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Abstract

Background

Recommendations for vitamin D supplementation for preterm infants span a wide range of

doses. Response to vitamin D supplementation and impact on outcomes in preterm infants

is not well understood.

Objective

Evaluate serum 25(OH)D3 concentration changes after 4 weeks in response to two different

doses of vitamin D3 supplementation in a population of premature infants and quantify the

impact on NICU outcomes.

Design

32 infants born at 24–32 weeks gestation were prospectively randomized to receive 400 or

800 IU/day vitamin D3 supplementation. Serum 25(OH)D3 levels were measured every 4

weeks. The Wilcoxon signed rank test was used to compare serum levels of 25(OH)D3 at 4

weeks and each subsequent time point. A p-value of <0.05 was considered statistically

significant.

Results

Serum 25(OH)D3 levels at birth were 41.9 and 42.9 nmol/l for infants in the 400 IU group

and 800 IU group, respectively (p = 0.86). Cord 25(OH)D3 concentrations significantly corre-

lated with gestational age (r = 0.40, p = 0.04). After 4 weeks of D3 supplementation, median

25(OH)D3 levels increased in both groups (84.6vs. 105.3 nmol/l for 400 vs. 800 IU/day
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respectively, with significantly more improvement in the higher dose (p = 0.048). Infants in

the 400 IU group were significantly more likely to have dual energy x-ray absorptiometry

(DEXA) bone density measurements <10 percentile (56% vs 16%, p = 0.04).

Conclusions

Improvement in 25(OH)D3 levels at 4 weeks, bone density, and trends towards improve-

ment in linear growth support consideration of a daily dose of 800 IU of vitamin D for infants

<32 weeks cared for in the NICU.

Background

Vitamin D status has impact on current and future health in children and neonates and has

documented impact in most organ systems in the body, making it a critical area of research

[1]. Many aspects of clinical application of vitamin D supplementation in the smallest preterm

infants need additional supportive evidence. Vitamin D supplementation for preterm and

term neonates is currently recommended by many groups including the American Academy

of Pediatrics (AAP), the Institute of Medicine (IOM), the Endocrine Society, and the European

Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) [2]. However,

significant differences remain in the recommended target goals for 25(OH)D levels and in the

recommended doses for specific neonatal populations from these expert bodies (Table 1). The

IOM recommends a 25(OH)D level of 50 nmol/l based on bone health and mineralization.

This recommendation is based, in part, off of work by Priemel et al evaluating bone

Table 1. Recommendations for vitamin D supplementation.

Recommending Body Patient Age Recommended

Supplementation

Recommended Target

Serum Level

Comments Year of

Publication

American Academy of

Pediatrics—Section of

Breastfeeding and

Committee on Nutrition

Healthy infants

birth– 12 months of

age

400 IU daily >50 nmol/l (targeting

bone health)

*Begin soon after birth, in the first

few days of life. *All breastfeed

and partially breastfed infants.

*Formula fed infants taking <1 liter

of formula

2008[5]

AAP—committee on

nutrition

Preterm Infants

VLBW

200–400 IU >50 nmol/l (targeting

bone health)

Discharge vitamin D

recommended for breastfed

infants 400 IU, for formula fed

200–400 IU

2013[6]

AAP—committee on

nutrition

Preterm

infants>1500g

400–1000 IU >50 nmol/l (targeting

bone health)

Tolerating Full Enteral Feeds 2013[6]

World Health Organization Preterm Infants 400–1000 IU Low and Middle-income countries WHO[7]

Institute of Medicine Infants 0–6 months 400 IU >50 nmol/l (targeting

bone health)

Under assumption of minimal

sunlight

2011[8]

ESPHAGAN Preterm Infants 800–1000 IU >80 nmol/L Stable Growing, 1000 to 1800

grams

2010[4]

Pediatric Endocrine

Society

Breastfed Infants,

or those taking

<1Lformula/day

400 IU >50 nmol/l (desire

additional studies to

determine if >80 nmol/L

is optimal)

800 IU for high risk populations i.e.

preterm infants

2008[2]

Endocrine Society Healthy Infants 0–1

year

400–1000 IU >75 nmol/l (for non-

skeletal benefits)

0–1 vitamin D deficient (<50 nmol/

l) 2000 IU/D for 6 weeks followed

by maintenance dosing

2011[9]

https://doi.org/10.1371/journal.pone.0185950.t001
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mineralization defects and vitamin D deficiency in iliac crest bone of adults [3]. The authors of

this paper however, conclude that doses of supplementation of vitamin D should ensure 25

(OH)D levels of 75 nmol/l to maintain skeletal health. There is an obvious lack of substantial

data in infancy with regards to bone health and ideal supplementation. Additionally, many

recommendations are specifically for term neonates and do not apply to preterm, very low

birth weight (VLBW) or extremely low birth weight (ELBW) infants. The AAP and ESPGHAN

statements that do provide recommended intakes for preterm infants differ, and are based on

limited prospective randomized controlled trial evidence [2–4]. The Endocrine Society also

recommends a target level of>75 nmol/l and ESPGHAN an even higher target of>80 nmol/l.

Very little data is available regarding response to vitamin D supplementation in the smallest

and youngest infants (<1200 grams at birth), a population that might see the most benefit

from normalized vitamin D status. Supplementation during NICU hospitalization with 800 IU

in a cohort of infants <1500 grams showed no safety concerns with all infants having levels

above 25 nmol/l but 21% of infants still insufficient at 36 weeks CGA [10]. Another trial evalu-

ating placebo, 200 IU and 800 IU daily vitamin D supplement evaluated levels at 36 weeks and

days of respiratory support, showing prevention of vitamin D deficiency with the 800 IU dose,

and an improvement in serum levels with the 200 IU dose as compared to placebo, but no dif-

ference in days alive or in respiratory support [11].

Historically, levels of 25(OH)D greater than 50 nmol/l have been associated with prevention

of rickets in infants and children, a disease of extreme nutritional deficiency. As the role of

vitamin D in immune function, respiratory health, allergy and atopic disease, and many other

tissue and organ functions becomes apparent, adjustments have been suggested in optimal

serum level of 25(OH)D [12–14]. Recent literature from adult, pediatric and neonatal popula-

tions demonstrate improved outcomes such as normalization of PTH at levels >75 nmol/l

[15–17].

It is likely that preterm infants will have a compromised vitamin D status at birth. Many

studies in the United States and abroad have documented maternal status to be suboptimal

and have called for national programs to improve maternal vitamin D status with increased

supplementation dose and frequency [18–26]. The fetus relies solely on maternal stores for

vitamin D in utero, and typically has cord blood levels approximately 50–75% of the maternal

value [6,27,28]. Bodnar showed as few as 4.1% of black and 37.3% of term white infants having

adequate (>80 nmol/l) levels at delivery, while McCarthy showed 78% of infants to have lower

than optimal levels [18,29]. Importantly, several studies have documented an association with

decreasing 25(OH)D levels and lower gestational age at delivery allowing for a situation where

preterm infants are a highly vulnerable population at birth with regards to their vitamin D sta-

tus [15,28,30].

Vitamin D intake during the first year of life from milk or formula diet and supplemental

foods has not been shown to consistently equal 400 IU/day, the amount recommended by the

AAP or the IOM for term infants [31,32]. Preterm infants have a smaller size, leading to

decreased volume intake, and often have a compromised nutritional status during the initial

hospitalization and are even less likely to get adequate vitamin D intake from diet [15].

Our objective with this double blinded, randomized controlled trial was to evaluate the

effects of two different doses (400 IU vs 800 IU) of vitamin D3 on a preterm patient population

for the duration of Neonatal Intensive Care Unit (NICU) hospitalization with respect to

improvement in percentage of infants with 25(OH)D levels >75 nmol/l, growth, PTH normal-

ization, and bone density as measured by global (DEXA) measurements. Additionally, we will

evaluate response to supplementation in the subset of infants weighing <1200 grams as there

is minimal information available regarding response to vitamin D supplementation in this spe-

cific high-risk group.

Vitamin D supplementation in preterm infants
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Methods

Institutional Review Board permission was obtained (final version– 3, approved March 1,

2012) to enroll with parental consent from parents aged 19 or greater, patients <32 weeks ges-

tational age to be enrolled in the randomized controlled trial in a Midwestern academic medi-

cal center Newborn Intensive Care Unit. The study statistician generated a randomization

sequence stratified by race (white and non-white) using SAS software and the study pharma-

cist randomized each infant. Infants were randomized to receive either 400 IU or 800 IU of

vitamin D3 enterally with the initiation of enteral feedings in addition to parenteral MVI while

on parenteral nutrition and enteral vitamin D from breast milk and human milk fortifier or

preterm formula. The study vitamin D was delivered in a brown oral syringe (to protect the

product from light) and the product was identical in color, volume and smell regardless of

dose. The screening and flow of infant enrollment is shown in Fig 1. All vitamin D

Fig 1. Flow chart of infant screening and enrollment.

https://doi.org/10.1371/journal.pone.0185950.g001
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formulations were prepared and dispensed by a research pharmacist who was independent of

the study. Investigators and NICU staff were blinded to subject group assignment. Serum 25

(OH)D3 levels were measured every 4 weeks simultaneously in triplicate using a novel, very

sensitive LC-MS/MS-based method involving derivatization with DMEQ-TAD in the Depart-

ment of Biomedical and Molecular Sciences at Queens University, Ontario, Canada. Serum

iPTH was measured using The Access Intact PTH assay (Beckman-Coulter Inc, Fullerton, CA,

USA) [33]. Serum calcium was measured using the SYNCHRON1 System (Beckman-Coulter

Inc, Fullerton, CA, USA). At-term corrected gestational age (40 weeks +/- 4 weeks) bone den-

sity was measured by total body DEXA scan (Discovery A (SIN85958) Hologic, Software

v.13.3). Premature infant bone density was evaluated based on curves published by Rigo et al

[34]. Exclusion criteria included infants with congenital abnormalities, gastro-intestinal, liver,

or kidney disease, inborn errors of metabolism, parathyroid disease, disorders of calcium

metabolism, and infants receiving seizure medication or steroids. The study was registered at

www.clinicaltrials.gov (NCT01469650).

Statistical analysis

A sample size of 32 infants (16 per group) was needed to achieve 80% power to detect a differ-

ence after 4 weeks of intervention of 7.2 ng/ml (18 nmol/L) between the null hypothesis that

both group means are 23.1 ng/ml (57.7 nmol/L) 25(OH)D and the alternative hypothesis that

the mean of the 800 IU group is 30.3 ng/ml (75.6 nmol/L) 25(OH)D with known within-group

standard deviation of 7.0 ng/ml (17.5 nmol/L) and an α = 0.05. All data were analyzed follow-

ing the intention-to-treat paradigm, in which infants were analyzed according to their ran-

domized assignment. The Mann-Whitney test was used to compare continuous data between

the dose groups and the Wilcoxon signed rank test was used for comparisons between time

points. Fisher’s exact test was used to compare categorical data between the dose groups. Asso-

ciations between continuous variables were assessed with the Spearman correlation coefficient.

All statistical analysis were performed utilizing SAS Version 9.4 (SAS Institute Inc., Cary, NC).

A p-value of<0.05 was considered statistically significant.

Results

Baseline characteristics

Thirty-two infants were enrolled in the study (16 per group) and were included in the final

analysis. 38% of the total study population was classified as non-white and this was equal in

both dosing groups. Infants in the 400 IU dosing group were 43% female, and infants in the

800 IU group were 50% female, a non-significant difference. There were no significant differ-

ences between the two groups at birth. Gestational age, birth anthropometrics and in hospital

growth are presented in Table 2.

25OHD changes by vitamin D dose

Cord blood 25(OH)D3 levels were significantly correlated with gestational age (r = 0.40,

p = 0.04), but had no correlation with sex or race. Concentration of 25(OH)D2 were not

detectable in any of the samples; therefore, all results presented are for serum 25(OH)D3 con-

centrations. After 4 weeks of vitamin D3 supplementation in addition to dietary vitamin D

intake, median 25(OH)D3 levels increased in both groups (84.6 vs. 105.3 nmol/l for 400 vs. 800

IU/day respectively), with significantly greater improvement in the higher dose group

(p = 0.048). After 8 weeks of D3 supplementation, median 25(OH)D3 levels increased in both

groups (135 vs. 164 nmol/l for 400 vs. 800 IU/day respectively, p = 0.3) (Table 3). Due to

Vitamin D supplementation in preterm infants
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discharge from the NICU which led to discontinuation of study participation, it is likely there

were too few subjects included at this time point to detect a statistically significant difference

in 25(OH)D levels between the two groups. After 8 weeks of treatment; however, a larger pro-

portion of patients receiving the 800-dose level had 25(OH)D3 levels above 75 nmol/l relative

to patients receiving the 400-dose level (89% vs. 73%, p = 0.59) however, this did not reach sta-

tistical significance with no reportable differences in the two groups at this time point. Infant

25(OH)D levels had significant change between week 4 and 8 (p = 0.0003), 400 group

(p = 0.0186) and 800 group (p = 0.0156) indicating that neither group had achieved steady

state during the NICU hospitalization.

Growth/Adverse events

Median growth chart (Fenton 2003) percentile ranking for length at 36 weeks CGA in the

group receiving 800 IU/day compared to the group receiving 400 IU/day trended toward sig-

nificance (28th vs.19th percentile, p = 0.06), and the 800 IU/day group showed a non-significant

Table 2. Gestational age, birth anthropometrics and in hospital growth by vitamin D3 supplementation group.

Variable 400 IU 800 IU p-value

N Median IQR N Median IQR

Birth weight, grams 16 1405.5 270 16 1392.5 632 1.00

Birth weight %ile 16 33 30 16 39.5 39 0.33

Gestational Age at Delivery 16 31 2 16 30.35 5.35 0.75

Birth length, cm 16 39 5.5 16 39.5 10.1 0.94

Birth length %ile 16 15 24 16 24.5 36.5 0.36

Birth head circumference, cm 16 27.5 2 16 27.5 4.15 0.66

Birth HC %ile 16 20 51 16 39 40.5 0.71

Weight at 36 weeks, grams 14 2378.5 393 12 2542 472.5 0.23

Weight %ile 36 weeks 14 18 20 12 27.5 31 0.14

Length at 36 weeks, cm 14 43 2.2 12 45.75 3.65 0.09

Length %ile 36 weeks 14 11 15 12 28 45 0.06

HC at 36 weeks, cm 14 32.1 3.5 12 33.25 2.05 0.75

HC %ile 36 weeks 14 30.5 62 12 44 29.5 0.52

https://doi.org/10.1371/journal.pone.0185950.t002

Table 3. Response to supplementation 400 IU vs. 800 IU of vitamin D3.

Variable 400 IU 800 IU P-value

N Median IQR N Median IQR

Cord 25(OH)D nmol/L 14 41.9 23.5 12 42.9 40.7 0.86

4 week 25(OH)D nmol/L 16 84.6 42.9 16 105.3 46.9 0.048

8 week 25(OH)D nmol/L 11 114.1 145.5 8 138.78 103.3 0.3

4 week PTH pg/ml 16 39 27 16 41 23.5 0.82

8 Week PTH pg/ml 12 32.5 28.5 10 40 23 0.49

4 week Ca++ mg/dL 16 9.9 0.6 16 10.15 0.5 0.33

8 week Ca++ mg/dL 12 10.3 0.3 10 10.15 0.5 0.22

Change in 25(OH)D Cord to 4 week, nmol/L 14 45.7 38.4 12 71.9 62.9 0.27

Change in 25(OH)D Cord to 8 week, nmol/L 9 65.1 39.1 6 72.6 122.3 0.38

Length of Stay (days) 16 52 21 16 59 58.5 0.44

TPN exposure (weeks) 16 1 1 16 1 1 0.45

https://doi.org/10.1371/journal.pone.0185950.t003
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(likely due to reduced sample size) higher percentile ranking for weight at 36 weeks CGA (28th

vs. 18th percentile respectively, p = 0.14), again without a statistical difference. There were no

significant differences in adverse outcomes between the two groups for hyperbilirubenimia

requiring phototherapy (15 in each dose group p = 1), need for chronic diuretics (2 in each

dose group, p = 1), or chronic lung disease (400 IU group 6, 800 IU 3, p = 0.43).

Calcium metabolism and DEXA scan

There was no difference in serum calcium levels or hypercalcemia at any point between the

two groups (Fig 2). While there was no difference in bone mineral density (BMD) between the

two groups, a higher proportion of infants in the 400 IU group had global DEXA bone mineral

content (BMC) measurements <10 percentile (56% vs 16% p = 0.04) [34]. DEXA Fat and Fat

Free Mass was not different between the two groups (p = 0.44) Mean corrected gestational age

at DEXA was 39.5 weeks and was not different between the two groups.

Dietary vitamin D intake

Vitamin D intake from diet was calculated for subjects by week of study. There were statisti-

cally but not clinically significant differences in the intake of vitamin D from diet favoring the

400 IU group during the 1st and 7th weeks of the study (Table 4). No significant trends were

associated with season of birth or with PTH level (measured at 4 and 8 weeks) at any study

time point.

Fig 2. Mean calcium levels and 2 SD bars. Mean calcium (mg/dL) levels were not different at any time point during

supplementation with 400 or 800 IU of vitamin D.

https://doi.org/10.1371/journal.pone.0185950.g002
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Results for infants <1200 grams at birth

As some of the smallest and youngest patients to be enrolled in a vitamin D trial, infants in the

study<1200 grams at birth were evaluated for 25(OH)D3 status and response to supplementa-

tion regardless of supplementation group, and compared to the larger infants in the study.

These results are shown in Table 5.

Discussion

Our study demonstrated a significant improvement in 25(OH)D3 status of premature infants

with vitamin D3 supplementation, with a higher proportion of infants in the 800 IU group

achieving desired serum 25(OH)D3 concentrations above 75 nmol/l at 4 weeks. Our group of

preterm infants at birth had suboptimal vitamin D status with the median of both groups dem-

onstrating levels below 75 nmol/l. Preterm infants fed breast milk or formula without supple-

mentation have been shown in previous studies to have decreasing levels over the subsequent

Table 4. Weekly dietary vitamin D Intake by group.

Vitamin D Intake

IU/day

400 IU 800 IU p-value

N Median IQR N Median IQR

Week 1 16 233 116 16 126 117 0.046

Week 2 16 267 109 16 289 196 0.75

Week 3 16 327 154 16 351 142 0.99

Week 4 16 357 186 16 329 190 0.64

Week 5 15 399 244 14 313 266 0.44

Week 6 14 455 174 10 245 220 0.11

Week 7 11 412 291 9 238 95 0.04

Week 8 9 380 350 7 339 134 0.17

https://doi.org/10.1371/journal.pone.0185950.t004

Table 5. Characteristics of infants <1200 grams as compared to the remainder of the cohort.

Variable Birth Weight <1200 grams Birth Weight > = 1200 grams

N Median IQR N Median IQR

CGA at Birth weeks 8 26.65 4.48 24 31.35 1.7

Birth Weight grams 8 900 387 24 1513 282

Birth Weight %ile 8 35.5 18 24 37 41.5

Birth Length cm 8 32.9 3.5 24 40.75 3.5

Birth Length %ile 8 11.5 13 24 24.5 50.5

Birth HC cm 8 24.75 4.15 24 28.2 2.25

Birth HC %ile 8 16 34 24 36 41

Cord 25(OH)D nmol/l 4 32.45 22.67 22 45.8 31.4

4 week 25(OH)D nmol/l 8 95.77 27.6 24 88.96 63.7

8 week 25(OH)D nmol/l 7 148.11 126 12 117.59 105.7

4 week PTH pg/ml 8 41.5 46.5 24 38.5 22.5

8 Week PTH pg/ml 7 35 11 15 37 33

4 week Ca++ mg/dL 8 10.05 0.85 24 10.05 0.55

8 week Ca++ mg/dL 7 10.4 0.7 15 10.2 0.3

Change in 25(OH)D Cord to 4 week nmol/l 4 51.84 44.9 22 46.6 52.4

Change in 25(OH)D Cord to 8 week nmol/l 4 84.26 122.3 11 66.69 127.3

https://doi.org/10.1371/journal.pone.0185950.t005
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weeks (28%) or to maintain their 25(OH)D status at suboptimal levels [32]. We showed signifi-

cant improvements in vitamin D status between the groups supplemented with 400 IU and

800 IU at four weeks of age. As the number of participants in each group decreased over time,

we believe this warrants further investigation. After eight weeks of supplementation, the group

of infants supplemented with 400 IU of vitamin D3 had 27% of infants with levels of 25(OH)

D3 less than <75 nmol/l as compared to only 11% of infants with 25(OH)D <75 nmol/l in the

group supplemented with 800 IU D3. (p = 0.59) Natarajan et al reported improvement in 25

(OH)D levels in preterm infants 28–34 weeks when using a target of>50 nmol/l in a group

supplemented with 800 IU as compared to 400 IU. 67% of this cohort supplemented with 400

IU daily had levels <50 nmol/l at the completion of the study period [35]. A notable difference

between this study and ours is that in Natarajan’s intervention the dose of vitamin D supple-

mentation was reduced to account for dietary intake of vitamin D and the total intake of vita-

min D was 400 IU or 800 IU. In our study supplementation of vitamin D was in addition to

dietary vitamin D leading to greater total daily intake. In our study, several infants in the 400

IU group had levels lower than cord levels at both 4 and 8 weeks, but no infants in the 800 IU

group had a decrease in 25(OH)D levels, evidence that 400 IU of supplementation in this high-

risk group may not be adequate.

The AAP and the IOM support maintaining 25(OH)D levels >50 nmol/l in order to pro-

mote optimal bone health [5,6,8]. While both study populations did achieve this lower median

target with supplementation at either 400 or 800 IU of vitamin D3 by the fourth week of study

intervention, a number of individual subjects in both groups did not achieve this target by four

weeks (n = 4) of study intervention. This highlights our concern that while the described inter-

vention at either dose is successful for achieving mean targets >75 nmol/l in both groups in

composite, individual subjects remain at risk for bone hypo-mineralization (rickets or bone

disease of prematurity) despite standard (400 IU) or higher dose (800 IU) intervention.

Bone health has long been the primary association with vitamin D in infants and children.

Initial studies of and recommendations for vitamin D intake were designed to prevent rickets

in term infants targeting a serum 25(OH)D level of>50 nmol/l [36,37]. The preterm popula-

tion of patients is at high risk for bone disease of prematurity, and improving delivery of vita-

min D may have a positive impact on bone health. Improving vitamin D alone is not adequate

to prevent poor bone mineralization; this physiology is also dependent on delivery of appropri-

ate amounts and ratios of calcium and phosphorus in the parenteral and enteral diet, as well as

a patient’s over all nutrition status [21]. Elevation of alkaline phosphatase has historically been

associated with bone disease of prematurity however in our practice we have found that this

marker normalizes in VLBW populations given improved calcium and phosphorus from birth

and therefore lacks sensitivity to more subtle variations in bone health status in this patient

population. No significant difference was appreciated in PTH at either 4 or 8 weeks between

the two dosing groups. This may be due to lack of maturity of the PTH axis in infants of this

gestational age or reflective of the overall 25(OH)D status of each group with small numbers

not being powered to reach significance.

Evaluation of bone density by DEXA scan is one of several methods available to evaluate

bone health in premature infants. Rigo et al have described detailed bone density curves with

DEXA for preterm infants allowing for standardization of evaluation in this population [34].

In other measures of preterm infant growth, measurements below the 10th percentile indicate

intra- or extra-uterine growth failure [38,39]. Using this 10th percentile standard, a signifi-

cantly higher proportion of infants in the 400 IU vitamin D group were at risk for low bone

density than their peers in the 800 IU dosing group (56% vs 16% p = 0.04 n = 16). Other meth-

ods of evaluating bone health include ultrasound and chemical markers in serum and urine

such as alkaline phosphatase or osteocalcin and deoxypyridinoline, which were outside the
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scope of this study [40,41]. Of note, there is no gold standard of evaluation in this challenging

population [40,42].

No patients developed hypervitaminosis D as defined by tetany, hypercalcemia, or clinical

intolerance of study drug on either dose, even with the wide variation in response to supple-

mentation in the two populations with a maximum increase in 25(OH)D level of 252.7 nmol/l

in the 800 IU D3 group [38], and a minimum change in 25(OH)D level of -2.87 nmol/l in the

400 IU group. It is likely that for a proportion of high-risk preterm infants a dose of 400 IU is

adequate for normal cellular and tissue function, however there is a significant proportion of

the population which does not adequately respond to this dose and in which a higher dose

such as 800 IU or 1200 IU may be advantageous. As reported by Gallo et al, a population of

healthy breastfed infants required up to 1600 IU daily to achieve increased plasma 25(OH)D

concentrations of>75 nmol/L [43]. No studies using doses from 400–1600 IU daily in this

patient population have reported undesired side effects [29,35,43–45].

The smallest infants in our study had responses to vitamin D3 supplementation similar to

their larger peers despite dosing in total IU per day instead of a weight based dosing. This

response without evidence of overdose at either dosing level in the smallest infants helps to

support the safety and efficacy of these recommended doses for infants less than 1200 grams, a

question that has been raised by others [6].

After 8 weeks of supplementation of preterm infants with 800 IU, 11% of infants have 25

(OH)D levels below 75 nmol/l, the level that many including the Endocrine Society consider

optimal for both skeletal and extra-skeletal effects [9,46]. This, coupled with the lack of danger-

ously high levels or clinical side effects reported with dosing between 400–1600 IU in preterm

infants, lead us to argue for consideration of and additional evaluation of the 800 IU dose of

vitamin D in addition to vitamin D from diet sources in this high-risk hospitalized patient

population. Reports of clinical effects from vitamin D overdose in infants and children are

quite rare. In a case series of 7 children aged 0.7–4.2 years, Kara et al report intake between

66,000 and 800,000 IU daily for periods of up to two months in an erroneously produced fish

oil product containing 800,000 IU of vitamin D/dose. Serum 25(OH)D mean levels were

1547.5 nmol/l and patients presented with hypercalcemia, vomiting, anorexia, fever, weakness

and constipation. All patients were hospitalized for IV therapy but no lasting complications

were documented [47]. Jones has outlined a mechanism by which this toxicity may present

arguing that 25(OH)D3 at these concentrations displaces 1-alpha,25(OH)2D from vitamin D

binding protein leading to increased gene transcription [48]. Given serum response to such

high doses over a 2-month period, it is unlikely that response would be toxic or lead to hyper-

vitaminosis D when dosing at 800 IU/day throughout the course of NICU hospitalization.

One group of neonates would be at risk from such dosing recommendations that is infants

with Williams syndrome, formerly known as idiopathic hypercalcemia of infancy, a genetic

syndrome associated with a deletion of 27 genes on chromosome 7 [49]. These patients are

often dysmorphic with a wide and slack mouth, underdeveloped mandible, elfin facies, supra-

valvular aortic stenosis, low set ears, craniostenosis, and increased bone density [50]. Patients

will have hypercalcemia and some will show abnormal accumulation of 25(OH)D, however

most will have normal 25(OH)D2 and 25(OH)D3 levels while hypercalcemic or normocalce-

mic [50]. Supplementation of these patients with vitamin D would not be advisable. Hospital-

ized preterm infants will have early and often frequent evaluation of calcium levels in the

course of their normal care, so inadvertent hypercalcemia is unlikely to go undiagnosed in a

<32-week preterm patient population.

Trends toward improved growth in both length and weight are also important outcomes

that require additional exploration. Growth in the NICU period has a direct correlation to

neurodevelopmental outcomes, and is critical to an infant’s long-term success [51]. Additional
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research is necessary, particularly for smaller and more preterm infants who are at high risk

for development of bone demineralization, rickets of prematurity, extrauterine growth failure,

and bronchopulmonary dysplasia, all of which have the potential to be positively impacted by

improved 25(OH)D levels.

This study is the only study to date to evaluate infants as small as 24 weeks EGA; others

have reported data on infants 28 weeks and greater. These infants are the highest risk infants

and are in need of additional evaluation of vitamin D status and response to supplementation.

Our DEXA scan evaluation of these infants at term corrected age is an important indicator of

both short term and long-term benefits of improvement in vitamin D status. Our study, how-

ever; does have limitations. We were only able to evaluate 32 infants, which limits the statistical

significance of some of our outcomes. Additionally, a number of infants (16) did not complete

the outpatient DEXA scan despite multiple attempts to schedule and reschedule the scan and

to accommodate any special travel or transportation needs of the family. We were unable to

adequately assess maternal vitamin D intake during pregnancy in the cohort studied, as mater-

nal records often did not report the amount of vitamin D in the prescribed prenatal vitamin.

However, given that the majority of prenatal vitamins have 400 IU of vitamin D and this has

not been shown to increase levels in pregnancy this likely does not have any impact on our

described results.

Conclusions

Administration of 400 or 800 IU of vitamin D3 improves vitamin D status at 4 weeks as com-

pared to cord levers in high risk infants <32 weeks EGA at delivery. Dosing vitamin D3 daily

at 800 IU in this population significantly improves 4 week 25(OH)D3 status as compared to a

400 IU daily dose. Additionally, risk of bone density less than the 10th percentile as measured

by DEXA at term corrected age is decreased with a dose of 800 IU daily while in the NICU.

Although this study was underpowered to show a statistical difference between the two dosing

levels at all points of evaluation, not all infants achieved levels of 75 nmol/L at 4 or 8-week

measurements, and a number of infants have levels <50 nmol/l at 4 weeks. There was also a

trend towards improvement in linear growth in the infants dosed at 800IU of vitamin D3 daily

as compared to the lower dose. Our results support a daily supplementation dose of 800 IU as

compared to 400 IU in this at risk extremely preterm patient population. Evidence continues

to mount in support of this supplementation of preterm infants with vitamin D early in hospi-

talization [44]. Vitamin D toxicity is a rare event, and tolerance of even higher doses of vitamin

D have been reported in a variety of populations [9,52]. Alternatively, the risks of recommen-

dation of too low a dose may have significant impact on individual and population health with

disease outcomes associated with low vitamin D status, including hypocalcemic seizures,

growth restriction, fractures, and elevation of serum parathyroid hormone [53–55]. In fact,

some authors, including Heaney, have argued that a physiological reference for optimal vita-

min D status would be between 100 and 130 nmol/L stating that based on physiological out-

comes such as normalization of PTH and adequate vitamin D supply in breast milk this level is

safe for disease prevention without association of toxicity [56]. Other authors have recom-

mended loading doses to more quickly improve vitamin D status in at risk populations, a strat-

egy that merits further investigation [57].

Our results agree with previous evidence that supports an association between vitamin D

status, gestational age, and growth in premature infants. The optimal dose of vitamin D sup-

plementation for preterm infants during the early neonatal period warrants further investiga-

tion, but it is reasonable and safe to recommend daily supplementation in addition to dietary

intake with 800 IU of vitamin D to high-risk preterm infants while hospitalized in the NICU in
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order to target a level of 25(OH)D that is >75 nmol/l, as we have shown this to improve bone

health defined by DEXA in this at-risk population.
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