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HyperFoods: Machine intelligent 
mapping of cancer-beating 
molecules in foods
Kirill Veselkov   1, Guadalupe Gonzalez1,3, Shahad Aljifri1, Dieter Galea1, Reza Mirnezami1, 
Jozef Youssef2, Michael Bronstein3 & Ivan Laponogov1

Recent data indicate that up-to 30–40% of cancers can be prevented by dietary and lifestyle measures 
alone. Herein, we introduce a unique network-based machine learning platform to identify putative 
food-based cancer-beating molecules. These have been identified through their molecular biological 
network commonality with clinically approved anti-cancer therapies. A machine-learning algorithm 
of random walks on graphs (operating within the supercomputing DreamLab platform) was used to 
simulate drug actions on human interactome networks to obtain genome-wide activity profiles of 
1962 approved drugs (199 of which were classified as “anti-cancer” with their primary indications). 
A supervised approach was employed to predict cancer-beating molecules using these ‘learned’ 
interactome activity profiles. The validated model performance predicted anti-cancer therapeutics 
with classification accuracy of 84–90%. A comprehensive database of 7962 bioactive molecules within 
foods was fed into the model, which predicted 110 cancer-beating molecules (defined by anti-cancer 
drug likeness threshold of >70%) with expected capacity comparable to clinically approved anti-cancer 
drugs from a variety of chemical classes including flavonoids, terpenoids, and polyphenols. This in turn 
was used to construct a ‘food map’ with anti-cancer potential of each ingredient defined by the number 
of cancer-beating molecules found therein. Our analysis underpins the design of next-generation cancer 
preventative and therapeutic nutrition strategies.

With rapidly ageing populations, the world is experiencing an unsustainable healthcare and economic burden 
from chronic diseases such as cancer, cardiovascular, metabolic and neurodegenerative disorders1,2. Diet and 
nutritional factors play an essential role in the prevention of these diseases and significantly influence disease 
outcome in patients during and after therapy3,4. According to most recent data, up to 30–40% of all cancers can 
be prevented by dietary and lifestyle modifications alone5,6. Plant-based foods (i.e. derived from fruits and vege-
tables) are particularly rich in cancer-beating molecules (CBM) such as polyphenols, flavonoids, terpenoids and 
botanical polysaccharides7. Evidence from experimental studies has implicated multiple mechanisms of action 
by which dietary agents contribute to the prevention or treatment of various cancers8,9. These include regulating 
the activity of inflammatory mediators and growth factors, suppressing cancer cell survival, proliferation, and 
invasion, as well as angiogenesis and metastasis10.

Being able to first identify food ingredients and later design “hyperfoods” that are richest in CBMs and hav-
ing health promoting or therapeutic influence, represents an unprecedented opportunity to reduce healthcare 
costs and potentially enhance health outcomes for chronic diseases such as cancer11. Since in the modern era of 
designer gastronomy the consumers are increasingly discerning and demanding, the design of hyperfoods is a 
multi-faceted optimization problem taking into account not only pro-health benefits, but also considering var-
ious aesthetic (e.g. color, texture) and sensory (e.g. taste, mouthfeel) characteristics. We argue that at least some 
parts of such design could be performed computationally, by exploiting artificial intelligence (AI) technology. As 
outlined in our recently published 10-point manifesto (‘The Future of Computing and Food’), this will require a 
collaborative approach of multiple stakeholders including food producers, chefs, designers, engineers, data scien-
tists, sensory scientists and clinicians12.
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The human diet contains thousands of bioactive molecules which modulate a variety of metabolic and sig-
naling processes, drug actions, and interactions with gut microbiota in health and disease13,14. Investigating the 
influence of a single biochemical food constituent takes months to years of experimental research. Moreover, 
current approaches to identify active compounds within food that influence health are incapable of taking into 
consideration the myriad of complicating factors such as where the food comes from, how it has been cultivated, 
stored, processed and prepared, not to mention cooking parameters and the effect of ingredient combinations. 
Given the vast molecular space, predictive identification of bioactive compounds for tailored nutritional strat-
egies using current experimental research methods is therefore not feasible. However, recent advances in AI 
technologies coupled with the explosive growth of large-scale multi-source (“-omics”) data on food, drugs and 
diseases offers a unique opportunity to identify molecules within foods to potentially prevent and/or fight disease 
phenotypes15,16. These studies have identified molecules within foods based on either structural similarity or the 
similarity of individual gene-encoding protein targets to those of approved therapeutics. However, even minor 
change in the chemical structure of a molecule can lead to drastically different biological outcomes, and complex 
diseases, such as cancer, cannot be explained by deregulated activity of individual genes/proteins. Several recent 
computational studies have attempted to leverage “-omics” data to extract insights on positive and/or adverse 
interactions between foods, drugs and disease. Zheng et al. used publicly available gene expression and interac-
tome data of cell cultures and animal models to identify drugs and diets anti-correlated with disease gene expres-
sion phenotypes17. Due to the small size of existing diet-induced gene expression datasets, this correlation-driven 
analysis was restricted to a very limited number of foods. Nevertheless, intriguing diet-disease associations have 
been identified through this approach. A combined chemo-informatics and text mining strategy was applied to 
several million PubMed abstracts to define health-promoting or detrimental associations between the molecular 
constituents of plant-based foods and disease phenotypes16,18. This strategy was subsequently extended to identify 
food components interfering with drug metabolizing enzymes (“pharmacokinetics”) or interacting with drug 
targets (“pharmacodynamics”)17. Although of great promise, the automated relation extraction systems based 
on natural language processing (NLP) have thus far been tested on a very small subset (<200) of somewhat 
subjectively annotated abstracts. As we highlighted recently, their application at the scale of multi-million article 
databases such as PubMed warrants extensive validation of the rate of false discoveries and extraction of support-
ing evidence to build trust in the computer-derived associations19. Nevertheless, these developments have been 
instrumental to the compilation of “-omics” food databases and public repositories such as FooDB, FlavorDB and 
NutriChem15,16,18.

Complex diseases such as cancer cannot be explained by single gene defects but rather involves a breakdown of 
various molecular functions mediated through a set of molecular interactions (“networks”)20–22. The diversity of 
the resulting cancer molecular phenotypes makes it very difficult to identify specific molecular targets for cancer 
prevention or treatment. We hypothesize that an effective cancer preventative or therapeutic intervention should 
target multiple biochemical pathways implicated in carcinogenesis such as inflammation, cell proliferation, 
cell cycle, apoptosis and angiogenesis. In line with this hypothesis, we have tailored a machine–learning based 
strategy that predicts CBMs based on “learned” molecular networks targeted by clinically validated anti-cancer 
therapies. Our strategy includes the combined use of unsupervised learning on graphs to simulate the down-
stream influence of therapeutics on human proteome networks (from “sparse” protein target datasets) followed 
by supervised learning to identify predictive (sub-)networks for CBMs. Model performance was assessed using a 
10-fold cross-validation strategy, which confirmed accurate prediction of anti-cancer therapeutics. A comprehen-
sive database of 7692 bioactive molecules within foods was fed into the model to predict ~110 CBMs, resulting 
in a compiled list of hyperfoods exhibiting the largest number of potential CBMs (ACL > 0.7). Furthermore, 
the developed approach can be easily extrapolated in the future to cover other types of diseases (e.g. diabetes) 
and health issues to provide a comprehensive multi-faceted picture of health-promoting food molecules and 
optimize existing cooking recipes for the maximally positive health impact. We envisage that this first list of 
“cancer-beating” foods will serve as one of the pillars in the foundation for the future of gastronomic medicine 
and should aid the creation of personalized “food passports” to provide nutritious, tailored and therapeutically 
functional foods for the population. However, significant future work will be required to validate and quantify the 
therapeutic effects of these proposed hyperfoods as well as optimize cultivation, storage, processing and cooking 
parameters of their ingredients.

Results and Discussion
Network-based machine-learning strategy for drug and food repositioning.  The work presented 
herein exploits publicly available data on molecule to gene-encoded protein interactions as well as protein-protein 
interaction data. In brief, the sparse data of interactions between drugs and their protein/gene targets are initially 
mapped on large-scale interactome networks - a whole set of protein-to-protein interactions in humans (here 
and further due to the specifics of the existing interaction datasets, “gene” and “protein” terms can be used inter-
changeably). Most drugs exert their biomedical and functional activity by binding to a specific subset of proteins. 
Proteins rarely function in isolation but rather operate as part of highly interconnected networks23. Taking this 
into account, we have tailored random walks on graphs with restarts (controlled by a single network diffusion 
parameter “c”) to simulate the perturbation of individual drugs on human proteome networks using aggregated 
datasets of their targeted proteins. Similar network-based propagation approaches have been recently compared 
favourably to predict drug-target interactions, and evaluate network perturbations caused by cancer mutations for 
improved patient stratification24,25. This network diffusion transforms a short list of proteins targeted by a given 
molecule/drug into a genome-wide profile of gene scores based on their network proximity to target candidates. 
Using the genome-wide profiles of drugs, the supervised machine-learning strategy (“maximum margin crite-
rion” and support vector machines, in this case) is trained to accurately classify “anti-cancer” (vs “other”) proper-
ties of molecules. The best obtained models were used to predict the probability of a given existing approved drug 
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to exhibit anti-cancer properties. After validation of the predictive capacity of the model for anti-cancer drug 
repositioning, the same machine learning strategy was applied to predict various cancer-beating molecules within 
foods (Fig. 1). It should be noted that there are various methodologies for drug repositioning such as molecular 
structural commonality, molecular target similarity as well as shared genetic or phenotypic (e.g. side effect profile) 
influence26,27. However, these approaches mandate additional data sets (such as gene-expression data, proteomics, 
metabolomics or phenotypic effect data) for model building. In the search for food-based cancer beating mole-
cules, these data are very limited.

Benchmarking and optimization of machine learning strategy.  Among the machine learning 
methods tried, MMC (maximum margin criteria)28 and SVM29 with linear kernel showed comparable perfor-
mance and relatively good processing speed (including parameter optimization, model training and prediction 
on 10-fold cross-validation). Radial kernel SVM did not exceed the performance of the linear methods and at 
the same time required much longer processing time (the best radial kernel SVM F1-score achieved is of 0.85 vs 
0.86 for linear kernel SVM). Furthermore, the optimal gamma parameter for the radial SVMs tends to be very 
low (~10−7), effectively making them similar to the linear kernel SVMs. We have also explored 2 neural network 
classifiers and 2 regularized LASSO/Elastic Net logistic classifiers to see whether they bring any improvement in 
the classification accuracy. For the best performing type of interactome and settings of random walk on graphs, 
these more advanced approaches resulted in prediction accuracies comparable to linear SVM and MMC (see SI 

Figure 1.  Schematic diagram of the overall workflow.
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Appendix M1). This is well known in genomics studies involving a small number of examples and a large number 
of features, where the linear classifiers are preferred because of their transparency and biological interpretability. 
As a result, the major focus was made on linear kernel SVM and MMC methods for the final round of optimi-
zation. The best F-score achievable was of 0.86 with linear kernel SVM with 84% correct anti-cancer predictions 
and 90% correct non-anticancer predictions (see SI Dataset S1). Re-running the optimization multiple times for 
the same settings showed consistent performance (maximum 1–2% difference). Based on these results, it was 
decided to select the top 700 models (F-score >  = 0.84) for anti-cancer likeness prediction from models based on 
linear kernel SVM and MMC for existing approved drugs (SI Dataset S2) and food compounds (SI Dataset S3). 
Interestingly, log-transformation of the input propagated profiles was systematically shown to increase perfor-
mance of the classifiers. This is likely because some individual isolated genes, which do not propagate and thus 
stay with a very high perturbation level would have lesser effect on the overall profile in log-space. At the same 
time “c” parameter of the random walker and different matching settings between compounds and genes had 
less pronounced effects. Gene-gene connection thresholds were also not strongly influential except in the case 
of BioPlex interactome. This is likely because connections provided by STRING tend to include a wide range of 
knowledge sources giving a more representative and complete graph of gene-gene (or protein-protein) interac-
tions and the sheer number of connections can compensate for the larger values of “c” and higher thresholds 
used. We have also evaluated individual gene influence on the final classification, i.e. gene importance, by finding 
the correlation between the gene levels and the prediction outcomes for the optimized model. The full table of 
averaged importance predictions for the top selected 700 models is provided as SI Dataset S4. As expected, the 
top-rated genes are involved in cell proliferation control and their mutations are often associated with cancer. This 
provides transparency to the machine learning based prediction of anti-cancer properties of the drugs.

Pathway analytics and differential interactome.  A list of the most influential genes/proteins for pre-
dicting anti-cancer therapeutics derived from network-based machine learning was subjected to pathway ana-
lytics using gene-set enrichment (SI Dataset S4). Among the top 25 impacted pathways were cell cycle, DNA 
replication, apoptosis, p-53 signaling, JAK-STAT signaling and mismatch repair as well as various cancer-specific 
pathways. It adds to the biological plausibility of the modelling approach used here that the pathways identi-
fied as key drivers are those consistently implicated in cancer development and progression. In Fig. 2, relevant 
discriminating genes and their corresponding impacted pathways are presented. Here, individual node size 
corresponds to the relative discriminating capacity of a given gene-encoded protein and node color illustrates 
shared biological pathway functionality. Increasingly, it is understood that the mechanistic bases for cancer cell 

Figure 2.  Relevant genes and pathways derived from machine learning models for prediction of anti-cancer 
therapeutics tested in human trials. Individual node size corresponds to the relative discriminating capacity of a 
given gene-encoded protein and node color illustrates shared biological pathway functionality.
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survival, dissemination and therapeutic resistance are manifold and involve multiple biochemical pathways. 
Most machine-learning derived pathways in our analysis have been suggested as targets for cancer prevention or 
therapeutic interventions30–32. Therefore, the “ideal” anti-cancer agent should be capable of disrupting multiple 
pro-tumorigenic biochemical processes. The machine learning approach presented here highlights the biological 
pathways influenced by currently utilized anti-cancer therapeutics, and thus permits in parallel a targeted search 
for unique agents, in this case bioactive compounds with foods, with the potential to impact on multiple pathways 
simultaneously.

Drug repositioning in cancer using interactomics.  The full prediction summary is presented in SI 
Dataset S2. As expected most compounds currently in use as cancer therapeutics demonstrated strong anti-cancer 
probability. Interestingly, several compounds which are not conventionally used in cancer treatment demon-
strated very high anti-cancer likeness (ACL). The available literature on these compounds was further inter-
rogated to understand the mechanistic basis for the potential anticancer effect(s) of these agents. For example, 
quinolone-derivative rosoxacin and quinoline-based clioquinol primary act as anti-microbial and anti-fungal 
agents, respectively. However, the analysis presented here indicates a potential direct role for these therapeu-
tics in cancer. The quinolone antibiotics were shown to have a significant inhibiting potency against eukary-
otic topoisomerase-II resulting in cytotoxicity of various cancer cell types33. This group of compounds can be 
explored in comparison to human topoisomerase-II inhibiting anti-tumor drugs such as doxorubicin and etopo-
side. Clioquinol is a chelator of zinc, copper and iron which are known to be involved in both carcinogenesis 
and angiogenesis34. The anti-neoplastic activity of clioquinol is thought to be through several potential mech-
anisms including NF-kB apoptosis induction, mTOR signaling and inhibition of lysosome35. Although of great 
promise its role in cancer therapy remains largely unexplored in clinical settings. The anti-diabetic drugs such 
as metformin and chromium picolinate, also emerged as potential candidates for anti-cancer drug repositioning 
from this evaluation. The molecular mechanisms responsible for this association remain uncertain, however both 
agents are used to alleviate insulin resistance through modulation of the insulin signaling cascade, and a number 
of studies have shown that chromium specifically alters proximal insulin signaling and directly effects insulin 
receptor phosphorylation and kinase activity36. The downstream consequences of therapy with both metformin 
and chromium is the reduction in insulin and insulin-like growth factor levels, which in turn is understood to 
inhibit several key processes within the mTOR signaling pathway, which is a central molecular driver of a variety 
of cancers37. Correspondingly a strong association has been shown on pooled analysis between metformin usage 
and incidence of cancer in type II diabetics37. By contrast, the chromium picolinate might act as a double “edged 
sword” due to its capacity to interfere with DNA leading to structural genetic lesions and thereby promoting 
carcinogenesis38. This example highlights the limitation of our approach to identify molecules that interact with 
relevant carcinogenetic processes irrespective of the nature of the interaction (i.e. inhibition or stimulation). 
Identifying the nature of molecular interactions would require additional datasets such as gene expression or 
proteomics but these are not generally available in the case of food-based molecules.

Prediction of cancer-beating molecules in foods.  From all small molecules approved for anti-cancer 
therapies, almost half are derived from natural products39. These drugs are generally more tolerated and less toxic 
to normal cells39. The methodology outlined above was next applied to predicting the anti-cancer likeness of 
~7692 bioactive compounds across various food categories. Here a comprehensive view of drug-like molecules in 
food is provided, unlike most studies in the literature to date which have tended to focus on a single compound or 
a single food type. Approximately 110 molecules from different chemical classes (see Fig. 3), including terpenoids, 
isoflavonoids, flavonoids, poly-phenols and brosso-steroids were identified and mapped according to their food 
sources using multiple experimental databases. A complete list of food molecules ranked by proxy according to 
anti-cancer drug likeness of >0.1 is provided in SI Dataset S3. Using the unsupervised learning random walk on 
graphs, we have propagated the influence of the most promising molecules on human interactome networks and 
identified their impacted molecular pathways (for detailed analysis see SI Dataset S3 and SI Dataset S5 only for 
compounds with ACL > 0.7). SI Appendix Table S1 summarizes a list of cancer-beating compounds identified 
in the present study with high ACL > 0.7 and their associated food sources. Furthermore, we have conducted 
a comprehensive review of the available literature on the top anti-cancer drug like molecules (with ACL > 0.9) 
and their putative molecular mechanisms of anti-cancer actions (SI Appendix Table S2). Both computational 
analysis and experimental data from literature show that the pathways and mechanisms responsible for these 
anti-cancer properties cover the breadth of our current understanding of the multi-step process of carcinogenesis. 
These include anti-inflammatory, pro-apoptotic effects, potent antioxidant activity and scavenging free radicals; 
regulation of gene expression in cell proliferation, cell differentiation, oncogenes, and tumor suppressor genes; 
modulation of enzyme activities in detoxification, oxidation, regulation of hormone metabolism; and antibacte-
rial and antiviral effects40. For example, 3-indole-carbinol, which is found abundantly in members of the Brassica 
oleracrea family of vegetables (including cabbage, broccoli and brussel sprout) appears to be one of the most 
strongly anti-cancer-like molecules. This bioactive compound has been shown to target multiple aspects of can-
cer cell cycle regulation and survival, including caspase activation, oestrogen metabolism and receptor signaling 
and endoplasmic reticulum function (see SI Appendix Table S2 and reference therein). Other prominent exam-
ples include dydamin, which is a flavonoid glycoside found in citrus fruits and apigenin, which is particularly 
abundant in coriander, parsley and dill. Both are understood to influence apoptotic pathways as well as cell cycle 
arrest mechanisms and are believed to suppress cancer cell migration and invasion (see SI Appendix Table S2 
and reference therein). Figure 4 provides a visual summary of CBMs associated with strong anti-cancer likeness. 
Each node in the figure denotes a particular food item and node size in each case is proportional to the number 
of CBMs. The link between nodes reflects the pairwise correlation profile of CBMs in foods, thus the clusters of 
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foods seen in Fig. 4 illustrate molecular commonality between them. The foods that show greatest diversity in 
CBMs include tea, grape, carrot, coriander, sweet orange, dill, cabbage and wild celery.

Food map and phytochemical synergy.  The potential of food sources to exert their preventative or 
therapeutic capacity depends upon the bioavailability and diversity of disease-beating molecular compounds 
contained therein41. A key limitation in regards to the existing literature on food-based compounds is the largely 
one-dimensional view that is commonly taken, with studies tending to focus on specific molecular components 
in isolation, for example anti-oxidants40. It is accepted that regular consumption of fruits and vegetables can 
reduce the risk of carcinogenesis (42). However, when antiproliferative agents acting in isolation have been sub-
jected to clinical trial evaluation they do not appear to consistently confer the same level of benefit. The point 
is simply illustrated in the case of the apple; apple extracts contain bioactive compounds that have been shown 
to inhibit tumor cell growth in vitro. However, interestingly phytochemicals in apples with the peel preserved 
inhibit colon cancer cell proliferation by 43%, whereas this effect was found to be reduced to 29% when apple 
without peel was tested42. From these observations it is therefore clear that the successful implementation of 
food-based approaches in the fight against complex diseases such as cancer will rely on a consortium of biolog-
ically active substances, such as those present in whole fruits and vegetables, in order to increase the chances 
of success. The anti-cancer properties of a given food will thus be determined by (1) the additive, antagonistic 
and synergistic actions of their individual components and (2) the way in which these simultaneously modulate 
different intracellular oncogenic pathways. Both of these conditions are fulfilled in the case of tea for example, 
which we found to strongly exhibit anti-cancer drug-like properties compared with other food ingredients. Tea is 
a rich source of anti-cancer molecules from catechins (epigallocatechingallate), terpenoids (lupeol) and tannins 
(procyanidin) and, three of which exert strong and complementary anti-cancer effects, by protecting reactive 
oxidative species induced DNA damage, suppressing inflammation and inducing apoptosis and cancer cell cycle 
arrest, respectively. Correspondingly, several recent meta-analyses demonstrated that the consumption of green 
tea demonstrated delayed cancer onset, lower rates of cancer recurrence after treatment, and increased rates 

Figure 3.  Hierarchical classification of the top 110 predicted cancer-beating molecules in food with anti-cancer 
drug likeness of >0.7.
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of long-term cancer remission43,44. Other examples include citrus fruits such as sweet orange, which contains 
dydimin (citrus flavonoid), obacunone (limonoid glucose) and β-elemene with strong anti-oxidant, pro-apoptotic 
and chemosensitization effects, respectively. The latter have strong effects particularly against drug-resistant and 
complex malignancies across different types of cancers. The inverse associations between citrus fruit intake and 
incidence of different types of cancers were confirmed by meta-analysis of multiple case-control and prospective 
observational studies45. With this understanding we have constructed the anti-cancer drug-like molecular profiles 
comprised of over 250 different food sources (see Fig. 4 and SI Appendix Table S1).

Conclusions
Using a network-based machine learning method, we have shown that plant-based foods such as tea, carrot, 
celery, orange, grape, coriander, cabbage and dill contain the largest number of molecules with high anti-cancer 
likeness through exerting influence on molecular networks in a similar fashion to existing therapeutics. Our large 
scale computational analysis further demonstrates more cancer-beating potential of certain foods calling for more 
tailored nutritional strategies. However, it is also important to acknowledge the limitations of the proposed meth-
odology; firstly, concentrations of bioactive molecules are not taken into account and it is unclear they would be 
present in sufficient enough concentration to exert their beneficial biological activity. Furthermore, the proposed 
methodology only accounts for interactions between bioactive food compounds and cancer-related molecular 
networks, without explicit regard for directionality of these relationships. In addition, the methods described 
here do not take into account specific cancer molecular phenotypic characteristics. Finally, drug-food interactions 
have not been evaluated, and it is not clear whether these will lead to synergistic or antagonistic effects where they 
act on common molecular networks (pharmacodynamics), or whether this combination will disrupt drug metab-
olism itself (pharmacokinetics). Nevertheless, food represents the single biggest modifiable aspect of an individu-
al’s health and the machine learning strategy described here is a first step in realizing the potential role for “smart” 

Figure 4.  The contained profiles of compounds within selective foods, which were highly likely to be effective 
in fighting cancer. Each node in the figure denotes a particular food item and node size in each case is 
proportional to the number of CBMs. The link between nodes reflects the pairwise correlation profile of CBMs 
in foods, thus the clusters of foods illustrate molecular commonality between them.
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nutritional programmes in the prevention and treatment of cancer. The outlined methodology is not restricted to 
cancer and will be applicable to other health conditions. Moreover, it will pave the way to the future of hyperfoods 
and gastronomic medicine, encouraging the introduction of personalized “food passports” to provide nutritious, 
tailored and therapeutically functional foods for every individual in order to benefit the wider population.

Methods
DRUGS/DreamLab mobile cloud supercomputing.  The methodology and results presented in this 
manuscript were generated within the framework of the DRUGS project (Drug Repositioning Using Grids of 
Smartphones) run by Imperial College London in collaboration with Vodafone Foundation. The project has ben-
efitted from the use of smartphone-based cloud supercomputing utilizing the DreamLab App. In brief, DreamLab 
allows a user to donate their idle smartphone computing power for use in large-scale computational tasks. With 
tens-to-hundreds of thousands of smartphones united into a cloud-based computational grid, one can split com-
putational tasks into small chunks and run them in parallel. With enough contributors, the resulting performance 
compares to modern high performance computing clusters.

The DRUGS project uses publicly available data about gene-gene, protein-protein, drug-gene and 
drug-protein interactions to model systemic effects of the drugs and disease causing mutations. This allows to 
find promising candidates for drug repositioning and gene-tailored selection of drug combinations for treatment 
of different cancer types. Due to a massive number of potential combinations of drugs, cancer mutations and 
parameter settings, this project requires distributed computing to achieve viable speed and it fits perfectly within 
the specifications of the DreamLab architecture (high CPU usage, small memory footprint, no data exchange 
between jobs, small volumes of data transfer). The results presented in this manuscript are based on the initial 
data obtained within the DRUGS project with the aid of the DreamLab cloud computing platform, i.e. full prop-
agated profiles of interactome impacts of different individual drugs and food compounds obtained for a wide 
range of settings. The predicted anti-cancer candidates are identified based only on the similarity of their full 
profiles to the known approved and clinically used anticancer drugs, which is established via machine learning 
approaches. Combinatorial analysis and gene-tailoring for personalized treatment recommendations are cur-
rently “work-in-progress” and fall outside of the scope of the present study.

Aggregation of molecular data sets of drugs and foods.  Clinically validated pharmacotherapeu-
tic agents currently in clinical use were selected from DrugBank (open database of drugs, Nov 2017)46. Only 
drugs with FDA approval were incorporated into the model (1984 drugs out of a total of ~10 K available in 
DrugBank). The DrugCentral database (open database of drugs, June 2018) was used to identify drugs designed 
for primary use against cancer47,48. RepoDB (open database of repositioned drugs, Nov 2017) was used to iden-
tify drugs that have been successfully repositioned for anti-cancer purposes (secondary or tertiary use)49. For 
our machine-learning approach drugs designed and tested specifically for anticancer treatment (n = 199) were 
denoted as the ‘positive’ class and drugs with no known association with cancer were used as the ‘negative’ class 
(n = 1692). Drugs that have been repositioned for secondary/tertiary use in cancer have been excluded from the 
model. Drug compounds extracted from different databases were matched using InChI keys.

Drug-gene encoded protein interaction data were extracted from the STITCH database (open database of 
chemical-gene interactions, Nov 2017) and once more drug compounds were matched using InChI keys50. A 
significance score for individual drug-protein interactions was extracted from the STITCH database. Different 
levels of interaction significance as defined by threshold were considered as part of the computational strategy. 
Compounds from FooDB (open database of foods and food compounds, Jun 2018) for which InChI identifier 
was available were matched to STITCH in the same way as drugs to generate the scored list of compound-gene 
interactions51. The interactions were filtered according to the score threshold identical to the one used for the 
drugs in the model (the actual value is model-dependent). T3DB was used to highlight toxic and potentially toxic 
food compounds (matching performed using InChI keys)52.

Compilation of human proteome network datasets.  A human genome network of 20,256 proteins 
was compiled using data extracted from STRING53, UniProt54, COSMIC55, and NCBI Gene56 public databases. 
Due to the heterogeneity in gene/protein nomenclature in these databases, we used a sequence-based matching 
approach based on protein amino acid sequence alignment to establish the correspondence between proteins 
across databases. The amino acid sequences of 15911 proteins out of 20,256 were precisely matched between 
databases. The remaining sequences were then checked to determine if any were subsets of a larger amino acid 
sequence in any of the above databases. This permitted further alignment of 1532 protein sequences. Finally, 
the remaining proteins were aligned using ‘fuzzy’ matching (allowing up to 5% amino acid sequence mismatch) 
generating an additional 1686 proteins. Non-matched amino acid sequences (1,127) with their corresponding 
database identifiers were incorporated into the unified database. This resulted in 20,256 unique gene-encoded 
proteins and their identifiers/names/synonyms from different databases (including Ensembl ID, HGNC), where 
available.

Protein-protein interactions were imported from STRING resulting in ~ 11 million connections with the 
confidence scores in the range 0–999. Additionally, BioPlex, an open database of experimentally established 
protein-protein interactions, was mapped onto our gene list using gene id, Uniprot ID and gene name57. ~ 100 K 
connections for 10859 genes were added to the interactome network from BioPlex in addition to the ones 
imported from STRING.

Our observation showed full matching between Ensembl IDs from STRING and STITCH databases, provid-
ing a reliable link between chemical-protein and protein-protein interaction networks. Thus it was decided to 
use these two databases as a core model and reference for matching for other databases. Scored protein-protein 
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interactions were imported from STRING into the propagation model with the score threshold used to filter out 
“unreliable” ones (adjustable parameter in the model).

Unsupervised learning on graphs using random walks.  The resulting interactome network was rep-
resented as a graph where nodes are gene-encoded proteins and the links between them correspond to biological 
interactivity. The graph makes no assumption regarding the direction of interaction between proteins (referred 
to as “undirected” graph). The link weights were dichotomized with various thresholds. The optimum threshold 
value was derived using a “nested” cross-validation strategy.

All proteins interacting with a given drug/bioactive molecule were assigned a value of 1.0 and all others were 
assigned the value of 0.0. This resulted in a sparse protein profile interacting with a given molecule (on aver-
age 20–30 targets per molecule). However on the understanding that these proteins act as part of the wider 
protein-protein network rather than in isolation, the unsupervised learning on graph algorithm (namely, a ran-
dom walk with restarts) was applied to “learn” latent network-wide effects of a specific molecule. This network 
diffusion transforms a short list of proteins targeted by a given molecule/drug into a genome-wide profile of gene 
scores based on their network proximity to target candidates24.

From a computational perspective, we represent targeted proteins as “entry points” for a random walk which is 
defined as a path consisting of a succession of random steps within the interactome network. Before the iteration 
starts the probability of the walker to be in any of the ‘entry’ points is set to 1.0 divided by the number of ‘entry’ 
points, forming the starting sparse probability distribution vector, p0. The probability of transition from node a to 
a connected node b is given by 1.0 divided by the number of outgoing connections from node a. These transition 
probabilities for the whole interactome form a scaled adjacency matrix, W. The probability of the walker to restart 
from its ‘entry’ point is given by the parameter “c”. This parameter denotes how far the influence of a given mol-
ecule spreads within the network with c = 1.0 meaning no propagation beyond ‘entry’ points, while c close to 0.0 
would result in potential propagation to the furthest connected node(s), resulting in a “smoother” genome-wide 
profile. For each subsequent step of the algorithm the new distribution of the probabilities of finding the walker 
in any of the nodes pi is given by Eq. 1:

= ∗ ∗ . − + ∗− W c cp p p(1 0 ) , (1)i i 1 0

where pi-1 is the probability distribution from the previous iteration. The algorithm assumes convergence 
when |pi-pi-1| is less than a set tolerance value and the obtained probability distribution pi (also referred to as 
“smoothed” genome-wide profile for a given molecule/drug) is returned for use in downstream supervised 
machine learning steps of the strategy58.

Supervised machine-learning using propagated network profiles.  Supervised-machine learning 
strategies based on Support Vector Machine (SVM)29 and Maximum Margin Criterion (“MMC”)28 were opti-
mized to identify anti-cancer therapeutics based on their influence on diffused interactome profiles. The param-
eters for linear (“c”) and radial kernels (“c”, gamma) were optimized during SVM training. Both ‘positive’ and 
‘negative’ classes of drugs formed the set used for model training. The best performing strategy (including type of 
interactome, parameter thresholds and settings for random walks on graphs, and supervised modeling methodol-
ogy) was defined according to the F-score (balancing sensitivity and specificity) by a nested cross-validation strat-
egy (see below). Due to the high class imbalance (~1:9 anti-cancer vs non-anticancer drugs), F-score was used as 
the main measuring criterion for the performance of the classifier. Stratified K-fold and “balanced” weights were 
used to compensate for class imbalance. The full list of parameter combinations tried with corresponding statis-
tics is provided in SI Dataset S1. We also trained 2 convolutional neural network classifiers59 and 2 regularized 
LASSO/Elastic Net classifiers60 to see whether there is any improvement in classification performance for the best 
performing type of interactome and settings for random walk on graphs (see SI Appendix M1 for methodological 
details).

Overall workflow for drug and active food molecules repurposing.  Here, we assume that drugs/
molecules acting on common protein networks (responsible for a variety of metabolic and signaling processes) 
should therefore exert similar downstream disease modifying effects. In order to validate this assumption and to 
predict unique anti-cancer compounds which could potentially be used/repositioned for cancer treatment we 
have tailored a bespoke machine learning strategy as outlined below:

	(1)	 The proteins interacting with molecular compounds (either existing drugs or bioactive compounds within 
foods) were mapped onto interactome;

	(2)	 The network-wide diffused effect of a given molecule was derived using a grid of different settings: the type 
of interactome network (BioPlex or STITCH), varying connection thresholds for the links between pro-
teins (STRING, STITCH and BioPlex interactomes), and varying values of the “c” parameter in the random 
walk propagation algorithm);

	(3)	 A supervised-machine learning strategy based on SVM29, MMC and CNN algorithms28 was optimized to 
identify anti-cancer therapeutics based on their influence on diffused interactome networks.

	(4)	 Molecular anti-cancer “likeness” was calculated as the probability outcome of the best performing ML strate-
gy (F-score ≥ 0.84, achieved by the 700 best performing models). These anti-cancer probability estimates were 
used to create a summary table of potential candidates for anti-cancer repurposing (SI Dataset S2).

	(5)	 Once validated on anti-cancer therapeutics, food compounds were processed in exactly the same way as 
the drugs used to train the models and then the best models obtained in the previous step were used to 
generate probabilistic predictions for the anti-cancer “likeness” of these food compounds (SI Dataset S3).
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	(6)	 The list of the food compounds with the highest probability of exhibiting anti-cancer properties has been 
compiled and manually curated to exclude toxic compounds and compounds shown to promote cancer 
(the model is effective at highlighting both anti-cancer compounds and cancer-promoting compounds as 
they often share underlying biological mechanisms and interactions). Furthermore, compounds associ-
ated with normal metabolism of cells, e.g. dCTP belonging to the superclass of nucleosides, nucleotides, 
and analogues and directly involved in DNA synthesis were also removed from the final curated list. The 
compound-food associations were retrieved from the FooDB database. The curated results are provided as 
SI Appendix Tables 1&2.

Nested Cross-Validation strategy.  A 10-fold nested cross-validation strategy was employed to assess the 
predictive capacity of each method and model generated. Each test and training set split was stratified to keep 
equal proportions of ‘positive’ (anti-cancer therapeutics) and ‘negative’ (non anti-cancer therapeutics) classes in 
each split. For linear and radial SVM classifiers 5-fold inner cross-validation was used to optimize C and gamma 
parameters. Average per class classification accuracy and F-score metrics were used for the assessment of model 
predictive capacity due to class imbalance (~1:9 for ‘positive’:’negative’ classes). Logistic regression was employed 
for MMC as well as linear and radial SVMs to provide classification probability estimates. For each fold the 
anti-cancer “likeness” of a given molecule (based on its influence on interactome networks) in the test set was pre-
dicted. Averaged F-scores from 10-fold outer cross-validation was used to select the best ML strategy among all 
combinations of pre-processing, unsupervised and supervised model parameters (drug-gene connection confi-
dence thresholds: 0, 100, 200, 325, 400, 500, 600, 700; gene-gene connection confidence thresholds: 400, 600, 700, 
800, 850 or present in BioPlex; Random walk with restarts “c”: 0.0001, 0.001, 0.002, 0.004, 0.01, 0.015, 0.02, 0.03, 
0.035, 0.04, 0.05, 0.076, 0.1, 0.2; preprocessing with log-transform: yes/no). The models were re-trained using the 
entire set of ‘positive’ and ‘negative’ classes (and the averaged best C and gamma, where applicable) prior to using 
them to predict anti-cancer “likeness” of the food compounds and the drugs which were not a part of the model 
building set. All tested parameterization sets and training statistics are provided in the SI Dataset S1.

Pathway analytics.  Pathway analytics was performed using gene set enrichment analysis via Python 
GSEAPY package61. Propagated gene/protein perturbation values were supplied as the input data for “prerank” 
module. Reactome_2016 and KEGG_2016 gene sets were used by default. Scored pathways were sorted by the 
normalized enrichment score reported by the script. Top 10 pathways for each gene collection and each CBM 
were reported in SI Dataset S3.

Data and Code Availability
In order to allow for validation of methodology and results, we compiled a set of data processing python scripts, 
DRUGS project C++ code run in DreamLab App and the pre-processed input data (incl. gene connections and 
compound selections) in a form of an integral “container” for easy running on the individual PC (downloadable 
from https://bitbucket.org/iAnalytica/drugs_container_public/src/master/). The current container has the drug 
selections for anti-cancer compound identification, however, it can easily be supplemented with the other drug 
selections in order to re-use it to target other diseases and medical conditions. For more details see readme.md in 
the container. It has to be noted that the current container is focusing on full propagated profiles analysis present-
ed in this paper and does not currently support combinatorial analysis or gene tailoring which are to be published 
later when ready within the scope of the DRUGS project.
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