5] de Jonge, L. P., Buijs, N. A. A., ten Pierick, A., Deshmukh,
A. et al., Scale-down of penicillin production in Penicillium
chrysogenum. Biotechnol. J. 2011, 6, 944–958.

[6] Limberg, M. H., Pooth, V., Wiechert, W., Oldiges, M., Plug
flow vs. stirred tank reactor flow characteristics in two com-
partment scale down bioreactor: Setup specific influence
on the metabolic phenotype and bioprocess performance
of Corynebacterium glutamicum. Eng. Life Sci. 2016, DOI:
10.1002/elsc.201500142.

[7] Lemoine, A., Maya Martı́nez-Iturralde, N., Spann, R.,
Neubauer, P. et al., Response of Corynebacterium glutamicum
exposed to oscillating cultivation conditions in a two- and a
novel three-compartment scale-down bioreactor. Biotechnol.
Bioeng. 2015, 112, 1220–1231.

[8] Sweere, A. P. J., Janse, L., Luyben, K. C. A. M., Kossen, N. W.
F., Experimental simulation of oxygen profiles and their influ-

ence on baker’s yeast production: II. Two-fermentor system.
Biotechnol. Bioeng. 1988, 31, 579–586.

[9] Heins, A.-L., Lencastra Fernandes, R., Gernaey, K. V., Lantz,
A. E., Experimental and in silico investigation of population
heterogeneity in continuous Sachharomyces cerevisiae scale-
down fermentation in a two-compartment setup. J. Chem.
Technol. Biotechnol. 2015, 90, 324–340.

[10] Lapin, A., Schmid, J., Reuss, M., Modeling the dynamics of
E. coli populations in the three-dimensional turbulent field of
a stirred-tank bioreactor: A structured segregated approach.
Chem. Eng. Sci. 2006, 61, 4783–4797.

[11] Morchain, J., Gabelle, J.-C., Cockx, A., A coupled population
balance model and CFD approach for the simulation of mixing
issues in lab-scale and industrial bioreactors. AIChE J. 2014,
60, 27–40.

[12] Pigou, M., Morchain, J., Investigating the interactions be-
tween physical and biological heterogeneities in bioreactors
using compartment, population balance and metabolic mod-
els. Chem. Eng. Sci. 2015, 126, 267–282.

[13] Delvigne, F., Destain, J., Thonart, P., A methodology for the
design of scale-down bioreactors by the use of mixing and
circulation stochastic models. Biochem. Eng. J. 2006, 28, 256–
268.

[14] Delafosse, A., Calvo, S., Collignon, M.-L., Delvigne, F. et al.,
Euler-Lagrange approach to model heterogeneities in stirred
tank bioreactors: Comparison to experimental flow charac-
terization and particle tracking. Chem. Eng. Sci. 2015, 134,
457–466.

[15] Wang, G., Chu, J., Noorman, H., Xia, J. et al., Prelude to rational
scale-up of penicillin production: a scale-down study. Appl.
Microbiol. Biotechnol. 2014, 98, 2359–2369.

[16] Lapin, A., Müller, D., Reuss, M., Dynamic behavior of micro-
bial populations in stirred bioreactors simulated with Euler-
Lagrange methods: Traveling along the lifelines of single cells.
Ind. Eng. Chem. Res. 2004, 43, 4647–4656.

[17] McClure, D. D., Kavanagh, J. M., Fletcher, D. F. Barton, G. W.,
Characterizing bubble column bioreactor performance using
computational fluid dynamics. Chem. Eng. Sci. 2016, 144, 58–
74.

[18] Douma, R. D., Verheijen, P. J. T., de Laat, W. T. A. M.,
Heijnen, J. J., van Gulik, W. M., Dynamic gene expression
regulation model for growth and penicillin production in
Penicillium chrysogenum. Biotechnol. Bioeng. 2010, 106, 608–
618.

[19] Larsson, G. Enfors, S. O., Studies of insufficient mixing in biore-
actors: Effects of limiting oxygen concentrations and short term
oxygen starvation on Penicillium chrysogenum. Bioprocess Eng.
1988, 3, 123–127.

[20] Henriksen, C., Nielsen, J., Villadsen, J., Influence of the dis-
solved oxygen concentration on the penicillin biosynthetic
pathway in steady-state cultures of Penicillium chrysogenum.
Biotechnol. Prog. 1997, 13, 776–782.

[21] McIntyre, M., Berry, D. R., McNeil, B., Response of Penicillium
chrysogenum to oxygen starvation in glucose- and nitrogen-
limited chemostat cultures. Enzyme Microb. Technol. 1999, 25,
447–454.

[22] Goldrick, S., Stefan, A., Lovett, D., Montague, G., Lennox, B.,
The development of an industrial-scale fed-batch fermentation
simulation. J. Biotechnol. 2015, 193, 70–82.

662 C© 2016 The Authors. Engineering in Life Sciences Published by Wiley-VCH Verlag GmbH & Co. KGaA



www.els-journal.com Eng. Life Sci. 2016, 16, 652–663 www.biotecvisions.com

[23] Larsson, G., Törnkvist, M., St Wernersson, E., Träg, C. et al.,
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