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Clinical trials completed in the last two decades have contributed significantly

to the improved overall survival of children with cancer. In spite of these

advancements, disease relapse still remains a significant cause of death in this

patient population. Often, increasing the intensity of current protocols is not

feasible because of cumulative toxicity and development of drug resistance.

Therefore, the identification and clinical validation of novel targets in high-risk

and refractory childhood malignancies are essential to develop effective new

generation treatment protocols. A number of recent studies have shown that

the hepatocyte growth factor (HGF) and its receptor Mesenchymal epithelial

transition factor (c-MET) influence the growth, survival, angiogenesis, and

metastasis of cancer cells. Therefore, the c-MET receptor tyrosine kinase

and HGF have been identified as potential targets for cancer therapeutics

and recent years have seen a race to synthesize molecules to block

their expression and function. In this review we aim to summarize the

literature that explores the potential and biological rationale for targeting the

HGF/c-MET pathway in common and high-risk pediatric solid tumors. We

also discuss selected recent and ongoing clinical trials with these agents in

relapsed pediatric tumors that may provide applicable future treatments for

these patients.
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Introduction

Mesenchymal epithelial transition factor (c-MET) is a
cell-surface receptor tyrosine kinase that is widely expressed
throughout many organ systems. c-MET is predominantly
expressed in epithelial cells, while its ligand (hepatocyte growth
factor–HGF) is largely expressed by cells of mesenchymal origin
(1, 2). Under normal conditions, this signaling pathway plays a
crucial role in embryogenesis, wound-healing and regeneration,
but has been identified as a driver of cancerous growth,
metastasis, and drug resistance (3–5).

The c-MET receptor tyrosine kinase was first discovered
as a result of work done to isolate a transforming gene
chemically induced in human osteosarcoma cells (6–8). The
ligand HGF [or scatter factor (SF) (9)] was later identified as the
ligand for the c-MET receptor (10). The HGF/c-MET signaling
pathway is complex [reviewed in (11)], and promotes diverse
cellular activities including survival, proliferation, motility, and
differentiation (12, 13). The HGF/c-MET pathway is crucial
during embryogenesis; mice in which either the MET or HGF
gene is mutated do not survive in utero. Disruption of the
HGF/c-MET pathway results in impaired placentation, liver
development, and development of the skeletal muscles of the
limbs (14–16). In adult organisms, the HGF/c-MET pathway has
been shown to drive wound-healing and regeneration. Increased
plasma levels of HGF are seen after various insults including
ischemic injury to the myocardium (17, 18), acute renal failure
(19), partial hepatectomy (20), and acute lung injury (21).
Conditional mutation of the MET gene in mice greatly impairs
liver regeneration after injury or partial hepatectomy (20, 22,
23), skin regeneration and wound healing (24), and renal
protection following acute kidney injury (25).

Binding of activated HGF to the c-MET cell surface receptor
induces receptor dimerization which activates the tyrosine
kinase through phosphorylation of two tyrosine residues in the
kinase activation loop. This in turn causes autophosphorylation
of tyrosine residues in the carboxy-terminal substrate-binding
tail of the cytoplasmic MET protein. Here, a wide number
of cytoplasmic effector proteins are recruited including
phosphoinositide 3 kinase (PI3K), Src homology-2-containing
(SHC), Src, Src homology 2 domain-containing phosphatase-
2 (SHP2), signal transducer and activator of transcription 3
(STAT3), growth factor receptor-bound protein 2 (GRB2), and
GRB2-associated binding protein 1 (GAB1) (26–29). Notably,
phosphorylated GAB1 bound to MET (directly or through
GRB2) provides additional binding sites for cytoplasmic effector
proteins (30, 31). Important signaling cascades activated
downstream from c-MET include the RAS-MAPK and PI3K-
Akt pathways, which affect transcription ultimately leading
to increased cell cycle progression, proliferation, and motility
[reviewed in (11)]. Other pathways affected by c-MET
signaling–such as RAC-CDC42, p21-activated kinase (P21), and
RAP1-FAK–work in the cytoplasm or at the plasma membrane

to cause cytoskeleton changes, and reduce cellular adhesion,
ultimately promoting cell motility and migration (4).

In addition to the “main” HGF/c-MET signaling pathway,
there is evidence for significant crosstalk between c-MET and
other cell surface proteins, including integrins, plexins, CD44,
and other receptor tyrosine kinases, notably the epidermal
growth factor receptor (EGFR) (32, 33). These cross-receptor
interactions (often amplified in cancer) have been shown to
play a key role in acquired resistance to chemotherapy targeting
growth receptors, such as EGFR (34, 35).

Finally, c-MET can be downregulated by degradation after
activation. The c-MET receptor is internalized through clathrin-
mediated endocytosis and is either ubiquitinated and degraded
or recycled back to the cell surface. Ubiquitination is mediated
by binding of Cbl (an E3 ubiquitin ligase) to the phosphorylated
tail of c-MET, and disruption of this interaction can lead to
increased activity of c-MET (36–39). Other mechanisms for
regulation of HGF/c-MET signaling include negative feedback
by protein kinase C (PKC) (40, 41), degradation of the
c-MET receptor by extracellular metalloproteases (42), and
dephosphorylation of c-MET tyrosine residues in the activation
or docking domains by intracellular phosphatases (43–45).

A more thorough discussion of the molecular signaling
underpinning the HGF/c-MET pathway is beyond the scope of
this review, and is summarized schematically in (5, 46).

Hepatocyte growth
factor/mesenchymal epithelial
transition factor axis and cancer

Currently, there is a large body of literature linking the
HGF/c-MET pathway to cancer (46). Indeed, the c-MET gene
was first identified as a protooncogene transformed by its
association with translocated promoter region (TPR), leading
to constitutive activation and oncogenic changes (6–8, 47). This
same activating TPR-MET oncogene has since been identified
in human gastric cancer (48). There are many ways in which the
HGF/c-MET pathway–which, as discussed above, is crucial in
normal physiology for cell survival, proliferation, motility and
migration–can contribute to a progression toward uncontrolled
cell growth and invasiveness. Changes that lead to increased
levels of active HGF, c-MET expression, c-MET activation, or
to decreased c-MET downregulation and degradation generally
contribute to a more oncogenic phenotype. While genetic
changes such as activating point mutations, or amplification of
the MET gene have been identified in a wide range of human
cancers, increased activity of the HGF/c-MET pathway is often
seen in cancer as a result of physical and chemical changes in
the tumor stroma, leading to upregulation of c-MET, or clonal
selection of c-MET-expressing cancer cells. The result is often
a subset of invasive cancer cells resistant to chemotherapy, and
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FIGURE 1

Schematic representation of the molecular mechanisms leading to dysregulated signaling of the HGF/c-MET pathway. Interrelated molecular
factors lead to changes in HGF/c-MET expression and activity, resulting in the activation of downstream signaling pathways which promote
oncogenic cellular changes.

prone to dissemination (46). Figure 1 shows schematically the
broad categories of molecular alterations that can contribute to
dysregulated HGF/c-MET signaling in cancer.

In the following, the role of the HGF/c-MET pathway
in pediatric solid cancers, as is currently understood in the
literature, will be reviewed.

Pediatric malignancies

Rhabdomyosarcoma

Rhabdomyosarcoma (RMS) is the most common soft-tissue
sarcoma in pediatric patients (49). The majority of pediatric
RMS can be classified histologically as either “embryonal”
(ERMS) or “alveolar” (ARMS) (50). ARMS generally has a worse
prognosis than ERMS, is more prone to metastasis, and is more
often diagnosed at a later stage (51, 52). In the majority of ARMS
tumors, a chromosomal translocation t(2;13) is identified, which

leads to the expression of fusion proteins PAX3-FOXO1 or
(less frequently) PAX7-FOXO1 [t(1;13)] (50). These fusion
proteins combine the PAX3/7 binding domain with the FOXO1
activation domain (aka FOXO1A), resulting in a transcription
activator more powerful than PAX3 or PAX7 alone (53). Clinical
research indicates that the presence of a fusion protein (“fusion
positive”) is a more important prognostic indicator than the
histologic classification of ARMS vs. ERMS (54). Early research
links the HGF/c-MET pathway to development of RMS; c-MET
was identified as a target of the PAX3-FOXO1 fusion protein
(55), and a murine model of RMS showed that dysregulation
of HGF/c-MET signaling on the background of suppression of
INK4a/ARF (locus that encodes two tumor suppressors) was
sufficient to lead to the development of RMS tumors with a
similar molecular signature to human RMS tumors (56).

In vitro studies of the relationship between c-MET and the
PAX3-FOXO1 fusion protein have shown that while expression
of c-MET is upregulated by PAX3-FOXO1, PAX3-FOXO1
expression is not necessary for c-MET expression and activity.
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Ginsberg et al. found that in myogenic cells transfected
with PAX3-FOXO1 and fusion-positive ARMS cells, c-MET
expression correlated with levels of PAX3-FOXO1. However,
high levels of c-MET expression were also found in some
samples of ERMS, suggesting that PAX3-FOXO1 is not
necessary for c-MET expression (57). The correlation of
c-MET upregulation and PAX3-FOXO1 was confirmed by Taulli
et al., who also found that while PAX3-FOXO1 could induce
oncogenic cell growth, this transformation was dependent
on HGF/c-MET signaling. Notably, silencing of the c-MET
receptor inhibited cell proliferation, and increased apoptosis in
both ARMS- and the fusion-negative ERMS-derived cell lines,
which underscores a role for the HGF/c-MET pathway in RMS
beyond the effects of the PAX3-FOXO1 transcription activator
found largely in ARMS. Indeed, when the c-MET receptor
in ERMS xenografts was conditionally silenced with an anti-
Met short hairpin RNA (shRNA), tumor growth stopped and
subsequently regressed (58).

Particularly in ARMS, the presence of metastases at
diagnosis confers a poor prognosis (51, 52). Given the
physiological role for the HGF/c-MET pathway in cell motility
and migration, particularly in the case of skeletal muscle and
limb development (15), this pathway has been keenly studied
with regards to its role in promoting metastasis of RMS.
Jankowski et al. showed that in response to stimulation with
HGF, c-MET-positive (assessed by immunostaining and flow
cytometry) RMS cell lines undergo a number of pro-metastatic
changes in vitro including increased locomotion, motility-
related redistribution of the actin cytoskeleton, and increased
cell migration. Notably, while HGF stimulation in vitro did not
increase RMS cell proliferation, it did confer increased survival
following exposure to radiation or cytotoxic chemotherapy,
suggesting that HGF/c-MET might be an important target for
therapy-resistant RMS (59). RMS cells were found to migrate
toward HGF-rich conditioned medium from bone marrow
fibroblasts, and in vivo, RMS cells were attracted into the bone
marrow in a manner that was dependent on c-MET signaling.
This effect was most pronounced for ARMS cell lines, which
showed higher c-MET expression than ERMS cell lines (59).
Downregulation of c-MET in RMS cell lines decreased both
in vivo tumor growth and bone marrow engraftment (60).
A clinical study examining samples from 40 patients with
RMS found that in the subset of patients whose cancer had
infiltrated the bone marrow (n = 16), the infiltrating cells had
greater levels of c-MET expression than did cells from the
corresponding primary tumors (61). These findings all implicate
the HGF/c-MET pathway as a key driver of RMS invasive and
metastatic spread.

RMS arises from dysregulated myogenic progression with
loss of terminal cell differentiation. Lower c-MET expression
has been correlated with greater levels of differentiation
(62). In normal myogenic development, downregulation of
c-MET is required for terminal differentiation (63, 64). It

has been postulated that the sustained c-MET expression
seen in RMS could result from decreased post-transcriptional
downregulation by myomiRs (particularly miR-1 and miR-206,
microRNA sequences which are physiologically upregulated
during myogenesis). Low levels of miR-1 and miR-206 were
found in ERMS and ARMS compared to normal muscle,
and re-expression of these miRNAs was found to promote
differentiation, and inhibit growth of RMS xenografts. c-MET
was shown to be downregulated in myogenic precursor cells
by miR-206 at the onset of myogenesis, and the expression of
miR-206 in RMS cells was found to inhibit c-MET signaling
(65, 66).

Histologically, cells from ERMS tumors have a more
differentiated “spindle-shaped” morphology compared to the
more aggressive small round cells found in ARMS tumors
(50). When c-MET signaling was blocked in ARMS cells, they
began to resemble ERMS cells morphologically (62). Conversely,
when c-MET was constitutively activated (by introduction of
the TPR-MET oncogene) ERMS cells did not differentiate.
Control ERMS cells developed the typical histology of ERMS
tumors with elongated spindle morphology, while TPR-MET-
activated ERMS cells retained morphology typical of the
more aggressive ARMS tumors. Xenograft tumors derived
from the constitutively c-MET-activated ERMS cells were less
differentiated, faster growing, had increased vascularization,
and more distant metastases compared to controls. Though
targeted activation of c-MET promoted these aggressive changes
to the typical ERMS phenotype, tumors derived from ARMS
cells still grew more aggressively, suggesting that factors
other than c-MET activity contribute to the phenotype of
ARMS (64).

To date, there are but a few studies linking c-MET activity
to clinicopathological parameters and patient outcomes in
RMS. Chen et al. examined levels of c-MET expression in
primary RMS tumors, and while they identified expression
of c-MET in all tumor samples, only a minority of tumors
overexpressed c-MET. Their analysis did, however, find a
positive correlation between higher expression of c-MET
and later staging of cancer, and the presence of a PAX3/7-
FOXO1 fusion protein. Higher expression of c-MET was
correlated with poorer survival (67). Diomedi-Camassei et al.
also found a similar correlation between c-MET expression
and advanced disease, however, this study did not identify a
relationship between overall survival and c-MET expression
(61). A more recent study by Du et al. found a significant
effect of c-MET expression on overall survival only in ERMS
or “fusion-negative” RMS, and though this study identified
greater expression of c-MET in RMS samples compared
to normal muscle controls, the difference between c-MET
expression in ARMS and ERMS samples was not significant
(68). Further analysis of larger cohorts of RMS patients
would be beneficial to clarify the role (if any) of c-MET
in RMS prognosis.
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Osteosarcoma

Osteosarcoma (OS) is the most common primary bone
tumor, and occurs in a bimodal age distribution with a peak
in the pediatric age range. Survival in OS has plateaued since
the 1980’s, and new treatments are needed, especially for those
with advanced disease (69). The c-MET gene was first identified
in human OS cells that had been treated with a chemical
carcinogen (7). A number of studies have since identified
overexpression of c-MET in a large portion of OS tissue samples
(though the rates of overexpression reported range substantially
between studies) (70–73). Human OS-derived cell lines also have
been shown to have increased (but variable) c-MET expression
(74, 75), and invasive cell behavior (increased motility and
invasion) after stimulation with HGF (74).

Patane et al. showed that overexpression of c-MET could
transform osteoblasts (with undetectable c-MET levels at
baseline) to an OS-like phenotype, capable of anchorage-
independent growth, and increased basement membrane and
3-D invasion. Development of this OS-like phenotype was
inhibited by blockade of c-MET receptor dimerization or
with c-MET targeting shRNA (76). A more recent study
from the same group showed that MET-OS “clones”—
created from c-MET overexpression in normal bone-derived
cells — originated from selective expansion of a subpopulation
of committed osteoprogenitor cells at an early stage of
differentiation, and that c-MET overexpression inhibited full
osteoblast differentiation (77). These studies suggest a role for
the HGF/c-MET pathway in the development of OS.

A number of similar reports have suggested a role for
c-MET in the development of OS through suppression or
downregulation of microRNAs (miRNAs). Specifically, studies
have shown that a range of cancer-related miRNAs are decreased
in OS, inversely correlated with increased c-MET expression,
and directly target the wild-type 3′-UTR of the MET gene. Re-
expression of these suppressed miRNAs has been shown to lead
to reduced OS growth and invasion (78–84).

Pharmacological c-MET inhibition in OS has been shown
to decrease malignant behavior of OS cells in culture, and to
suppress in vivo xenograft tumor growth (85, 86). Fioramonti
et al. showed that treatment with cabozantinib (an inhibitor of
multiple RTKs including c-MET and VEGFR-2), in addition to
directly reducing OS proliferation and migration, has an indirect
inhibitory effect on RANK-expressing (a poor prognostic
marker) OS cell lines by decreasing RANK-L production by
osteoblasts (86).

Ewing sarcoma

After OS, Ewing Sarcoma (ES) is the second most common
primary pediatric bone tumor. Fleuren et al. found that
a majority of samples of ES (including primary tumors,

metastases and post-chemotherapy resections) had medium to
high levels of cytoplasmic c-MET expression. More specifically,
however, they found that expression of c-MET localized to the
plasma membrane (and not cytoplasmic c-MET) was associated
with worse overall survival. ES cell lines were susceptible to
treatment with (non-selective) c-MET inhibitors cabozantinib
and crizotinib (87). A recent in vitro study by Charan et al.
demonstrated overexpression of HGF in ES xenograft tumors
and cell lines, compared to control tissues. The overexpression
of HGF was related to an oncogenic p53 isoform, and the
authors showed that treatment with a neutralizing anti-HGF
antibody could synergize with GD2-targeted CAR-T cell therapy
to inhibit ES xenograft growth and increase survival in a murine
model (88).

Glioma

Gliomas are the most common pediatric CNS tumors, which
after leukemia are responsible for the most cancer deaths in
this population (89). Few effective chemotherapeutic options
exist for treatment, especially of higher-grade or non-resectable
lesions, and outcomes are frequently quite poor. As these
cancers are also common in the adult population, much of the
literature is comprised of studies of adult tumors.

Early studies of human primary brain tumor samples
have shown increased expression of c-MET and/or HGF in
higher grade gliomas, such as glioblastoma multiforme (GBM)
(90–94). Microscopy analysis of tumor sections, as well as
in vitro and in vivo experiments with anti-HGF agents, have
suggested that both autocrine and paracrine signaling of HGF
occurs in gliomas (90, 91, 93, 95–97). Similar to its effects
in sarcomas, stimulation with HGF increased glioma cell
proliferation, motility, and invasion (90, 91, 94). Treatment
with anti-HGF agents, such as anti-HGF snRNA/ribozymes
(95), anti-HGF antibodies (96, 98), or competitive inhibitors
of HGF (99) decreased the growth of in vivo xenograft glioma
tumors by decreasing cell proliferation and increasing apoptosis
(and through effects on angiogenesis which will be addressed
separately). Notably, Kim et al. showed in a murine model that
glioma xenografts which express c-MET without co-secreting
HGF are completely resistant to treatment with an anti-HGF
mAb. However, the authors indicated that these results do not
necessarily preclude successful therapy in humans, as any native
murine HGF in this model (in other words, paracrine HGF)
would not have been targeted by the anti-HGF mAb (98).
Martens et al. found that an anti-c-MET antibody was effective
against GBM xenografts co-expressing HGF and c-MET, while
xenografts expressing c-MET but not secreting (human) HGF
were resistant to therapy (97).

Studies comparing HGF/c-MET expression in pathological
specimens to clinical outcomes have indicated that greater
presence of HGF/c-MET is associated with poorer prognosis
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and outcomes (though this data is largely from adult patients)
(100–103). Interestingly, Kong et al. found that a greater
percentage of c-MET overexpressing tumors had aggressive
radiographic findings on initial MR imaging (invasive or
multifocal lesions) compared to c-MET-negative (or low-
expressing) tumors (100).

Tumor neovascularization and angiogenesis play a
significant role in glial cancers, particularly in aggressive cancers
like GBM. The HGF/c-MET pathway influences angiogenesis
both directly and indirectly [reviewed in (104)], and treatment
with anti-HGF/c-MET agents can reduce tumor microvessel
density (95, 97–99). Studies of HGF/c-MET distribution in
human primary brain tumors showed that expression was not
limited to glial cancer cells, but was also found in supporting
tumor microvasculature (91–93). In vitro stimulation with HGF
promoted chemotactic migration and increased DNA synthesis
in neuro microvascular endothelial cells, suggesting a direct
pro-angiogenic role for HGF (94, 105).

Probing the role of HGF as an indirect mediator of
angiogenesis, Moriyama et al. demonstrated that treatment of
glioma cell lines with HGF increased VEGF mRNA expression
and protein secretion in a dose-dependent fashion (106).
However, Schmidt et al. quantified the levels of VEGF, HGF,
and bFGF in extracts from human gliomas, and found that
levels of both VEGF and HGF were increased in higher grade
gliomas, and were independent predictors of microvessel density
(107). Using both GBM cell lines and primary cultures, Eckerich
et al. found that exposure to hypoxia caused an increase in
MET transcription and c-MET expression. This effect was
linked to hypoxia-inducible-factor 1-alpha (HIF-1a) (the MET
promoter is known to have HIF-1 binding sites), and was more
pronounced in cell lines that had relatively low basal c-MET
expression (108). Martens et al. tested the effects of a one-armed
anti-c-MET antibody (OA-5D5) on the in vivo growth of GBM
xenografts, and interestingly found that treatment with OA-5D5
decreased intratumoural microvessel density, despite OA-5D5
being unable to bind murine c-MET. The authors suggested that
in this model of GBM, anti-c-MET therapy had an indirect anti-
angiogenic effect, potentially by decreasing proteolysis within
the tumor extracellular matrix, thereby inhibiting neovascular
spread (97).

Cancer stem cells are increasingly recognized as key drivers
of therapy resistance and tumor progression, particularly
in high-grade cancers such as GBM. Studies of GBM-
derived cells and neurospheres have identified an association
between HGF/c-MET signaling and “stemness” in GBM
[reviewed in (109)]. c-MET signaling within neurospheres
(which recapitulate the heterogeneity of a GBM tumor
more accurately than single cell cultures) was associated
with expression of other identifiers of “stemness,” and
treatment with HGF sustained clonogenic potential and
expression of reprogramming transcription factors (110).
However, rather than homogeneously expressing c-MET,
subpopulations within c-MET-positive neurospheres of c-MET

high- and low-expressing cells were identified, with the
high-expressing subpopulations having greater “stem”-like
characteristics, including greater clonogenicity and capacity
for multipotential differentiation, and enhanced in vivo
tumorigenicity (111). Similarly, a study of freshly isolated
patient-derived GBM cells showed that within a sorted
population of c-MET-positive cells, those with high c-MET
expression were more clonogenic, and more tumorigenic in
an orthotopic in vivo model, than those with lower c-MET
expression (112).

A recent study by Qin et al. found that de novo glioma
formation could be instigated by injecting human HGF and
c-MET cDNA in combination with siRNA against TRp53 into
the lateral ventricle of neonatal mice. These results suggest that
increased HGF/c-MET signaling, on a oncogenic background of
p53 attenuation, could be sufficient to transform healthy neural
stem cells into malignant glioma stem cells (113).

The HGF/c-MET pathway has been shown to contribute
to anti-cancer therapy resistance in human gliomas. Indeed,
irradiation of glioma stem cells has been shown to induce
c-MET upregulation (112), while in vitro studies have shown
that pre-treating GBM cells with HGF reduced the cytotoxic
effect of DNA damaging agents (114). Furthermore, treatment
of GBM xenografts with chimeric U1/ribozymes targeting HGF
and c-MET mRNA sensitized tumors to gamma radiation, and
greatly improved tumor regression and cure rate (115).

Much of the literature discussing the role of HGF/c-MET
in glioma is based upon studies of adult primary tumors,
or cell lines derived from adult tumors. However, owing to
distinct genetic differences, these findings might not be directly
applicable to the pediatric population (116). A recent review of
the molecular landscape of pediatric gliomas suggests that in
fact pediatric tumors may be a better target for many precision
therapies, due to their relative paucity of diverse genetic drivers
compared to adult tumors, which tend to be more genetically
heterogeneous (117). Wu et al. found amplifications of the MET
gene in 6% (7/112) of pediatric high-grade gliomas analyzed
(118). Bender et al. analyzed the genetic profiles of pediatric
GBMs, and found that up to 10% of tumors harbored gene
fusions involving MET–of all the fusion genes identified, MET
was the single gene most frequently involved. Notably, all of the
GBM samples found to have a MET fusion were also found to
have impaired cell cycle regulation. Indeed, the authors found
that cell lines transduced with a MET fusion gene were only
tumorigenic on the background of a TP53 mutation, or deletion
of CDKN2A/CDKN2B, suggesting that while dysregulation of
the c-MET pathway plays a role in tumorigenesis, it alone is not
sufficient to drive tumor growth (119).

Medulloblastoma

Medulloblastoma (MB) is the most common brain
malignancy in pediatrics. Due to the risk of leptomeningeal
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dissemination, current therapy of MB generally includes
surgical resection, chemotherapy and radiation of the neuraxis–
an aggressive treatment approach which can result in significant
morbidity including endocrinological and neurocognitive
deficits. MB develops from neural progenitor cells in the
posterior fossa, most commonly in the cerebellum—the HGF/c-
MET pathway is crucial for normal cerebellar development
(120), and dysregulation of this pathway has been implicated
as a driver of MB.

An early study of the genetic drivers of MB found single
copy gains of MET in 38.5% of tumor samples analyzed
(121). c-MET and HGF were found to be expressed in tumor
specimens and MB cell lines, and levels of c-MET mRNA
correlated with poor clinical outcomes. Moreover, it was
shown that HGF stimulation of MB cells in vitro induced
proliferation, anchorage-independent growth, and protection
from chemotherapy-induced cell death. Overexpression of
HGF in vivo led to increased growth of xenografts, with
unfavorable histologic phenotypes (122). Small molecule
inhibition of c-MET in vitro in MB cell lines led to
decreased proliferation, motility, and anchorage-independent
growth (123), and treatment with an oral c-MET inhibitor
(crizotinib) in vivo inhibited growth of subcutaneous MB tumor
xenografts (124).

Work done to investigate other molecules and pathways
involved in the tumorigenesis of MB found that HGF
induced expression of c-Myc (an oncoprotein whose presence
can indicate poor prognosis in MB), and inhibition or
overexpression of c-Myc in MB modulated the effects of HGF
on cell cycle progression and proliferation (125). Additionally,
epigenome screening identified serine protease inhibitor kunitz-
type 2 (SPINT2–an inhibitor of HGF activation) as a potential
tumor suppressor gene in MB. A majority of primary MB tumor
samples showed decreased SPINT2 expression, while stable re-
expression of SPINT2 in MB cell lines resulted in decreased MB
cell proliferation, anchorage-independent growth, and longer
overall survival of mice implanted with intercerebellar tumor
xenografts (126). Investigation into the relationship between
the serine/threonine protein kinase MAP4K4 and c-MET found
that in certain MB cell lines, blocking MAP4KR signaling
affected c-MET signaling (promoted endocytosis and recycling
of c-MET), suggesting a potential combination therapeutic
target for a subset of MB (127).

MB can be classified into molecular subgroups:
wingless/integrated (WNT), sonic Hedgehog (SHH), and
groups 3 and 4. Genetic analysis has revealed an association
between increased c-MET expression and the SHH subgroup
of MB, though increased c-MET expression is also seen in
a subset of tumors classified in groups 3 and 4 (128–130).
Higher levels of phosphorylated c-MET were correlated with
tumor recurrence and poor prognosis in the SHH subgroup
of MB (129). Binning et al. found that activation of SHH in
murine models induced formation of MB, while overexpression

of HGF on the background of activated SHH resulted in an
increased frequency of MB formation. Treatment with a mAb
against HGF in this model improved overall survival, though
the inhibition of tumor growth was incomplete, leading the
authors to hypothesize that dual inhibition of both SHH and
HGF would be more effective (131). A further study by the
same group interestingly revealed that the combination therapy
with SHH and HGF inhibitors did not improve survival (and
even reduced survival in one combination therapy) compared
to monotherapy (132). Separately, small molecule inhibition of
c-MET with foretinib has been shown to be effective against
subcutaneous and orthotopic xenografts of disseminated SHH
subgroup MB, as well as a transgenic mouse model of metastatic
SHH MB (129).

Neuroblastoma

Neuroblastoma (NB) is a malignancy derived from primitive
cells of the sympathetic nervous system and is the most
common extracranial pediatric solid tumor (133). The clinical
behavior and prognosis of NB can range broadly—from
tumors which spontaneously regress, to aggressive metastatic
tumors causing death.

Hecht et al. provided the first evidence of a role for the
HGF/c-MET pathway in NB. They found variable expression
of HGF and c-MET across established NB cell lines, with little
basal activation of c-MET. However, stimulation of NB cells
with HGF promoted invasion and expression of proteolytic
extracellular matrix (ECM)-degrading factors. Pre-stimulation
of NB cells with HGF in a model of NB in chick embryos
(using the chorioallantoic membrane as an epithelial barrier to
investigate invasive growth) led to the increased formation of
well vascularized tumors (134). A further study by the same
group found that expression of the neurotrophin receptor TrkB
(a hallmark of invasive and metastatic NB) led to upregulation
of HGF and c-MET (and an increase in phosphorylated
c-MET, suggesting autocrine stimulation). TrkB-expressing
cells were more invasive than the parental cells. A series of
stimulation experiments revealed that while anti-BDNF (the
stimulating ligand for TrkB) treatment could reduce c-MET
phosphorylation, anti-HGF treatment did not similarly affect
phosphorylation of TrkB–but did reduce phosphorylation of
c-MET (which could be partially rescued by BDNF stimulation).
These results suggest that the relationship between TrkB and
c-MET is driven at the top by stimulation through TrkB.
Analysis of tumor specimens from advanced disease found
increased expression of TrkB in a subset of samples, all of
which had increased expression of HGF and c-MET (135). Ren
et al. investigated the relationship between c-MET and another
prognostic marker in NB, macrophage migration inhibitory
factor (MIF). When expression of MIF was reduced in an NB cell
line, c-MET mRNA levels decreased. Decreased MIF expression
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led to a less aggressive NB phenotype in vitro (less invasive, less
proliferative, and more apoptotic), and decreased tumor growth
and metastasis in vivo (136).

Plasma and serum samples from patients with NB were
found to have an overall increased concentration of HGF
compared to plasma and serum from healthy controls. Notably,
HGF concentration was higher in patients with later stage NB
and was associated with negative markers of NB prognosis
(137). qPCR analysis of c-MET mRNA in NB tumor samples
found a correlation between increased c-MET expression and
later clinical stage (138). Yan et al. examined the genomic
and protein expression of c-MET in NB clinical samples, and
across the 54 samples analyzed they identified one example of
MET gene amplification, and only one example of increased
c-MET expression by IHC. The rest of the samples analyzed
did not show any c-MET overexpression, though the authors
did identify some alternatively spliced MET isoforms (139).
Scorsone et al. looked at a small panel of NB patient samples
and found detectable c-MET expression in 38% (3/8) of
tumor samples (140). Similarly, established NB cell lines have
shown variable (often minimal to no) c-MET expression (134,
140, 141).

In vitro and pre-clinical studies have suggested the potential
therapeutic benefit of small molecule inhibition of c-MET in NB
(138, 140). Cabozantinib (a small molecule inhibitor of c-MET
and VEGFR among other RTKs) was compared to selective
anti-VEGFR inhibition in models of NB, and while anti-
VEGFR therapy alone led to increased metastasis, cabozantinib
decreased metastatic spread to visceral organs (though not to
bones). The study was limited, however, by the use of different
animal models and cell lines for the study of metastatic spread
after VEGFR inhibition or cabozantinib treatment, and thus a
direct comparison of the two therapies is not possible (142).

Wilms tumor (nephroblastoma)

Wilms tumor (WT), also known as nephroblastoma, is
the most common renal malignancy in children. It is an
embryonal malignancy and is thought to derive from aberrant
differentiation and development in early nephrogenesis. HGF/c-
MET autocrine and paracrine signaling has been shown to play
a part in early kidney development (143), and so a role for
this pathway in WT tumorigenesis has been posited. The data
on a role (if any) for HGF/c-MET in WT is, however, limited.
A screen of solid tumors for mutations in theMET gene revealed
no mutations in 52 samples of WT (144). In 2002, Alami
et al. showed that in a relatively small subset of WT samples,
expressions of c-MET and HGF were raised compared to normal
kidney tissue, and that in a majority of samples higher levels
of c-MET were correlated with a marker of proliferation (145).
In contrast, a later study by Vuononvirta et al. reported tissue
microarray analysis of a larger cohort of WT and showed that

only 8% (15/193) and 14% (25/179) of non-anaplastic tumors
expressed HGF or c-MET, respectively, and did not find an
association with markers of proliferation. They found greater
HGF expression in nephrogenic rests (precursor lesions to WT)
compared to WT, suggesting a loss of this signaling pathway
with development of malignancy (146). To date the role of
HGF/c-MET in WT remains unclear.

Hepatoblastoma

While rare overall, hepatoblastoma (HB) is the most
common pediatric liver malignancy (with some geographical
differences), particularly in younger children and infants. HB
is thought to arise from early hepatic progenitor cells, and
owing to their pluripotent nature, histological subtypes of
HB include both epithelial and mixed epithelial-mesenchymal
variants (147). As previously discussed, HGF/c-MET plays a
crucial role in normal liver development and regeneration (14,
20, 22, 23), and so it is perhaps unsurprising that this pathway
has been implicated in the pathogenesis of HB.

In pediatric patients, liver regeneration after partial
hepatectomy is particularly robust and rapid. In some patients
undergoing partial hepatectomy for untreated HB, rapid
recurrence of liver tumors and lung metastases is seen post-
operatively, coinciding with the time period of maximal liver
regeneration. HGF is a crucial growth factor involved in liver
regeneration. Von Schweinitz et al. found that sera from HB
pediatric patients had significantly elevated HGF concentrations
post-hepatectomy compared to healthy controls (with no
statistically significant difference in serum HGF concentrations
pre-treatment compared to healthy controls). HGF was shown
to be produced by stromal cells in co-culture with HB cells,
suggesting a paracrine mechanism of HGF stimulation, while
analysis of tumor sections revealed high expression of c-MET
by epithelial tumor cells. In a subset of patients, HB tumors
were compared to normal liver tissue (from the same patient,
n = 5) and c-MET mRNA levels were found to be upregulated
in HB tumor samples compared to healthy liver tissue (148).
The authors of this early paper also showed that in vitro, HGF
at physiologic concentrations (matching clinical data of serum
HGF concentrations post-hepatectomy) increased proliferation
of established HB cell lines, while higher (non-physiologic)
concentrations of HGF had the opposite effect (148). However,
a more recent study with the same established HB lines and
similar concentrations of HGF found that HGF stimulation
did not increase viability or proliferation of HB cells, but
rather increased HB cell survival only in the face of stressors
like serum-starvation, or treatment with chemotherapy, an
effect that was mediated through the PI3K/AKT downstream
signaling pathway (149).

Aberrant accumulation of β-catenin in the cytoplasm and
nucleus can be seen in a large proportion of HB (150), and
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is likely involved in HB tumorigenesis [reviewed in (147)].
While activation of β-catenin occurs classically through the
Wnt pathway, Wnt-independent and HGF-induced nuclear
translocation of β-catenin has been shown to occur as a
result of a subcellular interaction of β-catenin and c-MET
(151). Clinical data suggests significant but variable rates of
mutation/deletion in the gene for β-catenin (CTNNB1) affecting
β-catenin accumulation in HB. Purcell et al. studied clinical
samples of HB, and while 87% (85/98) of tumors showed
aberrant β-catenin accumulation, the frequency of CTNNB1
mutations in their patient cohort was substantially lower
[at most 20% (20/98) of samples], suggesting an alternative
mechanism for β-catenin accumulation. Significant levels of
c-MET activated β-catenin [Y654-β-catenin, (152)] were found
in the cytoplasm and nucleus of clinical HB samples with
wild-type CTNNB1, suggesting that aberrant accumulation β-
catenin in these cases was due to HGF/c-MET signaling, a
mechanism which was validated in a wild-type CTNNB1 HB
cell line after HGF stimulation (153). Recently, Matsumoto
et al. found that overexpression of c-MET in addition to
overexpression of constitutively active β-catenin and YAP (Yes-
associated protein) in vivo led to the formation of murine
liver tumors similar to human HB and expressing HB tumor
markers (154).

An early study examined the role of various genetic
alterations on patient outcomes with HB, and found that clinical
outcomes after multimodal therapy were not correlated with
MET RNA expression levels, though it should be noted that only
23 patient samples had MET levels quantified (155).

Childhood hepatocellular carcinoma

Hepatocellular carcinoma (HCC) is becoming increasingly
prevalent worldwide, although it remains relatively rare in
childhood (with geographic differences in incidence). In the
vast majority of adult HCC, an etiology related to chronic liver
injury/inflammation (alcoholic/non-alcoholic fatty liver disease,
viral liver infection etc.) is identified, and patients often present
in the context of liver cirrhosis. In children, however, HCC more
often develops on the background of a non-cirrhotic liver, and is
often considered a separate entity (156, 157).

In 1999, Park et al. sequenced the TK domain of the MET
gene in primary liver tumors, from both pediatric and adult
patients. Interestingly, they found that 30% (3/10) of childhood
HCC samples had missense mutations in the TK domain of the
MET gene, while no MET mutations were found across 16 adult
HCC tumors. The authors suggest that potentially activating
mutations of the MET kinase domain could contribute to the
tumorigenesis of childhood HCC, and account for the relatively
accelerated timeline compared to adult HCC (which often
occurs in the context of longstanding liver inflammation and
cirrhosis) (158).

The HGF/c-MET pathway has been explored in adult HCC
and is reviewed in (159, 160). Briefly, c-MET has been shown
to be overexpressed in a proportion of HCC samples compared
to normal liver tissue, and has been linked to advanced
disease or poor prognosis (161–165). However, the proportion
of tumors overexpressing c-MET varies considerably between
studies (160). Pre-clinical studies have shown both pro- and
anti-tumorigenic roles for the HGF/c-MET pathway in HCC
(166–169), and analysis of clinical samples suggests an overall
decreased expression of HGF in adult HCC (160).

Wang et al. showed that transgenic mice with
overexpression of c-MET by hepatocytes developed HCC, and
that this tumorigenesis was likely due to c-MET activation by
cell attachment rather than by HGF stimulation. Furthermore,
when expression of c-MET was inhibited, established HCC
tumors regressed dramatically, suggesting a role for c-MET
in both the development and maintenance of HCC (170).
Tao et al. identified a subset of human HCC cases (9–12.5%
of analyzed samples) containing both c-MET overexpression
and mutation of the β-catenin gene (CTNNB1), and showed
that overexpression of c-MET on the background of mutant
β-catenin led to the formation of HCC in transgenic mice (171).

Thyroid malignancies

A study by Ramirez et al. examined the implications of
c-MET expression with respect to recurrence and metastasis
risk in children and young adults with papillary thyroid
carcinoma (PTC). Immunohistochemical staining intensities
of benign and malignant thyroid lesions were analyzed with
respect to clinical outcome. The specimens examined included
PTC, follicular thyroid carcinomas (FTC), medullary thyroid
carcinomas (MTC), as well as specimens from patients with
benign thyroid conditions and normal thyroid tissues. This
study found that enhanced expression of c-MET and HGF/SF
may be associated with an increased risk for metastasis and
tumor recurrence in this patient population (172).

Table 1 broadly summarizes the known effects of
HGF/c-MET signaling in the range of pediatric tumor
types reviewed here.

TABLE 1 Effects of the HGF/c-MET pathway in pediatric tumors.

Effects of HGF/c-MET signaling Tumor types in
which effect has
been observed

Increased cell invasion/metastasis RMS, OS, glioma, MB,
NB

Increased tumor neovascularization Glioma, NB

Increased resistance to chemotherapy/radiotherapy RMS, glioma, MB, HB

Decreased cell differentiation RMS, OS, glioma

Increased cell proliferation Glioma, MB, HB
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Hepatocyte growth
factor/mesenchymal epithelial
transition factor pathway as a
therapeutic target

Recently, a number of agents that target the HGF/c-MET
pathway have been developed and evaluated in preclinical and
clinical studies of various cancers. These agents include small
molecule inhibitors for c-MET kinase activity, as well as anti-
c-MET and anti-HGF antibodies. Currently available small
molecule inhibitors include bozitinib, cabozantinib, crizotinib,
MSC2156119J, MK-2461, AMG-337, capmatinib, tepotinib,
amuvatinib, elzovantinib, savolitinib, glumetinib, and golvatinib
(173–176). These molecules have distinct characteristics with
respect to their ability to interact with specific residues and
regions in the active c-MET molecule. For example, bozitinib
(PLB-1001) is a highly selective ATP-competitive c-MET
inhibitor with blood-brain barrier permeability allowing for
its potential utility in secondary GBM, where a significant
proportion of patients carry METex14 alterations which are
associated with a poor prognosis (177). Additionally, a number
of monoclonal antibodies against c-MET and HGF, as well as
competitive analogs of HGF have been developed to target
the HGF/c-MET pathway in tumors (178). Compared to small
molecule tyrosine kinase inhibitors (TKIs) that often interact
with multiple cellular growth regulatory kinases, antibody-based
therapeutics inhibit components of the HGF/c-MET pathway
with greater specificity, interrupting the ligand binding process.
For this reason, these therapeutics are more likely to be effective
against tumors with c-MET overexpression, and not restricted
to those with oncogenic molecular alterations (175).

Therapeutics targeting the HGF/c-MET pathway tested in
clinical trials thus far include c-MET TKIs (selective for only
c-MET or targeting additional RTKs), anti-c-MET antibodies,
and anti-HGF antibodies. Fu et al. recently published a
comprehensive review of clinical trials of HGF/c-MET targeted
therapies in adult cancers, which span these three categories
of therapeutics (179). Pediatric trials of HGF/c-MET targeted
therapies have been more limited, and have thus far only tested
selective and non-selective c-MET tyrosine kinase inhibitors
(TKIs). Table 2 summarizes the current landscape of completed
and recruiting clinical trials of HGF/c-MET targeted therapies
with pediatric eligibility and recruitment.

Tivantinib

Tivantinib (ARQ 197), a staurosporine derivative, was
identified as a highly selective inhibitor of the c-MET
tyrosine kinase, capable of inhibiting c-MET phosphorylation
and its downstream effects (180). Tivantinib has also
demonstrated significant cytotoxic activity independent of

c-MET inhibition, and a mechanism of action involving
microtubule dynamics has been posited (181, 182). The
uncertainty surrounding tivantinib’s main mechanism of
action has important implications for clinical trial design and
appropriate biomarker selection.

In the pediatric population, tivantinib has been investigated
as a c-MET inhibitor in multiple cancer types. A Children’s
Oncology Group phase I trial in pediatric patients with
relapsed/refractory solid tumors investigated oral dosing and
pharmacokinetics. While oral tivantinib was well tolerated, there
was marked pharmacokinetic variability among patients, and
no objective responses were seen. Tumor samples (solid tumors
including CNS tumors) were analyzed for c-MET expression by
IHC, and the majority of samples [81% (26/32)] were found to
have undetectable levels of c-MET (183).

Tivantinib has also been evaluated in a phase II trial in
adolescent and adult patients (median age of 25) with advanced
microphthalmic transcription factor (MITF)-associated tumors
(including alveolar soft part sarcoma, translocation-associated
renal cell carcinoma, and clear cell sarcoma). The best response
in the study was a partial response (PR) in a patient with clear
cell sarcoma. Baseline tumor expression of c-MET was evaluated
by IHC for 19 patients (out of n = 27). The majority of tumors
evaluated were either highly or focally positive for c-MET [74%
(14/19)], but no correlation with c-MET staining and best
response was observed. Of note, the one patient with clear cell
sarcoma who had a PR was negative for c-MET staining (184).

Thus far, the clinical activity of tivantinib in pediatric
patients has been limited, and the specificity of this agent as a
targeted anti-c-MET therapeutic is uncertain.

Cabozantinib

Cabozantinib is a TKI with multiple targets including
c-MET, VEGFR2, RET, KIT, AXL, and FLT3. Cabozantinib has
both direct anti-tumor activity and anti-angiogenic effects (185).

A recently reported multi-center phase II clinical trial (the
CABONE trial) investigated the effects of cabozantinib in ES
and OS. Though the trial was primarily conducted in adult
patients (the median age of OS patients was 34), the results
showed that in patients with OS, treatment with cabozantinib
gave rise to a 12% objective response rate and 33% of patients
had 6 months of non-progression (meeting the study’s primary
efficacy criterion). Moreover, a biomarker analysis indicated
that an increased soluble (plasma) c-MET level at baseline was
correlated with improved progression free survival, suggesting
that this subpopulation of OS patients with high c-MET
expression was responding to the anti-c-MET therapy (186).
In a heavily pre-treated ES patient population, an objective
response rate of 26% was seen (all PRs), and the primary
efficacy criterion was met. However, biomarker analysis did
not reveal any associations between serum c-MET and survival
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TABLE 2 Active, recruiting, or completed clinical trials of HGF/c-MET targeting agents that include pediatric patients.

Drug name Known target(s) Trial number Description Status/References

AMG-337 c-MET NCT03132155 Phase 2 study in clear cell sarcoma containing EWSR1-ATF1
gene fusion

Active, not recruiting

Tivantinib c-MET NCT01725191 Phase 1 study in pediatric solid tumors Completed (183)

NCT00557609 Phase 2 study in MiT tumors Completed (184)

Savolitinib c-MET NCT03598244 Phase 1 study in pediatric CNS tumors with MET aberrations Recruiting

Crizotinib c-MET, ALK, ROS1 NCT01644773 Phase 1 study of the combination of crizotinib and dasatinib in
pediatric DIPG and HGG

Completed (195, 196)

NCT00939770 Phase 1/2 study in pediatric solid tumors and ALCL Completed (190, 191,
197)

NCT01606878 Phase 1 study of crizotinib in combination with conventional
chemotherapy in pediatric solid tumors or ALCL

Completed (198)

NCT01979536 Phase 2 study of brentuximab vedotin or crizotinib in
combination with chemotherapy in pediatric patients with
ALCL

Active, not recruiting

NCT02034981 Phase 2 study in diverse tumors with an alteration in ALK,
MET, or ROS1

Active, not recruiting
(192)

NCT01121588 Phase 1 study of crizotinib in tumors with aberrations of ALK
(note, mutations in MET but not ALK are in exclusion criteria)

Active, not recruiting
(199)

NCT01744652 Phase 1 study of dasatinib in combination with crizotinib in
advanced solid malignancies (or lymphoma)

Completed (200)

NCT04283669 Phase 2 study in children and adults with neurofibromatosis
type 2 and progressive vestibular schwannomas

Active, not recruiting

NCT01524926 Phase 2 study in advanced tumors with alterations of ALK
and/or c-MET pathways

Active, not recruiting
(193, 194, 201, 202)

NCT02638428 Phase 2 study of various targeted therapies in pediatric tumors
based on genetic sequencing

Recruiting

NCT02693535 Phase 2 study of various targeted therapies in a range of tumors
based on genomic variants or known drug targets

Recruiting

Cabozantinib c-MET, VEGFR2, AXL, RET,
KIT, FLT3

NCT03611595 Phase I study of cabozantinib in combination with
13-cis-Retinoic Acid in pediatric solid tumors

Recruiting

NCT01709435 Phase 1 study in pediatric solid tumors (incl. CNS tumors) Completed (187)

NCT02867592 Phase 2 study in refractory sarcomas, WT, and other rare
tumors

Active, not recruiting
(188)

NCT04661852 Phase 1 study of cabozantinib with topotecan and
cyclophosphamide in ES or OS

Active, not recruiting

NCT02101736 Phase II study in patients with neurofibromatosis type 1 and
plexiform neurofibromas

Active, not recruiting
(203)

NCT02243605 Phase 2 study in OS and ES Active, not recruiting
(186)

Studies with inclusion criteria <18 years of age that did not end up recruiting pediatric patients in reported results are excluded.
Some studies of crizotinib are explicitly targeting ALK not c-MET but have been included here for completeness.

outcomes, and as cabozantinib also targets VEGFR2, it is not
clear if in these cases the treatment benefit derived primarily
from targeting c-MET activity or the anti-angiogenic effects of
targeting VEGFR2 (186).

The Children’s Oncology Group has also investigated
cabozantinib in relapsed or refractory solid tumors. After a
phase I trial found that cabozantinib led to some PRs or stable
disease (SD) (187), a phase II trial was conducted to determine
activity. The trial was divided into six cohorts: OS (n = 29),
ES, RMS, non-RMS soft tissue sarcoma, WT (all n = 13), and
other rare tumors (n = 23). Overall, in OS 10/29 patients (34%)

had disease control after 4 months (2 PR and 8 SD), while
no partial or complete responses were seen in patients with
EWS, RMS, or WT (though some PRs were seen in other
rare tumors). The study showed potential for cabozantinib
in treatment of OS, but limited efficacy in other sarcomas
or WT (188).

A recent single-institution case series reported on the use
of cabozantinib in four pediatric patients with relapsed NB.
All four patients had extended disease control after treatment
with cabozantinib for at least 6 months, while two patients
had complete responses (>12 months) and remained in clinical
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remission at the time of publication (189). It is, however, unclear
whether this benefit derived from targeting c-MET or rather
targeting of VEGFR (or other RTKs sensitive to inhibition
by cabozantinib).

Crizotinib

Crizotinib is another non-selective TKI targeting c-MET,
though many of the clinical studies of crizotinib have focused
primarily on its role targeting anaplastic lymphoma kinase
(ALK). In the adult population, crizotinib is approved for
treatment of NSCLC with altered ALK.

In pediatric populations, crizotinib has been investigated
in a variety of solid tumors and anti-tumor activity has been
correlated with the presence of ALK aberrations (190, 191).
Crizotinib is approved for treatment of relapsed or refractory
anaplastic large cell lymphoma with altered ALK.

From the perspective of targeting c-MET, a number of phase
I and II trials which included children and adolescents in their
eligibility criteria have examined the role of crizotinib in tumors
with MET alterations.

The AcSé program in France supported a multi-tumor
phase II trial wherein 107 pediatric tumors were analyzed
for alterations in the molecular targets of crizotinib (ALK,
MET, and ROS-1). From this cohort, 11 patients with
genetic alterations were enrolled and received crizotinib
(results from only eight patients were available at the
time of abstract publication). The tumor analysis found
one MET translocation, and three instances of MET
amplification. Notably the single patient with a MET
translocation (glioma) had progressive disease with crizotinib
therapy (192).

The European Organization for Research and Treatment
of Cancer (EORTC) “CREATE” trial was designed as a multi-
center multi-tumor trial to evaluate crizotinib in a range
of cancer types known to harbor alterations in the targets
of crizotinib (ALK, MET, and ROS-1) (193). The trial was
open to patients aged 16 and older, and though the patient
cohort consisted primarily of adults, the trial contained cohorts
of patients with cancers more commonly seen in children,
adolescents, and young adults, and so is discussed here.

In advanced ARMS (positive for MET fusion protein),
crizotinib (as a single agent) did not have meaningful
clinical activity, with just one patient achieving a PR as
the best outcome. As only eight patients out of 13 were
evaluable for the primary end-point due to the aggressive
course of their disease, the authors suggest that targeted
therapeutics like crizotinib might be better trialed in aggressive
cancers as an earlier treatment (in combination with standard
chemotherapy). Given the lack of disease response to anti-
c-MET therapy, the authors postulate that c-MET activation
is likely not a key driver of disease progression at this

advanced stage in ARMS, but may play a role in earlier
differentiation (194).

The combination of crizotinib and another TKI, dasatinib,
was tested in a Phase I trial in pediatric patients with
advanced high-grade glioma or diffuse intrinsic pontine
gliomas. Unfortunately, the combination was poorly tolerated,
and little anti-tumor activity was appreciated. Notably, only 13%
(2/16) of cases available for molecular analysis revealed MET
amplification (195).

Discussion

Clearly, the HGF/c-MET pathway contributes to a wide
variety of pediatric malignancies. Given its crucial role in
development, proliferation, cell motility, and regeneration
this is perhaps unsurprising, as aberrations in these cellular
functions are commonly identified as drivers of oncogenesis
and metastatic spread. There is ample evidence in the literature
reviewed above to suggest that targeting the HGF/c-MET
pathway could be an effective anti-cancer strategy across a
range of tumor types. This promise has not, however, been
fully borne out in the limited number of pediatric clinical trials
that have been completed to date. Overall, the HGF/c- MET
pathway is an exciting target and has shown early promise
in cancers such as osteosarcoma. However, in many of the
tumor types reviewed here, the principal effects of dysregulated
HGF/c-MET signaling have largely been shown to be an
increase in invasive/metastatic behavior, resistance to chemo- or
radiotherapy, and a promotion of poorly differentiated “stem-
like” cells, as opposed to driving cell proliferation and growth.
This is likely reflected in the relative paucity of objective clinical
responses seen in pediatric clinical trials to date. With the
potential exception of tumors containing growth-sustaining
genetic alterations in MET, treatment of tumors with anti-
HGF/c-MET agents will likely be most impactful in preventing
disease progression or relapse after treatment or resection, and
when used in combination with cytotoxic therapies. Multiple
pre-clinical studies reviewed above suggest that the HGF/c-
MET pathway is important for protecting cancer cells from
insult, and so it follows that anti-HGF/c-MET therapy could
be effective as an adjuvant to other cytotoxic therapies. One of
the key hurdles in cancer therapy is overcoming drug resistance
developed within heavily pre-treated refractory tumors and
targeting the HGF/c-MET pathway could be a promising tool
for addressing this.

It is also important to acknowledge that, while invaluable
for pre-clinical research and drug development, in vitro models
generally do not reflect the diversity seen across tumors
in patients. Many of the studies reviewed above included
analysis of HGF/c-MET expression in patient samples, though
there existed considerable variability in the methods for
quantification, and the “normal” controls used between reports.
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Biomarker analysis for appropriate patient selection is crucial
for any targeted therapy to achieve its predicted potential from
pre-clinical data, although in early stages of development it is
important to include open Phase I/II studies as to not exclude
any groups who might potentially benefit from the therapy for
reasons not yet fully elucidated. There are currently multiple
ongoing or recruiting trials of anti-c-MET agents including
pediatric patients, hence it is expected that additional key data
will become available regarding the safety and efficacy of these
agents for childhood cancers in the near future.
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