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Background. Epstein-Barr virus (EBV) is implicated in the progression of chronic obstructive pulmonary disease. We aimed to 
determine whether EBV correlates with bronchiectasis severity, exacerbations, and progression.

Methods. We collected induced sputum in healthy controls and spontaneous sputum at 3–6-month intervals and onset of ex-
acerbations in bronchiectasis patients between March 2017 and October 2018. EBV DNA was detected with quantitative polymerase 
chain reaction.

Results. We collected 442 sputum samples from 108 bronchiectasis patients and 50 induced sputum samples from 50 healthy controls. 
When stable, bronchiectasis patients yielded higher detection rates of EBV DNA (48.1% vs 20.0%; P = .001), but not viral loads (mean log10 
load, 4.45 vs 4.76; P = .266), compared with controls; 64.9% of patients yielded consistent detection status between 2 consecutive stable 
visits. Neither detection rate (40.8% vs 48.1%; P = .393) nor load (mean log10 load, 4.34 vs 4.45; P = .580) differed between the onset of 
exacerbations and stable visits, nor between exacerbations and convalescence. Neither detection status nor viral loads correlated with bron-
chiectasis severity. EBV loads correlated negatively with sputum interleukin-1β (P = .002), CXC motif chemokine-8 (P = .008), and tumor 
necrosis factor–α levels (P = .005). Patients initially detected with, or repeatedly detected with, EBV DNA had significantly faster lung 
function decline and shorter time to next exacerbations (both P < .05) than those without. Detection of EBV DNA was unrelated to influ-
enza virus and opportunistic bacteria (all P > .05). The EBV strains detected in bronchiectasis patients were phylogenetically homologous.

Conclusions. Patients with detection of EBV DNA have a shorter time to bronchiectasis exacerbations. EBV may contribute to 
bronchiectasis progression.

Keywords.  airway inflammation; chronic airway disease; chronic viral infection; exacerbation; human herpes virus–4; lung 
function.

Bronchiectasis is a debilitating chronic airway inflammatory 
disease characterized by pathogen infections, chronic airway 
inflammation, and airway destruction, which provide the niche 
for bacterial, viral, and fungal infections [1–3]. Acute viral in-
fections are responsible for aggravating airway inflammation 
that frequently triggers exacerbations [4]. Consistent with 
findings in chronic obstructive pulmonary disease (COPD), 
CD8+ lymphocyte infiltrates the bronchiectatic airways [5, 6], 

suggesting that chronic viral infection correlates with chronic 
airway inflammation.

Epstein-Barr virus (EBV) is a ubiquitous virus associated 
with chronic infection of B-memory lymphocytes and airway 
epithelial cells [7, 8]. The lower respiratory tract is an important 
reservoir of EBV [8], which could be readily detected in COPD. 
The considerable detection rate of EBV deoxynecluotide acid 
(DNA) in COPD patients (46%–48%) [9], coupled with the link 
between chronic EBV infection and disease progression [9, 10], 
have hinted at the role of EBV in bronchiectatic airways where 
host–defense responses are defective.

We hypothesized that EBV predisposes to the inflammatory 
responses and progression in bronchiectasis. Our primary ob-
jectives were to elucidate the association between EBV and the 
severity, exacerbations, and progression of bronchiectasis. We 
also determined the changes in viral loads during exacerbations 
and risk factors for the detection of EBV DNA. Furthermore, we 
evaluated the phylogenetic homogeneity of the EBV strains in 
our bronchiectasis patient cohort. Our findings might indicate 
the roles of EBV in bronchiectasis and highlight prophylactic 
and therapeutic targets.
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METHODS

Study Design and Subjects

In this single-center prospective observational study, we en-
rolled symptomatic bronchiectasis patients (chronic cough, 
daily sputum production) from the First Affiliated Hospital 
of Guangzhou Medical University between March 2017 and 
October 2018. Eligible patients, aged 18–75 years, underwent 
chest high-resolution computed tomography (HRCT) within 
the previous 12  months. Bronchiectasis was diagnosed based 
on international guidelines [11]. Patients with active tubercu-
losis, traction bronchiectasis, COPD as the primary etiology of 
bronchiectasis, malignancy, and severe systemic diseases were 
excluded.

Healthy subjects included patients’ companions, medical 
staff, and those who underwent health check-up, had normal 
chest x-ray and spirometry, and had no respiratory symptoms, 
severe systemic diseases, or antibiotic use within 4 weeks.

The Ethics Committee of the First Affiliated Hospital of 
Guangzhou Medical University gave approval (medical ethics 
2012 [the 29th]). All participants provided written informed 
consent.

Procedures

We enrolled bronchiectasis patients who remained exacerbation-
free for >4 weeks. At initial visits, patients were asked for clinical 
history, exacerbation frequency, and concomitant medications. 
Bronchiectasis etiology, modified Reiff score, and spirometry 
were evaluated [12–14]. Disease severity was calculated with 2 
integrated metrics, including the Bronchiectasis Severity Index 
(BSI) [15] and E-FACED score [16]. Spontaneous sputum 
was collected for assays of EBV and other respiratory viruses 
(Supplementary Data), bacterial culture, and inflammatory bi-
omarker assays in bronchiectasis patients [17].

We routinely followed up patients every 3–6 months, during 
which patients contacted investigators in case of significant 
symptom worsening (within 2–5  days) and an exacerbation 
(AE) visit would be conducted within 48 hours. Following 
an international consensus, an AE was defined as continuous 
(≥48 hours) significant deterioration of 3 or more symptoms 
(increased cough frequency, sputum volume and/or consist-
ency, sputum purulence, breathlessness and/or exercise toler-
ance, fatigue and/or malaise, and hemoptysis) that required 
changes in treatment [18]. Spontaneous sputum was sampled 
at stable visits, at AE visit (day 1, before antibiotic administra-
tion) and on-treatment days (including days 4, 7, and 14), and 
postexacerbation stable visit (days 40–80) for a subset of AE 
events (collectively termed AE convalescence follow-up visits) 
[19]. The study design is illustrated in Figure 1.

Healthy subjects attended a single visit, during which his-
tory taking, 3% hypertonic saline sputum induction (in healthy 
subjects only), chest x-ray, and spirometry were performed.

Details of sputum collection (including quality control) are 
described in the Supplementary Data. We extracted viral nu-
cleic acids using the TaKaRa MiniBEST Viral RNA/DNA 
Extraction Kit (Takara Bio Inc., San Jose, USA) from sputum 
homogenized with 0.1% dithiothreitol. TaqMan real-time quan-
titative polymerase chain reaction (qPCR) was performed to 
detect 18 common respiratory viruses (including EBV) with 
the ABI Prism 7500 Real-time qPCR System (Thermo Fisher 
Scientific Inc., Waltham, USA). Viral detection kits were pur-
chased from Guangzhou HuYanSuo Medical Technology Co. 
Ltd. (Guangzhou, China). The cycle threshold of 40 was con-
sidered positive. Sputum samples with positive EBV testing re-
sults were chosen for the measurement of copy numbers. The 
target sequence of the gp58 gene with known concentration 
(serial dilutions), which was extracted from the plasmid vector, 
was used for performing the standard curve evaluation. The 
mean computed tomography value was transformed to the copy 
number according to the standard curve. For EBV, detection 
was defined as EBV DNA detected at any visit during follow-up, 
whereas repeated detection denoted EBV DNA detected on at 
least 2 occasions at least 3 months apart within 1 year, which 
was extrapolated from the definition of bacterial isolation or 
colonization [17].

Sputum was centrifuged (20 000g) at 4°C for 120 minutes to 
prepare for the sputum sol phase (supernatant). Sputum CXC 
motif chemokine–8 (CXCL-8), interleukin (IL)-1β, tumor ne-
crosis factor–alpha (TNF-α), and interferon-γ (IFN-γ) were 
detected with multiplex immunoassay kits (Biorad, Hercules, 
USA) [17].

Statistics Analysis

The detection rate of EBV DNA in sputum in Chinese people 
is unknown. Assuming a detection rate of 46% in stable bron-
chiectasis [9] and 16% in healthy subjects (pilot study with 18 
subjects), considering a dropout rate of 20%, we estimated that 
we needed to recruit 100 bronchiectasis patients and 50 healthy 
controls based on 2-sided significance of .05 and a power 
of 90%.

The EBV load was presented as copy numbers and was sub-
jected to logarithmic transformation. The EBV detection rate 
and loads were analyzed using the initial stable visit samples 
and samples during onset of AEs. Sputa collected at the initial 
visits and follow-up were included as “any stable” visit sam-
ples, whereas sputa collected during AE visits were included as 
“any AE” samples. Sputa collected during stable visits and onset 
of AEs from the same bronchiectasis patient were defined as 
“paired stable” and “paired AE” samples.

Data were presented as mean ± SD or median (interquartile 
range [IQR]) for continuous variables depending on the nor-
mality (assessed with the Kolmogorov-Smirnov test) and ana-
lyzed using independent and paired t tests or Mann-Whitney 
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U tests and Wilcoxon tests where appropriate. Counts (per-
centages) were presented for categorical variables and ana-
lyzed with the chi-square or Fisher exact test. We determined 

the correlation between the load of EBV and clinical param-
eters with Pearson’s correlation analysis. Changes in EBV load 
throughout the course of AE were analyzed with the Wilcoxon 
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* Bacterial culture
* qPCR: virus
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Figure 1. Flowchart of study participant recruitment and sampling schemes. The 18 sputum specimens that are underlined within the figure were collected during stable-state 
visits; hence, they were also included in the 198 stable samples of 91 bronchiectasis patients. Abbreviations: AE, acute exacerbation; qPCR, quantitative polymerase chain reaction.
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test and stratified by the presence of common cold (frequently 
caused by respiratory viruses). Generalized estimating equa-
tions (GEEs) with the logit link were used to explore the ef-
fects of EBV DNA detection on the odds of experiencing AEs 
compared with stable visits. A linear regression structure was 
used for EBV load comparison between AE visits and stable 
visits, taking into account the repeated observations from indi-
vidual participants. The trends of changes among the 3 groups 
(ie, lung function decline) were analyzed. Linear mixed-effect 
models were applied to compare lung function decline between 
patients detected and those not detected with EBV DNA and 
between patients with and without repeated detection, with the 
exacerbation frequency being treated as the covariate in the 
model. The risks of AEs during follow-up were compared with 
the Kaplan-Meier survival model with the Gehan-Breslow-
Wilcoxon test. The odds ratio (OR) of EBV DNA detection 
was estimated with logistic regression models, and data with 
P <  .20 were entered into multivariate analysis using a back-
ward selection algorithm. P <  .05 was considered statistically 
significant. We constructed the phylogenetic tree among 25 
bronchiectasis patients whose EBV was successfully sequenced 
based on the latent membrane protein–1 (LMP-1) sequences 
by using MEGA 7.0 (http://www.megasoftware.net/) and cal-
culated the amino acid similarity with BioEdit 7.0.1 (GenBank 
accession number: MK944375-944399). Statistical analyses 
were performed using SPSS 18.0 (SPSS Inc., Chicago, IL, USA) 
or Graphpad Prism, version 5.0 (Graphpad Inc., San Diego, 
CA, USA).

RESULTS

Subject Recruitment and Clinical Characteristics

Of 130 bronchiectasis patients screened, 108 completed the 
initial stable visits. Ninety-eight patients completed follow-up 
until October 2018, of whom 91 patients with >1 stable visit 
sample were included for EBV DNA detection analysis. Forty-
nine patients provided 68 AE samples, of whom 19 completed 
23 AE convalescence follow-up visits.

Overall, we collected a median (IQR) of 3 (3–5) sputum sam-
ples per patient (Figure 1). The mean age was 46.8 years, and 
60.2% were females among bronchiectasis patients. The median 
follow-up (IQR) was 13.0 (9.3–15.0) months. Baseline charac-
teristics of the AE cohort were similar to the whole bronchiec-
tasis patient cohort. Bronchiectasis patients tended to be older 
than controls. Bronchiectasis patients also had significantly 
lower body mass index, there were fewer current smokers, 
and they had poorer lung function compared with controls 
(Table 1).

The Detection Rate of EBV DNA and Viral Load

At initial stable visits, EBV DNA was detected more frequently 
in bronchiectasis than in controls (48.1% vs 20.0%; P =  .001). 

However, the detection rate did not differ between pooled stable 
and pooled AE samples (P = .810) or between paired stable and 
paired AE samples (P = .761).

The EBV loads did not differ significantly among the whole 
cohort, AE cohort, and controls even after adjustment for age 
(P = .393). Similar findings were found in both paired samples 
and pooled samples (Supplementary Figure 1). EBV DNA was 
detected more commonly in winter than in summer (39.0% vs 
61.5%; P  =  .036), whereas viral loads were comparable. EBV 
loads did not differ significantly among healthy controls, in-
haled steroid users, and nonusers (P = .458).

Furthermore, 36 (39.6%) patients yielded repeated detec-
tion of EBV DNA and tended to have higher EBV loads than 
those without (P = .073). Patients with EBV detected at stable 
visits had increased risks (OR, 21.33; 95% CI, 6.44–70.63) for 
repeated detection in subsequent visits.

EBV Detection Status Remained Consistent Over Time

For 91 patients with ≥2 stable visit samples, 64.9% yielded con-
sistent EBV detection status in 2 consecutive visits (24.2% re-
peatedly detected; 40.7% consistently negative). EBV detected 
at initial stable visits was prone to repeated detection (relative 
risk [RR], 2.94; 95% CI, 1.40–6.20). The RR for being consist-
ently EBV negative was 1.58 (95% CI, 1.17–2.13). Similar EBV 
transition patterns were found from the initial stable visit to the 
post-AE stable visit (Supplementary Table 2).

Among 59 patients with ≥3 stable visit samples, EBV DNA 
detection status remained unchanged in 40.0% during 3 con-
secutive stable visits (23.0% repeatedly detected; 17.0% con-
tinuously negative). EBV was detected at 2 subsequent visits in 
35.1% of patients with EBV detected at the initial stable visit, 
whereas 45.5% with EBV-negative sputum yielded negative 
findings at 2 subsequent visits (Supplementary Figure 2). The 
EBV load was constant during 3 (P = .268) and 4 consecutive 
stable visits (P = .610) (Supplementary Figure 3).

Association Between EBV and AEs

Detection of EBV DNA was not associated with the onset of AE 
(OR, 0.91; 95% CI, 0.54–1.54), based on the pooled stable visit and 
AE visit samples at symptom onset (within 2.0 [IQR, 2.0–3.3] days), 
which yielded no substantial difference in viral loads (P = .498).

Nineteen patients yielded 23 AE convalescence pairs of sam-
ples (120 sputum samples), with 6.0 (IQR, 5.0–6.0) samples 
per patient. The detection rates were 33.3%, 39.1%, 50%, and 
52.9% for pre–stable visit, onset of AE, day 14, and post-AE 
stable visit (median [IQR], 45 [40–54] days after day 1), re-
spectively. The corresponding mean log10 load of EBV was 5.08, 
4.29, 4.77, and 4.84, respectively. The viral loads on day 1 were 
significantly lower than those on day 4 (P  =  .011) and day 7 
(P  =  .002). The EBV detection rate and load varied insignifi-
cantly throughout the natural course of AE, irrespective of the 
presence of common cold (Figure 2).

http://www.megasoftware.net/
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa235#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa235#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa235#supplementary-data
http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa235#supplementary-data
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Association Between EBV and Bronchiectasis Severity

Next, we analyzed the association between EBV and disease 
severity in the whole cohort (n  =  108) for the initial stable 
visit samples. Higher HRCT scores (≥13 points) were associ-
ated with higher EBV loads (4.80 vs 4.21; P = .023) compared 
with lower HRCT scores (7–12 points). However, the detection 
rate of EBV DNA and viral load differed unremarkably when 
stratified by lung function impairment and disease severity, in-
cluding BSI and E-FACED scores. Repeated detection of EBV 
DNA was not associated with bronchiectasis severity (Figure 3).

Bacterial isolation and colonization (especially Pseudomonas 
aeruginosa) reportedly augment airway inflammation. One 
hundred seventy-three stable visit samples and 55 AE samples 
were available for sputum cytokine detection. EBV DNA de-
tected was not associated with higher levels of sputum IL-1β, 
CXCL-8, or IFN-γ in stable visits, except for TNF-α. Moreover, 

EBV DNA detection was not associated with heightened airway 
inflammation during AE. Interestingly, EBV loads correlated 
negatively with sputum IL-1β (r  =  –.33; P  =  .002), CXCL-8 
(r = –.30; P = .008), and TNF-α levels (r = –.31; P = .005), re-
gardless of stable visits or AE visits (Supplementary Figure 4).

EBV and Disease Progression

Patients followed up for >6 months (n = 91, only 9.3% had con-
comitant asthma) were included. Overall, the median frequency 
of AEs (IQR) was 1.5 (0–2.4) per patient-year. This figure was 0.9 
(0.2–2.3), 1.6 (0–3.0), and 1.6 (0.2–2.5), respectively (P = .587), for 
patients with consistently negative EBV, detection of EBV DNA, 
and repeated detection of EBV DNA. The mean forced expiratory 
volume in a 1-second (FEV1) decline was 49.3  mL/y among 70 
patients who completed spirometry. The mean FEV1 decline was 
19.9 mL/y, 28.7 mL/y, and 81.4 mL/y (age-adjusted P = .493) for 

Table 1. Demographic and Clinical Characteristics of Participants

Parameters Whole Cohort (n = 108)
AE Cohort  

(n = 49)
Healthy Subjects  
(n = 50) P Value

Age, median (IQR), y 49.5 (36.0–59.0) 50.0 (36.0–59.5) 41.5 (29.0–55.5) .165

Body mass index, mean (SD), kg/m2 20.4 (3.3) 19.6 (3.3) 22.9 (3.4) <.001

Sex, female, No. (%) 65 (60.2) 34 (69.5) 33 (66.0) .502

Smoking status, No. (%)

 Never-smokers 100 (92.6) 46 (93.9) 44 (88.0) <.001

 Ex-smokers 8 (7.4) 3 (6.1) 0 (0.0)  

 Current smokers 0 (0.0) 0 (0.0) 6 (12.0)  

FEV1 % predicted, median (IQR) 52.9  
 (41.0–70.1)

52.5  
 (40.0–69.2)

94.3  
(87.7–102.6)

<.001

Exacerbation frequency within 1 y, median (IQR) 2.0 (1.0–2.5) 2.0 (2.0–3.0)a NA NA

Bronchiectasis Severity Index 7 (4–9) 8 (4–10) NA NA

 Mild, No. (%) 32 (29.6) 14 (28.6)   

 Moderate, No. (%) 50 (46.3) 20 (40.8) NA NA

 Severe, No. (%) 26 (24.1) 15 (30.6)   

E-FACED score, median (IQR) 2.5 (1.0–4.0) 2.0 (1.0–4.0) NA NA

 Mild, No. (%) 73 (67.6) 33 (67.3)   

 Moderate, No. (%) 34 (31.5) 16 (32.7) NA NA

 Severe, No. (%) 1 (0.9) 0 (0)   

Etiology, No. (%)

 Postinfective 27 (25.0) 15 (30.6)   

 Idiopathic 26 (24.1) 11 (22.4) NA NA

 Post-tuberculous 17 (15.7) 7 (14.3)

 Primary immunodeficiency 11 (10.2) 5 (10.2)   

 Othersb 27 (25.0) 11 (22.4)   

Medications, No. (%)

 Inhaled corticosteroids 28 (25.9) 14 (28.6) NA NA

 Low-dose macrolides 13 (12.0) 8 (16.3)   

Vaccination status, No. (%)

 Influenza vaccination within the last 12 mo 7 (6.5) 5 (10.2) 0 (0.0) .383

 Pneumococcal vaccination within the last 5 y 4 (3.7) 3 (6.1) 0 (0.0) .723

Data were presented as mean (SD) or median (IQR) for continuous variables depending on normality (assessed with the Kolmogorov-Smirnov test) and analyzed using independent and 
paired t tests or Mann-Whitney U tests and Wilcoxon tests where appropriate. P values in the last column denote the tests that compare 3 groups of the whole cohort, AE cohort, and con-
trols. Patients with the primary diagnosis of COPD as the underlying etiology were excluded from this study. The high rates of never smokers are consistent with our previously published 
studies. No test for nontuberculous Mycobacteria was conducted during the study.

Abbreviations: AE, adverse event; COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory volume in 1 second; IQR, interquartile range.
aP < .05: AE cohort compared with those without an AE.
bOther known causes, including Kartagener’s syndrome (n = 8, 7.4%), asthma (n = 8, 7.4%), gastroesophageal reflux (n = 3, 2.8%), diffuse panbronchiolitis (n = 3, 2.8%), connective tissue 
disease (n = 2, 1.9%), cystic fibrosis transmembrane regulator–related disease (n = 1, 0.9%), congenital airway defects (n = 1, 0.9%).

http://academic.oup.com/ofid/article-lookup/doi/10.1093/ofid/ofaa235#supplementary-data
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patients with consistently negative EBV, detection of EBV DNA, 
and repeated detection of EBV DNA, respectively.

After taking into account the exacerbation frequency during 
longitudinal follow-up, the annual FEV1 decline differed signif-
icantly between patients with and without repeated detection 

(P  =  .038). However, FEV1 decline was comparable between 
patients detected and those not detected with EBV DNA 
(P = .240). There was no significant interaction between the ex-
acerbation frequency and the detection status of EBV (P = .529 
and .114, respectively) for the above comparisons.

EBV DNA detected at initial visits was associated with a sig-
nificantly shorter time to the next AE compared with negative 
EBV (median, 160 vs 230 days; P = .024), as was repeated de-
tection compared with no repeated detection (median, 139 vs 
227 days; P = .025). Meanwhile, FEV1 decline from baseline to 
follow-up was significantly faster in patients with detection and 
repeated detection of EBV DNA (Figure 4). EBV loads did not 
correlate with FEV1 decline (r = .066; P = .696) (Supplementary 
Figure 5).

Risk Factors Associated With EBV DNA Detection

Multivariate analysis (among 108 patients with initial stable 
visit samples) revealed that having greater daily sputum volume 
(OR, 2.03; 95% CI, 1.20–3.42), more bronchiectatic lobes (OR, 
1.35; 95% CI, 1.03–1.78), and treatment with long-acting mus-
carinic antagonists (OR, 4.16; 95% CI, 1.24–13.92) were risk fac-
tors for EBV DNA detection. Nonetheless, low-dose macrolides 
were protective for EBV DNA detection (OR, 0.19; 95% CI, 
0.05–0.77) (Supplementary Table 3). See the Supplementary 
Data regarding the independent variables finally included in 
the regression model. Gender, age, body mass index, detection 
of respiratory viruses, and bacterial infection or colonization 
were not associated with EBV DNA detection (Supplementary 
Table 4). P. aeruginosa infection was also unrelated to EBV loads 
(Supplementary Figure 6).

EBV Strains Were Phylogenetically Homologous

Finally, we sequenced EBV strains based on nucleic acid se-
quence of LMP-1, a canonical component of EBV. The EBV 
strains were highly homologous within our bronchiectasis 
patient cohort, with amino acid similarity of 75.4%–100%. 
Moreover, these EBV strains were homologous (similarity, 
74.5%–100%) compared with other EBV strains detected in 
Chinese patients (with diseases other than bronchiectasis) at 
regions outside Guangdong province (Supplementary Figure 7, 
Supplementary Table 5).

DISCUSSION

This is the first prospective study to explore the association be-
tween EBV and bronchiectasis. EBV DNA was readily detected 
in sputum and was repeatedly detected in some bronchiectasis 
patients. Patients with detection and repeated detection of EBV 
DNA yielded significantly shorter time to the next AE and 
greater lung function decline than patients without, suggesting 
that EBV might be associated with bronchiectasis progression.

EBV can be readily detected in blood in >90% of the world’s 
population [7, 20, 21]. Hence, serological assessment was not 
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conducted further herein. Compared with blood, EBV DNA 
detection in sputum would more directly reflect the pathogen-
esis of bronchiectasis because EBV mainly infects lymphocytes 

and epithelial cells. Importantly, in some bronchiectasis pa-
tients, EBV DNA could be detected in sputum but not in saliva 
or detected with a substantially higher load in sputum than in 
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saliva (Supplementary Table 1). Our observations and previous 
findings [9, 20] suggest that the high loads of EBV in sputum 
were not due to salivary contamination.

We have demonstrated a higher detection rate of EBV DNA 
(48.1%) but not viral loads (log10 load, 4.47) in bronchiectasis 
compared with healthy subjects. Compared with COPD pa-
tients, smokers without COPD yielded a substantially lower de-
tection rate but similar loads of EBV [9]. Similarly, EBV DNA 
was detected in the sputum of 46% of COPD patients (mean 
log10 load, 4.71) [9] and in the lung tissues of >60% of patients 
with idiopathic pulmonary fibrosis (IPF) [10]. EBV can either 
be eliminated in immunocompetent individuals or persist (la-
tent infections) owing to a delicate balance with host immunity 
[7, 22]. Patients with bronchiectasis, COPD, and IPF frequently 
have immune dysfunction, which provides a favorable environ-
ment for EBV [3, 23].

Detection of EBV was not associated with the onset of AE. 
Neither the detection rate of EBV DNA nor the viral load de-
creased significantly during AE. Overall, the EBV loads were 
constant despite a temporary nonsignificant reduction at AE 
onset. This was true when viewing the difference between 
stable-state and AE onset. Mechanisms underlying the greater 
PCR positivity at AE onset are unclear given the small sample 
size. Consistently, the log10 load was lower during AEs (from 
4.71 to 4.08) in COPD [9]. Moreover, the EBV load pro-
gressively recovered during convalescence and, around day 
4 postexacerbation, approached pre-AE stable visit levels. 
Hence, EBV was not eradicated from airways throughout AE. 
Interestingly, EBV load was negatively correlated with airway 
inflammation (possibly because of competition with other 
pathogenic microorganisms), partly explaining why EBV loads 
decreased during AE when inflammation was heightened.

Patients with detection and repeated detection of EBV DNA 
yielded faster lung function decline and a shorter time to the 
next AE. The precise mechanism remains unknown; however, 
the greater number of bronchiectatic lobes might have ac-
counted for this finding. EBV LMP-1 positivity was associated 
with more rapid disease progression in IPF [10, 24], possibly 
because EBV LMP-1 expression could elicit an altered inflam-
matory response and impairment of tissue repair that resulted 
in lung fibrosis [24].

We noted that there was a trade-off between the EBV loads 
and airway inflammatory responses. The precise mechanisms 
remain unclear, but the defective host defense and heightened 
airway inflammation as a consequence of airway surface secre-
tory IgA deficiency have been associated with latent EBV infec-
tion. Latent EBV infection has also been associated with CD4+ 
and CD8+ lymphocyte infiltration and airway remodeling [25].

Treatment with low-dose macrolides protected from, whereas 
inhaled corticosteroids predisposed to, EBV detection. Inhaled 
corticosteroids may attenuate airway inflammation, which may 
help partially elucidate the increased risk of EBV detection. 

Macrolides suppress inflammation by strengthening epithelial 
defense, reducing airway hypersecretion, and accelerating lym-
phocyte apoptosis [26]. Moreover, macrolides reportedly inhib-
ited the growth of EBV-transformed B lymphocytes, providing 
further hints on the protective effects of EBV in bronchiectasis 
[27]. Alternatively, patients with more prominent airway in-
flammation were less likely to have EBV detection, probably 
because of macrolide therapy. In fact, long-acting muscarinic 
antagonists reportedly increased the risk of EBV detection by 
attenuating airway inflammation [28].

Our phylogenetic analyses suggested that EBV was largely 
homologous among the bronchiectasis population, at least in 
the Chinese population. Our findings call for greater awareness 
toward the universal latent viral infection that drives bronchi-
ectasis progression.

Our findings are clinically relevant because EBV might 
drive the progression of bronchiectasis. Inclusion of EBV de-
tection in clinical assessment may help indicate host immu-
nity. Nevertheless, our study recruited patients from a single 
center. Comparison of EBV loads in spontaneous vs induced 
sputum is not ideal because shedding of epithelial cells differs 
between bronchiectasis and health. The EBV loads might also 
have been confounded by socioeconomic status, which was not 
thoroughly taken into account for adjustment. The duration 
of our study was relatively short, and hence an extended fol-
low-up investigation would be needed to fully unravel the asso-
ciation between EBV DNA detection and the clinical outcomes 
of bronchiectasis. Furthermore, no sputum lymphocyte count 
was conducted to provide further evidence of EBV infection. 
We cannot address why EBV detection status switched during 
follow-up, nor differentiate latent from active EBV infection. 
The EBV loads might have been affected by inhaled steroid use. 
It remains unclear if the higher EBV detection rates and viral 
loads were surrogates of epithelial cell turnover. Mechanistic 
studies revealing how EBV is acquired are needed.

In conclusion, the results of this study indicate that patients 
with detection of EBV DNA have a shorter time to bronchiec-
tasis exacerbations and that EBV may contribute to the progres-
sion of bronchiectasis.
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