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Abstract: Concentrated metal-in-polymer suspensions (55 vol.% and 60 vol.%) of aluminum powder
dispersed in low molecular weight polyethylene glycol) demonstrate elastoplastic properties under
compression and shear. The rheological behavior of concentrated suspensions was studied in a
rotational rheometer with uniaxial compression (squeezing), as well as shearing superimposed
on compression. At a high metal concentration, the elasticity of the material strongly increases
under strain, compared with the plasticity. The elastic compression modulus increases with the
growth of normal stress. Changes in the shear modulus depend on both normal and shear stresses.
At a low compression force, the shear modulus is only slightly dependent on the shear stress.
However, high compression stress leads to a decrease in the shear modulus by several orders with the
growth of the shear stress. The decrease in the modulus seems to be rather unusual for compacted
matter. This phenomenon could be explained by the rearrangement of the specific organization of
the suspension under compression, leading to the creation of inhomogeneous structures and their
displacement at flow, accompanied by wall slip. The obtained set of rheological characteristics of
highly loaded metal-in-polymer suspensions is the basis for understanding the behavior of such
systems in the powder injection molding process.
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1. Introduction

Suspensions are permanent and important objects for rheological studies. A diverse range of
suspensions can be seen in nature, applied to various fields for technical and everyday use, and as a
subject of scientific interest for exploring the fundamental relationships between the structure and
properties of the matter. This is a topic of numerous research papers and comprehensive reviews,
covering various aspects of the rheology of non-Brownian suspensions, including rather concentrated
compositions [1,2].

In our previous study, we considered the rheological properties of similar suspensions covering
the whole concentration range in shearing [3].

The previous rheology analysis of concentrated suspensions showed concentrations close to
50–55% to be the intermediate range corresponding to the transition from materials which can flow
(liquids) to materials which cannot flow (solids), though the latter can demonstrate irreversible
deformations. The concentration range between 55% and 65% is especially important for several
applications of concentrated suspensions because a manufacturer desires to have as high a concentration
of a solid component as possible, while maintaining the material integrity and plasticity.

Here, it is worth mentioning that the term “plasticity” is frequently used in the rheological literature
with two different meanings. The study of complex, multi-component media such as many colloid
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liquids, emulsions, suspensions, filled polymer melts, etc., has shown the existence of a transition
from elastic deformation in a solid-like state to irreversible deformations of flow happening at some
threshold of stress, which corresponds to the breakup of the rigid or soft material structure [4]. In this
case, the term “plasticity” means the possibility of flow, i.e., the unlimited growth of deformations while
the constant stress acts. However, another case is possible. A solid body is elastic, but at some levels of
stress, part of its deformation becomes irreversible, yet restricted by the limited level dependent on
stress. So, deformations exhibit limited growth at applied levels of stress (opposite to flow) and these
ultimately irreversible (“plastic”) deformations correspond to the given stress. The second type of
plasticity is observed in highly concentrated suspensions and only this definition of plasticity will be
considered below.

There is an issue concerning the behavior of concentrated suspensions under various geometries
of deformation. A traditional method of testing concentrated suspensions is uniaxial compression,
where a sample is placed between two parallel plates and compressed so the material undergoes
squeezing. The flow dynamics of a Newtonian liquid in this geometry, as well as for viscoplastic
liquids, meet the classical von Mises condition of the solid-to-liquid transition, (e.g., as considered
by Sherwood and Durban [5] and Adams et al. [6]). A similar approach was proposed by Roussel
and Lanos [7]. Indeed, using the von Mises criterion is a rather standard approach when dealing
with solid-to-plastic transitions. However, there are two limitations. First, this approach is related
to linear elastic materials. Second, as mentioned above, the flow is usually meant to occur under
plasticity. In this work, we are faced with a more general rheological case—the non-linear behavior of
materials under study and limited irreversible deformations. There is increasing interest, not just in
engineering materials, but also for multi-component suspensions that have various areas of application,
including materials, compositions for the modern technology of power molding, etc.

The principal interest in formulating the basic equations and in analyzing the experimental results
consists of understanding the conditions of the appearance of wall slip. General discussions concerning
causes and consequences of wall slip were provided by Malkin and Patlazhan [8] and considered by
Cloitre and Bonnecaze [9], and He at al. [10] directly related this to highly concentrated suspensions,
which are the focus of the current study.

A special field for analyzing the rheology of moderately concentrated suspensions is high
shear rates, which leads to an increase in the viscosity up to the loss of fluidity (jamming) or the
jump-like mechanical glass transition (continuous or discontinuous shear thickening) [11–19]. However,
when discussing these concentrated suspensions, it is assumed that a medium retains its integrity in
all cases.

A rather interesting phenomenon observed in experiments with concentrated dispersions is the
formation of separate clusters, which can be treated as relatively regular mesoscopic domains [20,21].
Such structure elements move relative to each other as a whole. In these conditions, the deformation
becomes macro-inhomogeneous and localized and this results in shear banding, which has also
been observed in the squeezing flow of entangled polymer melts [22]. Similarly, large-scale structure
anisotropy in the deformation of concentrated gels has been observed [23]. The inevitable appearance of
structure anisotropy in the deformation of granular media was proven by Alonso Marroquín et al. [24]
and the heterogeneous deformation in concentrated suspensions was also described by Kawabata et
al. [25]. Such heterogeneity of the deformations is evidently inherent for all multicomponent materials,
including not only rigid but also soft matter, e.g., concentrated emulsions [26]. Computer modeling
confirmed that structure anisotropy is the result of squeezing flow [27].

Inhomogeneity in the deformation of concentrated suspensions is analogous to the displacement
of granular media [28,29]. Therefore, the following general conclusion concerning the mechanism of
deformation of any multi-component materials should be accepted: ‘Shear localization is a generic
feature of flows in yield stress fluids and soft glassy materials’ [30]. It is then necessary to agree with
the next maxim: ‘A complex fluid exhibits unexpected heterogeneous flow’ [31]. This fact makes it
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difficult to study the rheological properties of concentrated suspensions but does not preclude the
need for a quantitative study of the squeezing of highly concentrated suspensions.

The important component of the rheological properties of different fluids is the elasticity or elastic
recoil, superimposed on their irreversible deformations. A lot of fundamental studies on the elasticity
of polymer melts and solutions have been published from the early days of rheology. It is necessary
to mention the classical works of Weissenberg, including the famous Weissenberg effect. In addition,
later publications demonstrated elasticity in shear and elongation [32–39] and generalized it in the
classical monograph of Lodge [40]. However, all these works belong to the field of polymer rheology
and it is difficult to find studies on suspension elasticity. Meanwhile, elastic deformations are rather
important for estimating the technological properties of concentrated suspension and that is why they
will be considered within this study.

Thus, in studying the rheological behavior of concentrated non-colloidal suspensions, it is of
interest to elucidate how squeezing affects the development of elastic and plastic shear deformations
in concentrated suspensions. This work is an attempt to clear up these questions for the 55 and 60
vol.% concentrations of suspensions, which are of the general rheological interest, as was discussed
above, as well as of great technological interest, in particular for the powder injection molding (PIM)
of feedstocks.

2. Materials and Methods

The main materials of this study were 55% and 60% suspensions of aluminum (Al) powder
dispersed in the low molecular weight polyethylene glycol (PEG) with a viscosity of 0.11 Pa*s at 25 ◦C.
The average size of Al particles was 24 mkm and its density was 2700 kg m−3. Suspensions were
prepared by mechanically mixing Al powder with PEG. All operations were done manually due to the
high viscosity of the mixture.

A microphotograph of a sample of the typical 60% suspension is shown in Figure 1.
Particle distribution is seen to be generally homogeneous.
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All rheological experiments were performed on a RS-600 (Thermo Haake, Karlsruhe, Germany)
rheometer at 25 ± 1 ◦C. Two versions of operating units were used: a plate–plate pair with smooth
surfaces, with the radius R = 20 mm (the lower plate was made of steel and the disposable upper plate
was made of Al) and a plate–plate pair with rough surfaces. The gap between plates was 2 mm and
the area of contact was 1.26 × 10−3 m2.

The shear experiments were carried out at the given shear stress mode in the range of 1000–7000 Pa.
Then, the development of shear deformation over time followed. The main task of these experiments
was to clear up the role of compression on the rheological behavior of concentrated suspensions
at shear.

The compression (squeezing) experiments were carried out with the same initial distance between
plates. The measured value was the gap between plates after applying a normal force, which varied in
the range corresponding to the normal stresses, σE, from 4–25 kPa.

The stationary degree of compression was reached very fast and its value was a function of
the applied stress. No further squeezing (flow) after reaching this stationary degree of compression
took place. Then, the applied force was reduced to the minimal value of 8 Pa and the elastic recoil
was measured. The difference between the initial gap and the gap after elastic recoil is a fraction of
irreversible (plastic) deformation.

In addition to the rheological behavior under pure compression, we examined the behavior of
compressed samples (maintaining a constant normal force) under shearing. The duration of shear
loading was 120 s. The same time regime was used for elastic recoil in shearing. The latter allowed us
to calculate the shear elastic modulus.

3. Results and Discussion

Let us consider the deformation under the compression of concentrated suspensions and changes
in compression and shear modulus. The total deformation of the materials under compression ε,
consisting of elastic εe and plastic parts is shown in Figure 2.
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Figure 2. Total deformation ε (black marks) and its elastic part εe (red marks) observed under
compression for 55% (a) and 60% (b) suspensions.

The plastic deformation under compression is much higher than the elastic one, although the
elasticity increases in the transition from 55% to 60% suspension, thus the plasticity is suppressed.
This is evident from the analysis of Figure 3, where the dependence of the ratio of elastic to plastic
strain under squeezing force is plotted, reflecting the transition from the viscoelastic to the elastoplastic
rheological state. As shown in our previous paper [3], 50% is the threshold concentration for the
transition from viscoplastic to elastoplastic behavior for the composition under study.
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Figure 3. Relationship between elastic εe and plastic εpl components of the total deformation
during compression.

This transition is reflected in the value of the elastic modulus under compression (Figure 4).
The non-linear behavior (changes in the modulus) of the material is supposed to be related to the
influence of compression on the suspension structure. Indeed, under normal compression, the rigid
particles get closer to each other and the polymer layers between them become thinner. Therefore,
the material structure changes and this might lead to the rise of an effective compression modulus.
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Figure 4. Elastic compression modulus vs. normal stress.

In contrast, the behavior of the shear modulus under compression appears quite different.
The results of measuring the shear modulus G for a sample that is simultaneously loaded by the
normal force are shown in Figure 5, demonstrating the dependencies of the elastic modulus at different
shear stresses G(σE) on the compression stress, σ. As seen, the apparent shear modulus decreases with
increasing normal stresses.
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It is worth noting that the real shear stress should be estimated while taking into account the
action of normal force, which also contributes to the shear stress in the tangential direction. As known,
the maximal value of the shear stress related to the normal stress is σmax = σE/2. The corrected total
value of the shear modulus Gcor is

Gcor =
σ+ σE/2

γe
(1)

where γe is the elastic shear deformation.
The results of this correction are shown in Figure 6. The characteristics of the dependencies in

Figures 5 and 6 are similar.
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One can see some differences in the behavior of the 55% and 60% suspensions. Indeed, the G
values in the former case (to a certain degree) reach a plateau, while in the latter case, they continuously
grow. This can be explained by the higher plasticity of the 55% suspensions, where limited possibilities
for particle displacement remain. Close packing in the 60% suspensions creates a much more rigid
structure, approaching the limit of the closest arrangement. Then suspension deformation can take
place via the compression of the structure as a whole.

To compare the data obtained under shear and compression, let us consider the classical relationship
between the Young’s modulus E and the shear modulus G for solid homogenous materials. The
classical theory for solid polymers provides the following relationship [41]:

E = 2(1 + µ)G (2)

where µ is the Poisson coefficient, which cannot exceed 0.5 for polymers.
According to our experimental results, at the limit of low stress E � 5 ∗ 105Pa (Figure 4),

while G ≈ 1 ∗ 103Pa and G ≈ 4 ∗ 104Pa for 55% and 60% suspensions, respectively (Figure 6). Therefore,
linear Equation (2) does not work for both suspensions. It may, however, be more reasonable to
suppose that the measured elastic modulus is actually close to the modulus of the volume (compression)



Polymers 2020, 12, 1038 7 of 10

deformations B. If one considers not the Young modulus, E, but the modulus of compressibility (or the
modulus of hydrostatic compression, B), then the relationship between B and G in the linear theory of
elasticity is expressed as [41]:

B =
2(1 + µ)

3(1− 2µ)
G (3)

If it is considered that µ � 0.45 for the 55% suspension, then the ratio B/G � 10 correlates well
with the experimental data for this material. The value of the Poisson coefficient is even higher and
closer to 0.5 for the more plastic 60% suspension, which explains the higher value of the B/G ratio for
this object.

A rather interesting effect of a sharp decrease (up to several decimal orders) in the shear modulus
as a function of the shear stress at the pressure growth (Figure 7 reconstructed from Figure 6) has
already been mentioned above. This does not happen at low compression, where the shear modulus
only slightly depends on the shear stress. This effect is definitely related to the rearrangement
of the spatial distribution of hard particles under compression. The phenomenon of the particle
boundary mobility was considered by O’Brien and Foiles [42], who related its origin to temperature.
The stress-driven mobility leading to the specific rearrangement of the space particle distribution
should be a stronger factor.
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The noticeable decrease in the shear modulus with shear stress growth (at a constant normal
pressure) is a rather interesting phenomenon. To the best of our knowledge, this effect has not been
described anywhere before. The decrease in the modulus seems quite unusual for dense suspensions.
This effect can possibly be understood if it is assumed that the pressure leads to a heterogeneous mode
of deformation, as was observed in numerous previous studies [28–31]. Thus, we may explain such a
phenomenon by the rupture of weak cohesive bonds with the subsequent spurt of rather large blocks
containing solid particles.

The experimental data show that the common peculiarity of the highly concentrated suspension
is the superposition of elastic and plastic deformations. The latter is understood as irreversible (but is
restricted in opposition to the flow) displacement under the imposition of constant stress. The restriction
of deformations does not allow for following (irreversible deformations) and this is equivalent to local
jamming. The latter is a well-known effect of highly concentrated suspensions [43–45].

The experimental data presented in this work, characterize the rheological behavior of highly
concentrated suspensions. The general rheological equation for concentrated suspensions can be
written as:

D = Del(σE, σ) + Dpl(σE, σ) (4)

where D is the tensor of total deformation, Del and Dpl are its elastic and plastic components, respectively,
and both depend on the normal σE and shear σ component of the stress tensor.

The form of these dependences depends on the concrete material.
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4. Conclusions

Concentrated suspensions with solid phase contents of 55 and 60 vol.% are elastoplastic media
that possess dominating plasticity. The latter is understood as the ability to undergo irreversible
deformation under shearing and compression, which (in opposition to flow) is limited, and the value
depends on the stress. Compression does not lead to squeezing flow, but does promote limited plastic
deformations due to the local jamming. The shear modulus of compressed samples increases with
the growth of normal stress. The comparison of shear and elastic moduli measured, respectively,
in shearing and uniaxial compression showed that the elastic modulus is closer to the bulk modulus
than the Young’s modulus.
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6. Adams, M.J.; Aydin, İ.; Briscoe, B.J.; Sinha, S.K. A finite element analysis of the squeeze flow of an

elasto-viscoplastic paste material. J. Non Newton. Fluid Mech. 1997, 71, 41–57. [CrossRef]
7. Roussel, N.; Lanos, C. Plastic Fluid Flow Parameters Identification Using a Simple Squeezing Test. Appl. Rheol.

2003, 13, 132–141. [CrossRef]
8. Malkin, A.Y.; Patlazhan, S.A. Wall slip for complex liquids—Phenomenon and its causes. Adv. Colloid Interf.

Sci. 2018, 257, 42–57. [CrossRef]
9. Cloitre, M.; Bonnecaze, R.T. A review on wall slip in high solid dispersions. Rheol. Acta 2017, 56, 283–305.

[CrossRef]
10. He, J.; Lee, S.S.; Kalyon, D.M. Shear viscosity and wall slip behavior of dense suspensions of polydisperse

particles. J. Rheol. 2018, 63, 19–32. [CrossRef]
11. Wagner, N.J.; Brady, J.F. Shear thickening in colloidal dispersions. Phys. Today 2009, 62, 27–32. [CrossRef]
12. Cwalina, C.D.; Wagner, N.J. Material properties of the shear-thickened state in concentrated near hard-sphere

colloidal dispersions. J. Rheol. 2014, 58, 949–967. [CrossRef]
13. Seto, R.; Mari, R.; Morris, J.F.; Denn, M.M. Discontinuous Shear Thickening of Frictional Hard-Sphere

Suspensions. Phys. Rev. Lett. 2013, 111, 218301. [CrossRef] [PubMed]
14. Mutch, K.J.; Laurati, M.; Amann, C.P.; Fuchs, M.; Egelhaaf, S.U. Time-dependent flow in arrested

states—Transient behaviour. Eur. Phys. J. Spec. Top. 2013, 222, 2803–2817. [CrossRef]
15. Brown, E.; Jaeger, H.M. Dynamic Jamming Point for Shear Thickening Suspensions. Phys. Rev. Lett. 2009,

103, 086001. [CrossRef]
16. Denn, M.M.; Morris, J.F. Rheology of Non-Brownian Suspensions. Annu. Rev. Chem. Biomol. Eng. 2014, 5,

203–228. [CrossRef]
17. Malkin, A.Y.; Kulichikhin, V.G. Shear thickening and dynamic glass transition of concentrated suspensions.

State of the problem. Colloid J. 2016, 78, 1–8. [CrossRef]
18. Hsiao, L.C.; Jamali, S.; Glynos, E.; Green, P.F.; Larson, R.G.; Solomon, M.J. Rheological State Diagrams for

Rough Colloids in Shear Flow. Phys. Rev. Lett. 2017, 119, 158001. [CrossRef]

http://dx.doi.org/10.1017/jfm.2018.548
http://dx.doi.org/10.1122/1.5085363
http://dx.doi.org/10.1122/1.5115558
http://dx.doi.org/10.1007/s00397-016-0963-2
http://dx.doi.org/10.1016/0377-0257(95)01395-4
http://dx.doi.org/10.1016/S0377-0257(96)01546-7
http://dx.doi.org/10.1515/arh-2003-0009
http://dx.doi.org/10.1016/j.cis.2018.05.008
http://dx.doi.org/10.1007/s00397-017-1002-7
http://dx.doi.org/10.1122/1.5053702
http://dx.doi.org/10.1063/1.3248476
http://dx.doi.org/10.1122/1.4876935
http://dx.doi.org/10.1103/PhysRevLett.111.218301
http://www.ncbi.nlm.nih.gov/pubmed/24313532
http://dx.doi.org/10.1140/epjst/e2013-02059-x
http://dx.doi.org/10.1103/PhysRevLett.103.086001
http://dx.doi.org/10.1146/annurev-chembioeng-060713-040221
http://dx.doi.org/10.1134/S1061933X16010105
http://dx.doi.org/10.1103/PhysRevLett.119.158001


Polymers 2020, 12, 1038 9 of 10

19. Singh, A.; Mari, R.; Denn, M.M.; Morris, J.F. A constitutive model for simple shear of dense frictional
suspensions. J. Rheol. 2018, 62, 457–468. [CrossRef]

20. Zmievski, V.; Grmela, M.; Bousmina, M.; Dagréou, S. Nonlinear microstructure and rheology of semidilute
colloidal suspensions of structureless particles. Phys. Rev. E 2005, 71, 051503. [CrossRef]

21. Boromand, A.; Jamali, S.; Grove, B.; Maia, J.M. A generalized frictional and hydrodynamic model of the
dynamics and structure of dense colloidal suspensions. J. Rheol. 2018, 62, 905–918. [CrossRef]

22. Li, X.; Wang, S.-Q. Strain localization during squeeze of an entangled polymer melt under constant force.
J. Rheol. 2018, 62, 491–499. [CrossRef]

23. Varga, Z.; Swan, J.W. Large scale anisotropies in sheared colloidal gels. J. Rheol. 2018, 62, 405–418. [CrossRef]
24. Alonso-Marroquín, F.; Luding, S.; Herrmann, H.J.; Vardoulakis, I. Role of anisotropy in the elastoplastic

response of a polygonal packing. Phys. Rev. E 2005, 71, 051304. [CrossRef] [PubMed]
25. Kawabata, H.; Nishiura, D.; Sakaguchi, H.; Tatsumi, Y. Self-organized domain microstructures in a plate-like

particle suspension subjected to rapid simple shear. Rheol. Acta 2013, 52, 1–21. [CrossRef]
26. Montesi, A.; Peña, A.A.; Pasquali, M. Vorticity Alignment and Negative Normal Stresses in Sheared Attractive

Emulsions. Phys. Rev. Lett. 2004, 92, 058303. [CrossRef]
27. Sommer, D.E.; Favaloro, A.J.; Pipes, R.B. Coupling anisotropic viscosity and fiber orientation in applications

to squeeze flow. J. Rheol. 2018, 62, 669–679. [CrossRef]
28. De Cagny, H.; Fall, A.; Denn, M.M.; Bonn, D. Local rheology of suspensions and dry granular materials.

J. Rheol. 2015, 59, 957–969. [CrossRef]
29. Fall, A.; Ovarlez, G.; Hautemayou, D.; Mézière, C.; Roux, J.-N.; Chevoir, F. Dry granular flows: Rheological

measurements of the µ(I)-rheology. J. Rheol. 2015, 59, 1065–1080. [CrossRef]
30. Møller, P.C.F.; Rodts, S.; Michels, M.A.J.; Bonn, D. Shear banding and yield stress in soft glassy materials.

Phys. Rev. E 2008, 77, 041507. [CrossRef]
31. Miller, J. A complex fluid exhibits unexpected heterogeneous flow. Phys. Today 2010, 63, 18. [CrossRef]
32. Laun, H.M.; Münstedt, H. Elongational behaviour of a low density polyethylene melt. Rheol. Acta 1978, 17,

415–425. [CrossRef]
33. Laun, H.M. Prediction of Elastic Strains of Polymer Melts in Shear and Elongation. J. Rheol. 1986, 30, 459–501.

[CrossRef]
34. Khan, S.A.; Prud’homme, R.K.; Larson, R.G. Comparison of the rheology of polymer melts in shear, and biaxial

and uniaxial extensions. Rheol. Acta 1987, 26, 144–151. [CrossRef]
35. Gabriel, C.; Münstedt, H. Creep recovery behavior of metallocene linear low-density polyethylenes. Rheol. Acta

1999, 38, 393–403. [CrossRef]
36. Wolff, F.; Resch, J.A.; Kaschta, J.; Münstedt, H. Comparison of viscous and elastic properties of polyolefin

melts in shear and elongation. Rheol. Acta 2009, 49, 95. [CrossRef]
37. Patham, B.; Jayaraman, K. Creep recovery of random ethylene-octene copolymer melts with varying

comonomer content. J. Rheol. 2005, 49, 989–999. [CrossRef]
38. Resch, J.A.; Stadler, F.J.; Kaschta, J.; Münstedt, H. Temperature Dependence of the Linear Steady-State

Shear Compliance of Linear and Long-Chain Branched Polyethylenes. Macromolecules 2009, 42, 5676–5683.
[CrossRef]

39. Rolón-Garrido, V.H.; Resch, J.A.; Wolff, F.; Kaschta, J.; Münstedt, H.; Wagner, M.H. Prediction of steady-state
viscous and elastic properties of polyolefin melts in shear and elongation. Rheol. Acta 2011, 50, 645–653.
[CrossRef]

40. Lodge, A.S. Elastic Liquids; Academic Press: New York, NY, USA, 1964.
41. Malkin, A.Y.; Isayev, A. Rheology: Conceptions, Methods, and Applications; ChemTec Publishing: Toronto, ON,

Canada, 2017.
42. O’Brien, C.J.; Foiles, S.M. Exploration of the mechanisms of temperature-dependent grain boundary mobility:

Search for the common origin of ultrafast grain boundary motion. J. Mater. Sci. 2016, 51, 6607–6623.
[CrossRef]

43. Fall, A.; Bertrand, F.; Hautemayou, D.; Mezière, C.; Moucheront, P.; Lemaître, A.; Ovarlez, G. Macroscopic
Discontinuous Shear Thickening versus Local Shear Jamming in Cornstarch. Phys. Rev. Lett. 2015, 114,
098301. [CrossRef] [PubMed]

http://dx.doi.org/10.1122/1.4999237
http://dx.doi.org/10.1103/PhysRevE.71.051503
http://dx.doi.org/10.1122/1.5006937
http://dx.doi.org/10.1122/1.5001526
http://dx.doi.org/10.1122/1.5003364
http://dx.doi.org/10.1103/PhysRevE.71.051304
http://www.ncbi.nlm.nih.gov/pubmed/16089525
http://dx.doi.org/10.1007/s00397-012-0657-3
http://dx.doi.org/10.1103/PhysRevLett.92.058303
http://dx.doi.org/10.1122/1.5013098
http://dx.doi.org/10.1122/1.4919970
http://dx.doi.org/10.1122/1.4922653
http://dx.doi.org/10.1103/PhysRevE.77.041507
http://dx.doi.org/10.1063/1.3463618
http://dx.doi.org/10.1007/BF01525957
http://dx.doi.org/10.1122/1.549855
http://dx.doi.org/10.1007/BF01331972
http://dx.doi.org/10.1007/s003970050190
http://dx.doi.org/10.1007/s00397-009-0396-2
http://dx.doi.org/10.1122/1.2008296
http://dx.doi.org/10.1021/ma9008719
http://dx.doi.org/10.1007/s00397-011-0546-1
http://dx.doi.org/10.1007/s10853-016-9944-1
http://dx.doi.org/10.1103/PhysRevLett.114.098301
http://www.ncbi.nlm.nih.gov/pubmed/25793857


Polymers 2020, 12, 1038 10 of 10

44. Saw, S.; Grob, M.; Zippelius, A.; Heussinger, C. Unsteady flow, clusters, and bands in a model shear-thickening
fluid. Phys. Rev. E 2020, 101, 012602. [CrossRef] [PubMed]

45. Rathee, V.; Blair, D.L.; Urbach, J.S. Localized transient jamming in discontinuous shear thickening. J. Rheol.
2020, 64, 299–308. [CrossRef]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevE.101.012602
http://www.ncbi.nlm.nih.gov/pubmed/32069549
http://dx.doi.org/10.1122/1.5145111
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Conclusions 
	References

