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Abstract

A decade ago, DNA barcoding was proposed as a standardised method for identifying existing species and speeding
the discovery of new species. Yet, despite its numerous successes across a range of taxa, its frequent failures have
brought into question its accuracy as a short-cut taxonomic method. We use a retrospective approach, applying the
method to the classification of New Zealand skinks as it stood in 1977 (primarily based upon morphological
characters), and compare it to the current taxonomy reached using both morphological and molecular approaches.
For the 1977 dataset, DNA barcoding had moderate-high success in identifying specimens (78-98%), and correctly
flagging specimens that have since been confirmed as distinct taxa (77-100%). But most matching methods failed to
detect the species complexes that were present in 1977. For the current dataset, there was moderate-high success
in identifying specimens (53-99%). For both datasets, the capacity to discover new species was dependent on the
methodological approach used. Species delimitation in New Zealand skinks was hindered by the absence of either a
local or global barcoding gap, a result of recent speciation events and hybridisation. Whilst DNA barcoding is
potentially useful for specimen identification and species discovery in New Zealand skinks, its error rate could hinder
the progress of documenting biodiversity in this group. We suggest that integrated taxonomic approaches are more
effective at discovering and describing biodiversity.
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Introduction

The ability to accurately identify and describe species
underpins all biological research, yet the traditional
morphological-based taxonomic approaches have only
managed to describe 1.2-1.5 million species over the past 250
years [1,2], a mere 10% of the Earth’s predicted eukaryotic
diversity [2]. It is estimated that persisting with such time-
consuming and cumbersome approaches would not result in a
comprehensive inventory of the world’s biodiversity for at least
~1000 years [3,4], and perhaps much longer given the sharp
decline in the number of specialist taxonomists and funding for
taxonomic research [5,6]. The DNA barcoding approach was
introduced in 2003 by Paul Hebert and colleagues [7,8] as a
way to overcome the existing taxonomic ‘impediment’ or
‘bottleneck’ [7,9]. It promised to revolutionise the identification
of existing species and speed the discovery of new species,
using a standardised molecular marker (a 650bp segment of
the cytochrome c oxidase I [COI] mitochondrial DNA gene) and
analysis method.

In contrast to the limited number of discrete morphological
characters available for identifying and discriminating species,
the four alternate nucleotides (A, T, C, G) and 650 nucleotide
positions in the COI gene provide an almost infinite number of
potential combinations [7]. Unlike many morphological
characters which are relevant only to specific taxonomic
groups, sequence data is comparable across the entire animal
kingdom [4], prompting the analogy to the Universal Product
Codes (UPC) that uniquely identify commercial products and
the suggestion that species could be identified based on their
COI ‘barcode’ [7]. A significant advantage of the approach is
that it works in situations that would confound many
morphological approaches: specimen fragments [10-12],
species with multiple life stages [13], and sexual dimorphism or
conserved, variable or plastic morphology [14-16]. Importantly,
advances in high-throughput sequencing technology continue
to increase the speed, and decrease the cost, of generating
COI reference libraries for the world’s fauna [17,18].

The ability to delimit species is an essential component of
both species identification (hereafter referred to as specimen
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identification; [19]) and species discovery. A critical assumption
of the DNA barcoding approach is that the level of intraspecific
genetic variation is less than that evident among species
[7,8,20]. This distinction between intra- and inter-specific
divergences, termed the ‘barcoding gap’ [21], enables unknown
sequences to be assigned to an existing species or flagged as
a suspected new species. The threshold above which a query
sequence is considered as distinct from a reference sequence
has variously been suggested as 2-3% [7,8], 10x the mean
intraspecific divergence [20], or calculated independently for
each empirical dataset (e.g. Automatic Barcode Gap Discovery
[ABGD], [22]). Research over the past decade has
demonstrated that the accuracy of species delimitation is
influenced by the quality and completeness of the reference
database, the geographic extent of sampling, the intensity of
intraspecific sampling, and the timing of divergence among
closely-related species [23-27].

The traditional DNA barcoding approach relies upon a single
mtDNA gene region and experiences inherent difficulties in
instances of introgression, incomplete lineage sorting,
pseudogenes, gene duplication, horizontal gene transfer, and
mtDNA selection [28-32]. Despite these acknowledged
limitations, continued development of the DNA barcoding
method (e.g. improved analytical and statistical approaches,
the use of other mtDNA and nuclear gene regions) have
enabled it to gain widespread acceptance with several
international collaborations and consortiums dedicated to
barcoding all animal life (BOLD, CBOL, iBOL). Yet, the
numerous purported successes of the method [20,26,33-41]
have been tempered by its frequent failure across a broad
range of animal groups [21,25,42-48]. Few studies have
reported complete (i.e. 100%) success [35], and often the basis
on which a particular study is designated as a success or
failure is subjective.

Aside from instances involving inherent methodological
issues (e.g. introgression, incomplete lineage sorting), on some
occasions ‘failures’ are reported as successes, with
researchers: i) questioning the quality or reliability of the
existing reference datasets [4], or ii) citing instances of intra-
and inter-specific overlap as evidence (or proof) for the
presence of species complexes or distinct taxa that have been
overlooked previously [20,26,33,49]. This has led critics to label
DNA barcoding as a method that is set-up so that it ‘cannot fail’
[50]. Only a subset of studies subsequently use integrated
taxonomic approaches to assess the validity of flagged species
complexes and suspected new taxa, making it difficult to
determine whether they represent problems with the existing
taxonomy [16,26,51] or the DNA barcoding approach itself
[48,52]. Distinguishing between these alternate possibilities is
often difficult as the ‘true’ taxonomy is generally unknown, and
represents the actual focus of the DNA barcoding study. Here
we outline a case study where we use a retrospective
approach that enables us to assess the potential value of the
DNA barcoding method as a short-cut approach to specimen
identification and species discovery in New Zealand lizards.

We apply the DNA barcoding approach to the New Zealand
skink fauna (Scincidae) as it stood prior to the implementation
modern molecular techniques [53], and compare it to the

current taxonomy that has been reached following 25 years of
intensive, integrated taxonomic study [54-76]. In 1977, Hardy
[53] completed a comprehensive, primarily morphologically-
based revision of New Zealand skinks, recognising 23 distinct
species or taxa (Table S1). The conserved morphology of this
radiation has led to a turbulent taxonomic history, but Hardy’s
[53] revision provides a convenient baseline of the taxonomic
resolution possible from morphological characters. Studies
combining morphological and molecular (allozymes, mtDNA,
nuclear DNA) approaches have resulted in the splitting of
species complexes and discovery of new taxa, leading to the
current recognition of 55 species, several of which remain to be
formally described (Table S1; [66,75]).

This approach enables us to: i) determine whether species
complexes in the 1977 dataset are correctly identified and
flagged, ii) compare the outcome of the DNA barcoding method
on the current dataset with that reached through an integrated
taxonomic approach, and iii) assess whether purported new
taxa discovered since 1977 can be correctly assigned as new
or existing taxa through DNA barcoding. This will be achieved
using 296 New Zealand skink COI sequences representing all
23 taxa recognised in 1977 (1-82 sequences per species) and
48 of the 55 currently recognised species (1-27 sequences per
species) (Table S2). Our study represents one of the few DNA
barcoding studies conducted on reptiles ([18], but see 77).

Materials and Methods

Sampling and COI sequencing
Samples were obtained, with permission, from the National

Frozen Tissue Collection (NFTC, Victoria University of
Wellington, New Zealand; associated voucher specimens are
housed at Te Papa) and ethanol-preserved specimens housed
at Te Papa Tongarewa (National Museum of New Zealand,
Wellington) (Table S2). These institutions donated the tissue
samples for use in this study. The only extant species not
included were four recently described species (O. burganae, O.
judgei, O. repens, O. toka; [67,74]), a recently recognised
undescribed species (O. aff. polycroma ‘Clade 2’; [70]), and
two presumed distinct taxa (each known only from a single
specimen: O. aff. inconspicuum ‘Okuru’ [67]; O. ‘Whirinaki’
[75]). For the phylogenetic analyses, outgroup samples from
New Caledonia and Australia were included, based on broader
phylogenetic studies of Eugongylus Group skinks in the region
[66] (Table S2).

Total genomic DNA was extracted from liver, muscle or tail
samples using a modified phenol-chloroform extraction protocol
[78]. Skink specific primers were developed to amplify and
sequence a ~710bp fragment of the COI mtDNA gene (Table
S3). PCR and sequencing were conducted as outlined in
Greaves et al. [61]. PCR products were purified using ExoSAP-
IT (USB Corporation, Cleveland, Ohio USA). The purified
product was sequenced directly using a BigDye Terminator
v3.1 Cycle Sequencing Kit (Applied Biosystems) and then
analysed on an ABI 3730XL capillary sequencer. Sequence
data were edited and aligned using GENEIOUS v5.4 [79]. We
translated all sequences to confirm that none contained
premature stop codons. The sequence data were submitted to
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GenBank under accession number KC349552-KC349853
(Table S2).

Barcoding gap analyses
Intra- and inter-specific genetic distances were calculated in

MEGA5 [80] using the Kimura 2-Parameter model (K2P).
SPECIES IDENTIFIER v1.7.8 (http://taxondna.sourceforge.net/; [43])
was used to calculate the level of overlap (total and 90%)
between the intra-specific and inter-specific genetic distances.
The program ABGD (http://wwwabi.snv.jussieu.fr/public/abgd/
abgdweb.html; [22]) was used to determine the genetic
distance threshold for species delimitation, following the
methodology of Jörger et al [51] and Puckridge et al. [41].

As some overlap between intra- and inter-specific
divergences has become the expectation, rather than a rare
exception [21,46], its presence does not necessarily preclude
specimen identification [19]. This is because specimen
identification relies upon the presence of a ‘local’ barcoding
gap (i.e. a query sequence being closer to a conspecific
sequence than a different species), rather than the ‘global’
barcoding gap (i.e. a distance threshold set for all species) that
is required for species discovery [19,46]. Plots of maximum
intra-specific distance against minimum inter-specific distance
(i.e. nearest neighbour; [81]) are used to investigate the
presence of a local barcoding gap, with points below the 1:1
slope representing instances where it is absent [19,26,40,49].
We used Analysis of Variance (ANOVA) to compare the level
of intraspecific divergence present in the 1977 and current
taxonomy datasets.

Specimen identification
So as to not confound specimen identification and species

discovery [19], we consider each separately. We employed
three different approaches to specimen identification:
Neighbour-Joining (NJ)-based, distance-based, and matching
methods.

NJ-based method.  This involved the modified version of the
NJ method of Hebert et al. [7], originally developed by Meier et
al. [43] (“tree-based identification, revised criteria”). NJ trees
were generated in MEGA using K2P genetic distances and
1000 bootstraps. An exemplar sequence was designated for
each species [35,46], representing (where possible) the sample
that was geographically closest to the type locality for the
species (Table S2). The criteria outlined in Table S4 were used
to determine whether specimen identification was successful,
ambiguous, or a failure (i.e. mis-identification). For the 1977
dataset, we compared the specimens listed as ambiguous to
the current taxonomy to determine whether they were correctly
flagged as representing new species.

Distance-based method.  A dataset was generated
containing only the exemplar sequence for each species. Using
SPECIES IDENTIFIER, we calculated the genetic distance to the
nearest exemplar sequence for each query specimen.
Identification success or failure was assessed against a series
of distance thresholds (2, 4, 6, 8, 10%). For the 1977 dataset,
we determined whether the specimen queries that exceeded
the respective distance threshold were correctly flagged as
new/distinct species relative to the current taxonomy.

Matching methods.  SPECIES IDENTIFIER was used to
determine the success of three matching approaches (“Best
Match”, “Best Close Match”, “All Species Barcode”) originally
developed by Meier et al. [43]. The criteria used to assess
whether specimen identification was successful, ambiguous, or
a failure are outlined in Table S4.

Species discovery
Thirteen suspected new taxa (morphologically distinct forms,

or discoveries from remote regions of the South Island) have
been discovered in New Zealand since 1977 (Table S5).
Integrated taxonomic approaches have confirmed some as
new species, while others simply represent morphologically
distinct forms of existing species [66,75] (Table S5). We used
the 1977 dataset, and a modified version of the current
taxonomy dataset (containing only taxa/populations known in
1977), to assess whether the NJ-based and distance-based
approaches would have correctly identified these suspected
new taxa as new or existing species.

Results

Barcoding gap analyses
Both the mean (1977: 3.3 ± 0.75, Current: 1.9 ± 0.29;

ANOVA: F1,61 = 4.57, P = 0.037) and maximum (1977: 5.6 ±
1.25, Current: 3.0 ± 0.45; ANOVA: F1,61 = 5.51, P = 0.022)
intraspecific genetic distances were higher under the 1977
taxonomy compared to the current taxonomy (Table S5, Table
S6). This resulted in near complete overlap between intra- and
inter-specific genetic distances for the 1977 dataset, and the
absence of a barcoding gap (Figure 1, Table 1). Although some
overlap was still evident under the current taxonomy (4-10% of
observations), there was a clearer distinction between the intra-
and inter-specific genetic distances (Figure 1, Table 1).

For the 1977 taxonomy, a local barcoding gap was not
present for six species (27%; Figure 2). Five of these instances
related to species complexes that have been split since 1977
(aeneum, lineoocellatum-chloronoton, oliveri, nigriplantare
maccanni; Table S1), and one to hybridisation among otagense
and waimatense [68]. However, even though these complexes
have been revised in the current taxonomy, a local barcoding
gap was absent for six species (5 [12%] below the line, 1 [2%]
on the line; total 14%; Figure 2). These instances involved
recent speciation (infrapunctatum, lineoocellatum-chloronoton,
smithi-Microlepis; [61,62,69]) and hybridisation among
otagense and waimatense [68].

Specimen identification
We implemented several approaches to determining the

distance threshold for species delimitation. The 10x mean
intraspecific divergence approach yielded unreasonably high
thresholds for both the 1977 (33.1%) and current datasets
(18.7%). Although the results of the ABGD approach were
somewhat inconclusive, the most consistent threshold range
was 2.3-3.8%. Thus, we used a broad range of distance
thresholds (2, 4, 6, 8, 10%) to assess the accuracy of
specimen identification using NJ-based, distance-based
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Figure 1.  The barcoding gap, the overlap of intra- and inter-specific K2P genetic distances.  Based on the (A) 1977
taxonomy, and (B) current taxonomy of New Zealand skinks.
doi: 10.1371/journal.pone.0077882.g001
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(distance to species exemplar sequence) and matching
methods (best match, best close match, all species barcode).

NJ-based.  The NJ approach correctly identified 56% of
specimens as existing species, with a further 42% flagged as
distinct species (of these, 97% have subsequently been
confirmed as new species) (Table 2, Figure S1). This resulted
in an overall success rate of 97%, similar to that found based
on the current taxonomy (96%; Table 2, Figure S2). The
instances of failure related to hybridisation (otagense-
waimatense) and recent species radiations (Figure S1, Figure
S2).

Distance to species exemplar.  The specimen identification
‘success’ (= correct exemplar, within threshold + correctly
flagged as new species) for the 1977 dataset ranged between
78-89%, depending on the threshold used (Table 3). The lower
thresholds were more successful at flagging new species, but
conversely had higher error rates for incorrectly flagging
specimens are distinct (Table 3). Identification success for the
current dataset ranged between 53-96%, with the rate of
incorrect flagging decreasing with the threshold employed
(Table 3).

Matching methods.  Despite the taxonomic issues evident
in the 1977 dataset, high levels of success (86-98%) were
reported with the Best Match and Best Close Match
approaches (Table 3). The rate of success was similar in the
current dataset (88-99%), with the instances of failure generally
involving hybridisation (otagense-waimatense) or recent
radiations (Table 3).

In contrast, the All Species Barcode approach was much
more effective at identifying the taxonomic issues present in
1977, with a low success rate (26-30%) reported across all
distance thresholds (Table 3). Yet, only moderate success
(63-70%) was evident for the current taxonomy, due to a high
number of ambiguous sequences stemming from the absence
of a local or global barcoding gap (Table 3).

Species discovery
To examine the effectiveness of the DNA barcoding

approach for species discovery, modified versions of both
datasets were used that contained only taxa that were known
in 1977. The NJ method correctly assigned all (100% success)
suspected new taxa discovered since 1977 as either part of an
existing species or correctly flagged as a new species (Table
2). The Distance to Species Exemplar approach was less
accurate, with the success depending on the dataset used and

the distance threshold employed (1977: 77-95%, Current:
35-87%; Table 3).

Discussion

Barcoding gap
We failed to find evidence for either a local or global

barcoding gap for New Zealand skinks. The presence of a
barcoding gap is essential for accurate species delimitation,
and underlies both specimen identification (local gap) and
species discovery (global gap) [19,46]. Overlap between intra-
and inter-specific genetic distances is often attributed to issues
with the existing taxonomy or quality of the reference dataset
[20,49]; however, our retrospective approach enables us to
exclude these as explanations for the absence of a barcoding
gap in this group.

For the 1977 dataset, the near complete overlap of intra- and
inter-specific genetic variation was due to the widespread
presence of unrecognised species complexes (Table S1). Yet,
while these complexes were resolved in the current taxonomy,
due to hybridisation (otagense and waimatense; [68]) and
several recent speciation events (infrapunctatum,
lineoocellatum-chloronoton, smithi-Microlepis; [61,62,69]) a
barcoding gap was still absent. The limited potential for species
delimitation in New Zealand skinks might point to potential
shortcomings of the traditional (i.e. COI-only) DNA barcoding
approach, rather than to issues related to the quality of existing
reference taxonomies or datasets. The initial studies
documenting the presence of distinct barcoding gaps in
animals [7,8,20] understated the degree of intraspecific genetic
divergences (due to limited sampling within species) and
overstated the level of interspecific distances (due to a lack of
closely-related species) [21,52,82]. Numerous empirical studies
employing comprehensive sampling within taxonomic groups
[21,25,26,46,49,52], including the present study, have
supported theoretical predictions [23,27] that the overlap
between intra- and inter-specific genetic distances is a
common occurrence in recent radiations (but see 39).

The concept of a barcoding gap is directly linked to the
search for a set distance threshold at which to delimit species
within DNA barcoding studies. Yet, due to factors such as
population size, mutation rate and biogeographic history, there
is no a priori reason to expect that divergence times within or
among lineages will be consistent [19]. For instance, the level
of intraspecific genetic variation in amphibians and reptiles

Table 1. Overlap in the intra- and inter-specific genetic distances in New Zealand skinks.

Dataset No. samples Total Overlap 90% Overlap

  Overlap (range) % Observations Overlap (range) % Observations

1977 taxonomy 256 21.28% (0-21.28%) 99.9% 8.49% (10.68-19.17%) 88.1%

Current taxonomy 296 11.03% (0-11.03%) 10.4% 4.05% (6.26-10.31%) 4.1%

Based on the 1977 taxonomy and current taxonomy. The 90% overlap excludes the largest 5% of the intra-specific distances and the lowest 5% of the inter-specific
distances.
doi: 10.1371/journal.pone.0077882.t001
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Figure 2.  Maximum intra-specific K2P genetic distance in relation to the nearest neighbour distance.  Based on the (A) 1977
taxonomy for New Zealand skinks, and (B) current taxonomy. Points that fall above the 1:1 line indicate the presence of a local
barcode gap, whereas this local barcode gap is absent for the points below the line.
doi: 10.1371/journal.pone.0077882.g002
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differs significantly among the Northern and Southern
Hemisphere’s due to divergent climatic histories over the past 5
myr’s [83,84]. For New Zealand skinks, it is known that there
were several periods of speciation; the first occurring after the
initial colonisation of the country ~16-19 mya, followed by more
recent events in response to Pliocene tectonic uplift in the
South Island and Pleistocene glacial cycles [66]. It is these
more recent speciation events that have led to the absence of
a local (Figure 2) or global (Figure 1, Table 1) barcoding gap in
New Zealand skinks.

Specimen identification
Our retrospective approach in New Zealand skinks highlights

the importance of the quality of the reference database for
specimen identification. Database quality is reliant on both i)
the number of taxa sampled and the level of intra-specific
sampling [24], and ii) the ‘accuracy’ of the taxonomy used
[29,30,43,50]. As our study was based on detailed within-
species sampling with complete (1977 dataset) or near-
complete (current dataset) coverage of known taxa, we could
therefore focus on the impact of taxonomic accuracy on
specimen identification.

Specimen identification success based on the 1977
taxonomy was moderate to high across the NJ-based (97%),
distance-based (78-89%), and matching methods (86-98% for
Best Match and Best Close Match). Importantly, the NJ- and
distance-based approaches could flag specimens that were
putatively distinct from known taxa. The NJ method was highly
accurate (97%) in regard to which specimens it flagged as new,
while the threshold used in the Distance to Exemplar approach
influenced (inversely) the number (64-140) and accuracy
(66-97%) of specimens flagged. However, the matching
methods struggled with the taxonomic issues present in the
1977 dataset. While the All Species Barcode approach

Table 2. Success rate for the NJ-based (Neighbour-Joining)
approach to specimen identification and species discovery.

 1977 Taxonomy Current Taxonomy

Specimen identification   

Success 56% (130) 96% (237)

Ambiguous 42% (98) 2% (7)

Correctly flagged? 41% (95) NA

Misidentified 2% (5) 1% (4)

Species Discovery- new taxa since
1977

  

Success 100% (40) 100% (40)

Correctly listed as existing species 4 29

Correctly flagged as new species 11 11

Correctly flagged, but part of known
complex

25 NA

Based on the 1977 taxonomy and current taxonomy.
doi: 10.1371/journal.pone.0077882.t002

correctly detected the presence of species complexes (i.e. low
success rate, 26-30%), the Best Match and Best Close Match
methods reported high ‘success’ despite these taxonomic
issues. This situation highlights a novel instance of the ‘closest
match fallacy’ [50], whereby specimens with close ‘within
threshold’ matches in the reference dataset might represent
distinct taxa if unresolved species complexes are present in the
group.

Our study of New Zealand skinks provides mixed support for
the suggestion that the DNA barcoding approach is a valid
‘short-cut’ taxonomic method compared to either the traditional
or modern, integrated approaches [9,51]. Firstly, our barcoding
study was completed in only a few months compared to the two
decades it has taken for the integrated modern approach
(Table S1). However, as outlined previously in other studies
[21,30,43,50], the barcoding approach in New Zealand skinks
could not have been implemented without a strong taxonomic
foundation, developed through traditional methods ([53]; Table
S1). Secondly, we were unable to identify an ideal distance
threshold for species delimitation. Based on the current
taxonomy, high error rates (4-47%) were evident for the 2-3%
and ABGD approaches, while the 10x intraspecific divergence
yielded an unrealistically high threshold (18.7%). Thirdly, for
the current dataset, specimen identification success ranged
from moderate (53-96%, Distance to Exemplar; 63-70%, All
Species Barcode) to high (88-99%, Best Match & Best Close
Match; 96%, NJ tree). Although the instances of hybridisation
would confound any approach relying solely on mtDNA [85], it
would be easily detected by any integrated taxonomic method
[28,31]. Finally, the absence of the barcoding gap (Figures 1,
2), or the selection of an inappropriate distance threshold
(Table 3), could led the incorrect flagging of specimens as
distinct, wasting valuable time and hindering the progress of
documenting and describing the true diversity within a group
[29].

Species discovery
The capacity for the DNA barcoding approach to assist with

species discovery has been one of the more contentious
aspects of the method [7,8,29-31]. Yet the NJ-based method
correctly assigned, as either new or existing species, all 13
taxa (represented by a total of 40 specimens) discovered in
New Zealand since 1977. In contrast, the Distance to Exemplar
method exhibited lower success, depending on the distance
threshold (35-87%). This has important implications for the
potential of this approach for species discovery, since the
exemplar method relates to the specimen closest to the type
location and is therefore taxonomically relevant. Given that the
exemplar and matching methods also had difficulties in
identifying instances of species complexes in the 1977 dataset,
these approaches might have limited utility for species
discovery in DNA barcoding studies.

Conclusions

Although DNA barcoding has not turned out to be the
panacea for resolving the taxonomic impediment, there is still
substantial value in the approach for biodiversity and
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taxonomic studies. It represents an ideal approach for
conducting quick, preliminary studies of either well-
characterised groups or poorly known taxonomic groups or
geographic regions; with the initial barcoding study providing a

framework for subsequent, and more detailed, integrated
taxonomic approaches [9]. Accordingly, DNA barcoding studies
are increasingly moving away from the traditional COI-only
approaches and incorporating sophisticated statistical

Table 3. Specimen identification success in New Zealand skinks.

Method 1977 Taxonomy Current Taxonomy

 2% 4% 6% 8% 10% 2% 4% 6% 8% 10%

SPECIMEN IDENTIFICATION           

Distance to Exemplar           

Correct exemplar, within threshold 39% (91) 47% (111) 54% (126) 58% (136) 59% (137) 53% (131) 80% (198) 92% (229) 95% (237) 96% (238)

Correctly flagged as new species 39% (92) 39% (90) 35% (82) 30% (69) 26% (62) NA NA NA NA NA

Incorrectly flagged as new species 21% (48) 12% (28) 6% (13) 1% (3) 1% (2) 46% (115) 16% (40) 4% (9) 1% (1) 0% (0)

ID as wrong species/Not flagged as
new

1% (2) 2% (4) 5% (12) 11% (25) 14% (32) 1% (2) 4% (10) 4% (10) 4% (10) 4% (10)

Best Match           

Success, within threshold 86% (219) 95% (241) 96% (246) 98% (249) 98% (250) 88% (256) 96% (279) 98% (283) 98% (284) 99% (285)

Success, outside threshold 12% (31) 3% (9) 2% (4) >1% (1) 0% (0) 10% (29) 2% (6) 1% (2) <1% (1) 0% (0)

Ambiguous 1% (3) 1% (3) 1% (3) 1% (3) 1% (3) 1% (3) 1% (3) 1% (3) 1% (3) 1% (3)

Misidentification 1% (2) 1% (2) 1% (2) 1% (2) 1% (2) <1% (1) <1% (1) <1% (1) <1% (1) <1% (1)

Best Close Match           

Success 86% (219) 95% (241) 96% (246) 98% (249) 98% (250) 88% (256) 96% (279) 98% (283) 98% (284) 99% (285)

Ambiguous 1% (3) 1% (3) 1% (3) 1% (3) 1% (3) 1% (3) 1% (3) 1% (3) 1% (3) 1% (3)

Misidentification <1% (1) <1% (1) <1% (1) <1% (1) <1% (1) <1% (1) <1% (1) <1% (1) <1% (1) <1% (1)

No Match 13% (32) 4% (10) 2% (5) 1% (2) <1% (1) 10% (29) 2% (6) 1% (2) <1% (1) 0% (0)

All Species Barcode           

Success 26% (67) 29% (75) 30% (76) 30% (76) 30% (76) 63% (183) 68% (197) 69% (201) 70% (202) 70% (202)

Ambiguous 61% (156) 67% (170) 68% (174) 69% (177) 70% (178) 27% (77) 30% (86) 30% (86) 30% (86) 30% (87)

Misidentification 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0) 0% (0)

No Close Match 13% (32) 4% (10) 2% (5) 1% (2) <1% (1) 10% (29) 2% (6) 1% (2) <1% (1) 0% (0)

SPECIES DISCOVERY           

Distance to Exemplar           

Success 95% 95% 82% 82% 77% 35% 80% 87% 87% 77%

Correctly grouped with existing
species

2 2 2 2 2 3 21 29 29 29

Correctly flagged as a new species 11 11 6 6 4 11 11 6 6 2

Correctly flagged, but part of a
known complex

25 25 25 25 25 0 0 0 0 0

Failure 5% 5% 18% 18% 23% 65% 20% 13% 13% 23%

Incorrectly flagged as a new
species

2 2 2 2 2 26 8 0 0 0

Incorrectly lumped with an existing
species

0 0 5 5 7 0 0 5 5 9

Using the distance-based (Distance to Nearest Exemplar) and matching methods (Best Match, Best Close Match, All Species Barcode) for New Zealand skinks based on
the 1977 taxonomy and current taxonomy. Identification success was assessed using a range of K2P distance thresholds (2, 4, 6, 8, 10%). The effectiveness of the
distance-based approach for species discovery was also investigated for the new taxa found since 1977.
doi: 10.1371/journal.pone.0077882.t003
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approaches to species delimitation (e.g. Bayesian Species
Delineation [86,87], Generalised Mixed Yule Coalescent model
[88,89], ABGD [22], Fuzzy Membership [90]), including
additional mtDNA or nuclear genes [9,51], and adopting
integrated taxonomic approaches [16,51,91]. In particular,
character-based methods, which were not part of the original
DNA barcoding approaches, have been used increasingly
across a range of taxa [9,18,92-95]. In adopting these modified
approaches, researchers are moving away from some
elements of the initial philosophy and concepts that
underpinned the DNA barcoding approach, but towards a more
robust integrated method that is better equipped to address the
current taxonomic impediment and speed the rate of species
discovery and description.

Supporting Information

Table S1.  Comparison of the current taxonomy for New
Zealand skinks with that recognised in 1977, prior to the
implementation of modern molecular techniques. Evidence
on which the current taxonomy is based: 1: allozymes, 2:
mitochondrial DNA sequence data, 3: nuclear DNA sequence
data, 4: morphological data, 5: proposed taxonomic change yet
to be confirmed.
(PDF)

Table S2.  Locality data, museum voucher specimen
information, and GenBank accession numbers for the New
Zealand skink samples used in this study. Samples with CD
or FT codes were obtained from the National Frozen Tissue
Collection (NFTC) housed at Victoria University of Wellington,
New Zealand (the associated voucher specimens are now
housed at Te Papa). Samples with RE codes were obtained
from Te Papa, National Museum of New Zealand, Wellington
(S codes refer to specimens from the former Ecology Division
collection, now housed at Te Papa). Samples with ABTC
(Australian Biological Tissue Collection) codes were obtained
from the South Australian Museum. Samples with NR and EBU
codes were obtained from the Australian Museum. Asterisks
indicate the exemplar specimens.
(PDF)

Table S3.  Oligonucleotide primers used in this study to
amplify and sequence COI in New Zealand skinks.
(PDF)

Table S4.  Query identification criteria for the NJ-based
and matching methods (modified from Meier et al. 2006).
(PDF)

Table S5.  Number of samples and geographic localities
used in the DNA barcoding study of New Zealand skinks
based on the 1977 taxonomy. (See Tables S1 and S2 for
additional details.) The level (mean ± standard error [SE], and
range) of intraspecific K2P genetic distances is shown for each
New Zealand skink species. The sample codes (see Table S2)
for the new discoveries since 1977 are indicated.
(PDF)

Table S6.  Number of samples and geographic localities
used in the DNA barcoding study of New Zealand skinks
(genus Oligosoma). (See Table S2 for additional details.) The
level (mean ± standard error [SE], and range) of intraspecific
K2P genetic distances in each New Zealand skink species. The
taxonomy follows the current New Zealand Threat
Classification listing (Hitchmough et al. 2010).
(PDF)

Figure S1.  Neighbour-joining tree (with 1000 bootstraps)
for New Zealand skinks based on the 1977 taxonomy.
Asterisks indicate the exemplar specimens for each species
(See Table S2). The locality details are provided in Table S2.
(PDF)

Figure S2.  Neighbour-joining tree (with 1000 bootstraps)
for New Zealand skinks based on the current taxonomy.
Asterisks indicate the exemplar specimens for each species
(See Table S2). The locality details are provided in Table S2.
(PDF)
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