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Abstract

5-Methylcytosine is one of the major epigenetic marks of DNA in living organisms. Some

bacterial species possess DNA methyltransferases that modify cytosines on both strands to

produce fully-methylated sites or on either strand to produce hemi-methylated sites. In this

study, we characterized a DNA methyltransferase that produces two sequences with differ-

ent methylation patterns: one methylated on both strands and another on one strand. M.BatI

is the orphan DNA methyltransferase of Bacillus anthracis coded in one of the prophages on

the chromosome. Analysis of M.BatI modified DNA by bisulfite sequencing revealed that the

enzyme methylates the first cytosine in sequences of 5´-GCAGC-3´, 5´-GCTGC-3´, and 5´-

GCGGC-3´, but not of 5´-GCCGC-3´. This resulted in the production of fully-methylated 5´-

GCWGC-3´ and hemi-methylated 5´-GCSGC-3´. M.BatI also showed toxicity when expressed

in E. coli, which was caused by a mechanism other than DNA modification activity. Homo-

logs of M.BatI were found in other Bacillus species on different prophage like regions, sug-

gesting the spread of the gene by several different phages. The discovery of the DNA

methyltransferase with unique modification target specificity suggested unrevealed diversity

of target sequences of bacterial cytosine DNA methyltransferase.

Introduction

The role of DNA modification in bacteria was long believed to be a part of the cell defense

mechanism by restriction-modification systems, but it is now known to have other important

roles in regulation of gene expression and phenotype of cells [1–3], which include regulation

of DNA mismatch repair [4,5], DNA replication [6,7], and virulence [8–10]. The genome-

wide pattern of methylation, or methylome, is known to be regulated by various mechanisms
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such as horizontal transfer of DNA methyltransferase (MTase) with mobile genetic elements

[11], exchange of target recognition domain of MTase by genome rearrangement [12,13], and

switching of MTase activity by phase variation [14]. A gene of bacterial MTase usually exists

together with a paired gene coding restriction enzyme but is sometimes present in the genome

without such a paired gene. Such an MTase gene is called an orphan MTase [15–17]. MTase

cannot be an active part of cell defense without a paired restriction enzyme; thus, orphan

MTases are expected to have other functions which is important enough to be maintained in a

genome.

MTases were also found to be possessed by mobile genetic elements such as bacteriophages,

plasmids, and transposons [11]. Many bacterial species possess restriction-modification sys-

tems using restriction enzymes to digest intruding DNA such as phages and plasmids, while

the self-genomic DNA is protected with methylation by MTase. Mobile genetic elements that

obtain MTase genes can protect their DNA and avoid digestion by restriction enzymes when

they invade host cells. These MTases on mobile genetic elements are frequently found as

orphan MTases, probably because of little or no advantage of restriction enzymes for mobile

genetic elements.

Bacterial DNA methyltransferases are known to produce one of three kinds of DNA modi-

fication: N6-methyladenine (6mA), N4-methylcytosine (4mC), and 5-methylcytosine (5mC)

[18]. 5mC is the most prevalent in the methylome of eukaryotic cells, while it is relatively less

prevalent in bacteria compared to 6mA. For genome-wide analysis of DNA modification pat-

terns, bisulfite sequencing is used for detection of 5mC [19,20] while SMRT sequencing tech-

nology by a PacBio sequencer is used for detection of 6mA and 4mC [21]. The latter was

mainly used for bacterial methylome analysis partly because of the higher prevalence of

MTases producing 6mA or 4mC than those producing 5mC [22] and also partly because the

long reads produced by PacBio sequencers can be also used for the construction of a complete

genome sequence in addition to methylome analysis. Due to the lower sensitivity of PacBio

sequencers for 5mC, bacterial MTases that produce 5mC were less characterized compared to

those produce 6mA and 4mC.

Bacillus anthracis is a gram-positive bacterial species that causes anthrax in humans and

other animals [23]. In this study, we characterized the MTase possessed by B. anthracis which

is an orphan MTase found on a prophage region. Its recognition sequence was previously spec-

ulated in several studies of its sequence [24–26], but has not yet been confirmed by experi-

ments. Our findings revealed that the MTase, referred to as M.BatI hereafter, has unique

activity of producing two sequences with different methylation patterns: one fully-methylated

and another hemi-methylated.

Materials and methods

Strains and plasmids

Bacterial strains used in this study (listed in Table 1) were cultured in lysogeny broth (LB) at

37˚C under aerobic conditions with appropriate antibiotics when required. A map of the chro-

mosome was plotted using Circos [27].

B. anthracis 34F2 [28] with batIM gene deletion was constructed using the markerless allelic

exchange strategy [29]. Flanking sequences of the batIM gene on the chromosome were ampli-

fied for 500 bp each by PCR from genomic DNA of B. anthracis 34F2 and inserted into

pRP1028 [29] using Gibson assembly master mix (New England Biolabs, Ipswich, MA, USA).

The constructed plasmid was transformed into E. coli SM10 [30] and introduced to B. anthra-
cis 34F2 by conjugation. The strain with the plasmid integrated into the target site was selected

and conjugated with pRP1099 from E. coli S17-1 [30] to induce a double strand break on the

PLOS ONE A GCDGC-specific DNA methyltransferase that produces both fully-methylated and hemi-methylated sites

PLOS ONE | https://doi.org/10.1371/journal.pone.0265225 March 21, 2022 2 / 17

Scientific Research (KAKENHI) [18K14672 to Y.F.,

18H0413208 to Y.I.]; Platform Project for

Supporting Drug Discovery and Life Science

Research (Basis for Supporting Innovative Drug

Discovery and Life Science Research (BINDS))

from Japan Agency for Medical Research and

Development (AMED) [JP20am0101103 to T.I.].

This work was the result of using research

equipment shared in MEXT Project for promoting

public utilization of advanced research

infrastructure (Program for supporting introduction

of the new sharing system) [JPMXS0420100619

to M.I.]. The funders had no role in study design,

data collection, and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0265225


target site within the integrated region by I-SceI. A strain with batIM gene deletion was

selected, resulting in strain BYF10027.

Plasmids for M.BatI induction in E. coli was constructed (S1 Fig and S1 File). First, the tetR
gene was inserted into pZE31 [31] for tight regulation when uninduced, resulting in the con-

struction of pZE31-tetR. Next, a wildtype batIM gene was amplified from genomic DNA of B.

anthracis 34F2 and inserted into pZE31-tetR using Gibson assembly master mix (New England

Biolabs, Ipswich, MA, USA), resulting in pZE31-tetR-batIM (WT). A C86G mutation was

introduced into the pZE31-tetR-batIM (WT) by site-directed mutagenesis. E. coli NEB 10-beta

(New England Biolabs, Ipswich, MA, USA) was used for all plasmid construction procedures

before transforming constructed plasmids into E. coli ER2796 [32] for use in further

experiments.

For isolation of batIM variants with methylation activity but lower toxicity, wildtype batIM
was inserted in pZE31-tetR as above but selected on the LB agar plate with anhydrotetracycline

(aTc) 100 ng/ml to induce M.BatI. Survived colonies were collected and plasmids were

extracted using the QIAprep Spin Miniprep kit (QIAGEN, Hilden, Germany). To remove the

plasmids with batIM variants that lost methylation activity, the plasmids were first digested

with Fnu4HI (New England Biolabs, Ipswich, MA, USA) at 37˚C for 1 h, then purified using

the MinElute PCR Purification kit (QIAGEN, Hilden, Germany), and reacted with ExoV

(RecBCD) (New England Biolabs, Ipswich, MA, USA) at 37˚C for 30 min to remove linearized

plasmids. Note that the plasmid possesses 17 Fnu4HI sites, thus methylation activity high

enough to methylate all the sites are required to avoid cleavage at unprotected sites and subse-

quent digestion by ExoV (RecBCD). EDTA was added to 11 mM EDTA (pH 8.0) and incu-

bated at 70˚C for 30 min to inactivate enzymes, then purified using MinElute PCR

Purification kit (QIAGEN, Hilden, Germany). The plasmids were then transformed into an E.

coli NEB 10-beta (New England Biolabs, Ipswich, MA, USA). Plasmids were extracted from

the transformants and subjected to Sanger sequencing to confirm their mutations. Single

mutations of A98V and D75N were detected independently. The genes of batIM mutants were

amplified by PCR from isolated plasmids and inserted in pZE31-tetR, transformed into NEB

10-beta (New England Biolabs, Ipswich, MA, USA), and used in further experiments.

Table 1. Strains.

Strains Feature Reference

B. anthracis
34F2 Bacillus anthracis vaccine strain [28]

BYF10027 34F2 ΔbatIM This study

E. coli
SM10 thi thr leu tonA lacY supE recA::RP4-2-Tc::Mu Km [30]

S17-1 F- thi pro hsdR hsdM recA [RP4-2 Tc::Mu Km::Tn7 (Tp Sm)] [30]

NEB

10-beta

Δ(ara-leu) 7697 araD139 fhuA ΔlacX74 galK16 galE15 e14- ϕ80dlacZΔM15 recA1
relA1 endA1 nupG rpsL (StrR) rph spoT1 Δ(mrr-hsdRMS-mcrBC)

New England

Biolabs

ER2796 λ- fhuA2 Δ(lacZ)r1 glnV44 mcr-62 trp-31 dcm-6 zed-501::Tn10 hisG1 argG6
rpsL104 dam-16::Kan xyl-7 mtlA2 metB1 (mcrB-hsd-mrr)114::IS10

[32]

BYF823 ER2796 pZE31-tetR This study

BYF822 ER2796 pZE31-tetR-batIM(WT) This study

BYF826 ER2796 pZE31-tetR-batIM(A98V) This study

BYF827 ER2796 pZE31-tetR-batIM(D75N) This study

BYF867 ER2796 pZE31-tetR-batIM(C86G) This study

https://doi.org/10.1371/journal.pone.0265225.t001
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Isolation and digestion of genomic DNA

For B. anthracis strains, overnight cultures were diluted 100-fold into 25 ml LB and cultured

for 8 h. Genomic DNA was extracted using QIAamp PowerFecal DNA Kit (QIAGEN, Hilden,

Germany). For E. coli strains, overnight cultures were diluted 100-fold into 20 ml LB and cul-

tured for 3 h. Induction was done by addition of aTc to 100 ng/ml for an hour before genomic

DNA was extracted with QIAamp PowerFecal DNA Kit (QIAGEN, Hilden, Germany).

For DNA digestion experiments, 200 ng of genomic DNA was challenged by Fnu4HI,

HaeIII, or MspI (New England Biolabs, Ipswich, MA, USA) at 37˚C for an hour, followed by

visualization using electrophoresis. All extractions and digestions were conducted in biological

triplicate.

Analysis of 5mC and C by UPLC-MS/MS system

To digest genomic DNA into nucleotide monomers, 200 ng of genomic DNA was treated with

DNA Degradase Plus (Zymo Research, Irvine, CA, USA) at 37˚C for 2 h, followed by filtering

using 0.22 μm Millex Syringe Filters (Merck Millipore, Burlington, MA, USA) [33]. The sepa-

ration of 5-methyl-2´-deoxycytidine (5mdC) and 2´-deoxycytidine (dC) was performed on a

UHPLC PEEK column Inert Sustain Amide (2.1 mm × 50 mm, F1.9um; GL Science, Tokyo,

Japan) at a flow rate of 1.0 ml/min and a temperature of 60˚C. Mobile phase A was H2O con-

taining 0.1% formic acid and mobile phase B was acetonitrile containing 0.1% formic acid.

The following gradient program was applied: t = 0–1 min: 95% B; t = 7 min: 5% B; and t = 8

min: 5% B. The injection volume was 1 μl. Detection was performed using positive electro-

spray ionization. The triple quadrupole was operated in multiple reaction monitoring mode by

monitoring of a quantifier and qualifier summarized in Table 2. Quantification of 5mdC and

dC was achieved by external calibration using a standard curve built from calibration points at

10, 30, 50, 100, 200, and 300 nM. Molecular standards of 5mdC and dC were purchased from

FUJIFILM Wako Pure Chemical Corporation (Osaka, Japan) and Tokyo Chemical Industry

(Tokyo, Japan), respectively.

Whole-genome bisulfite sequencing

The preparation of libraries for shotgun bisulfite sequencing was conducted based on the post-

bisulfite adaptor tagging (PBAT) strategy [34] using a modified protocol described recently

(tPBAT protocol version 1.0) [35]. Genomic DNA spiked with unmethylated lambda DNA

was bisulfite-treated. Random priming was performed using the DNA as a template. After

purification of the product DNA with solid-phase reversible immobilization (SPRI) using

AMPure XP (Beckman Coulter, Brea, CA, USA), the DNA was subjected to adaptor tagging

with TACS-ligation [35]. The library structure was completed with two rounds of primer

extension using universal and indexing primers. The library was purified with SPRI again

before the molar concentration of the library was determined using a real-time PCR-based

method. Libraries prepared from 24 different samples were tagged with different index

sequences and pooled to serve for one lane of paired-end sequencing with 2 × 150 cycles on

Table 2. Conditions of UPLC-MS/MS.

Compound Name Retention time (min) Precursor Ion (m/z) Product Ion (m/z) Collision Energy (V)

5-Methyl-2´-deoxycytidine 2.47 242.3 126.1 8 Quantifier

5-Methyl-2´-deoxycytidine 2.47 242.3 109.1 44 Qualifier

2´-Deoxycytidine 2.57 228.2 112.1 12 Quantifier

2´-Deoxycytidine 2.57 228.2 95.1 44 Qualifier

https://doi.org/10.1371/journal.pone.0265225.t002
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HiSeq X Ten at Macrogen Japan Inc. (Kyoto, Japan). The reads were mapped on a reference

genome comprised of E. coli ER2796 (GenBank accession no. CP009644.1) and lambda DNA

(GenBank accession no. J02459) using BMap [35]. From the methylation level of the lambda

DNA, the bisulfite conversion efficiency was calculated to be 99% for each sample. The basic

metrics of sequencing data are shown in S1 Table.

Cytosines mapped with more than 20 reads and detected with equal to or more than 80% of

methylated reads were assumed as methylated. Methylated cytosines and their flanking 10 bp

nucleotide sequences were extracted and analyzed with WebLogo 3.6.0 [36] for detection of

the recognition sequence of M.BatI.

Digestion of 60 bp dsDNA

Each strand of oligo DNA was synthesized by IDT (Coralville, IA, USA) with their sequences

listed in S2 Table. For the formation of dsDNA, 100 μM of both strands of oligo DNA were

mixed in 20 mM Tris-HCl pH8.0 and heated at 96˚C for 5 min, followed by gradual cooling at

room temperature for an hour.

As M.BatI showed severe toxicity in E. coli cells, M.BatI protein was prepared by in vitro
translation using PURExpress in vitro protein synthesis kit (New England Biolabs, Ipswich,

MA, USA). A PCR fragment with T7 promoter and batIM gene was used as a template. Since

the product of in vitro translation of M.BatI was insoluble, the pellet fraction was dissolved in

100 μl of solubilization buffer (6 M Urea, 50 mM NaCl, 20 mM Tris HCl pH 8.0), followed by

dialysis with dialysis buffer (20 mM Tris-HCl pH8.0, 50 mM sodium chloride) for 18 hours at

4˚C.

For methylation of dsDNA by M.BatI, 400 nM of the dsDNA samples were treated with 280

nM of M.BatI with 0.1 mM S-adenosylmethionine in reaction buffer (20 mM Tris-HCl pH8.0,

50 mM potassium acetate, 5 mM EDTA-2Na, 1 mM dithiothreitol) at 37˚C for 16 h. After

purification with MinElute PCR Purification kit (QIAGEN, Hilden, Germany), dsDNA sam-

ples were treated with restriction enzymes for 4 h at 37˚C for HaeIII, AluI, and HpyCH4V

(New England Biolabs, Ipswich, MA, USA) and at 60˚C for BstUI (New England Biolabs, Ips-

wich, MA, USA), followed by separation with 15% polyacrylamide gel electrophoresis.

Measurement of time-kill curves

An overnight culture of E. coli strain was diluted 1000-fold in 1 ml LB and cultured with shak-

ing at 37˚C for 3 h. Induction was started with the addition of aTc to a final concentration of

100 ng/ml or different concentration when specified, then colony forming units were mea-

sured every hour. For the uninduced control, the same volume of distilled water was added

instead of aTc. Measurements were biologically triplicated.

Computational analysis of M.BatI homologs

M.BatI homologs were searched in the non-redundant (nr) database using Blastp [37] with the

amino acid sequence of M.BatI as a query. Hits with both length coverage larger than 80% and

sequence identity larger than 80% were selected as homologs. To analyze the genetic context of

the flanking regions of the homologs, genome sequences that possessed a M.BatI homolog

were downloaded from the NCBI nucleotide database. Then, the nucleotide sequence of M.

BatI homologs together with flanking 15 kb sequences were extracted. Homologs were omitted

from further analysis when either one or both flanking sequences were not available for 15 kb.

The extracted nucleotide sequences were clustered by MeShClust [38] with 60% sequence

identity as a threshold. For detection of prophages without M.BatI, 15 kb nucleotide sequences
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of flanking regions of batIM were used as a query of Blastn [37] against the nr database and

top hits which were not of B. anthracis were selected.

Results

M.BatI produces two sequences with different methylation patterns: One

fully-methylated and one hemi-methylated

The chromosomal DNA of B. anthracis possesses four prophage regions [39,40]. One of them,

LambdaBa01, included a gene annotated as GBAA_RS18520 in B. anthracis Ames ancestor

strain (Genbank accession No. NC_007530), which codes MTase. The gene, named batIM, is

present in the genome without the paired gene of a restriction enzyme, thus batIM was highly

likely to be an orphan MTase gene (Fig 1A). The amino acid sequence predicted from the

nucleotide sequence of the batIM gene included conserved motifs of DNA methyltransferase

that produce 5mC rather than 6mA or 4mC [41–43] (S2 Fig). Although most of the conserved

motifs of 5mC MTase were well conserved in M.BatI, it had unusual motif I (CxGxxG) com-

pared to that of the majority (FxGxG) (S2 Fig). Together with the 20–30% smaller gene size

compared to typical 5mC MTases, batIM could form a new subclass of 5mC MTase.

Although the open reading frame seemed to be intact, M.BatI was supposed to be inactive in

B. anthracis in vivo because B. anthracis was reported to express a restriction enzyme that digests

cytosine-methylated DNA [24] and because prophage genes were often repressed when inte-

grated in the host genome [44]. For validation of the methylation activity of M.BatI in B. anthra-
cis in vivo, we extracted the genomic DNA of B. anthracis, digested into single nucleotides, and

measured the amount of dC and 5mdC using UPLC-MS/MS. Neither wildtype nor batIM
knockout strain of B. anthracis was detected with 5mdC, indicating that M.BatI was not active

and no cytosine methylation occured on the genomic DNA of B. anthracis in vivo (Fig 1B).

To further analyze the activity of M.BatI, we cloned the batIM gene in E. coli. Wildtype M.

BatI inducible plasmid was constructed and transformed in the E. coli ER2796 strain (S1 Fig

Fig 1. Position of batIM and its activity in vivo. (A) A map of the chromosome of B. anthracis Ames ancestor. The outermost blue bars

represent the region of prophages. Gray bars represent the position of coding sequences: outer, coding sequences on the leading strand;

inner, coding sequences on the lagging strand. Prophage genes were colored blue and the batIM gene was colored red. (B) Measurement of

5mC using UPLC-MS/MS for genomic DNA isolated from B. anthracis strains and M.BatI induced E.coli strains. ND, not detected.

https://doi.org/10.1371/journal.pone.0265225.g001
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and S1 File). Genomic DNA extracted from cells induced with M.BatI production was

digested into single nucleotides and 5mdC levels were determined by UPLC-MS/MS. This

analysis confirmed that the methylation product of M.BatI was 5mC (Fig 1B) and that M.BatI

can be expressed in E. coli with its DNA methylation activity.

To deduce the target sequence of M.BatI for methylation activity, modified genomic DNA

was challenged by restriction enzymes. We chose HaeIII, MspI, and Fnu4HI (which digests

5´-GGCC-3´, 5´-CCGG-3´, and 5´-GCNGC-3´, respectively) because MTases previously found

in other Bacillus phages were analyzed by these restriction enzymes [45]. Genomic DNA iso-

lated from cultures of E. coli after an hour of induction of M.BatI showed protection only from

Fnu4HI digestion, suggesting that M.BatI at least methylates a sequence included in 5´-

GCNGC-3´ (Fig 2A). Consistent with UPLC-MS/MS analysis, such protection was not

observed for genomic DNA isolated from B. anthracis (Fig 2B).

Fig 2. M.BatI fully-methylates 5’-GCWGC-3’ and hemi-methylates 5’-GCSGC-3’. (A) Digestion of genomic DNA of E. coli after

inducing M.BatI production. Genomic DNA isolated from BYF823 (batIM-) or BYF822 (batIM+) induced with aTc 0 or 100 ng/ml

was treated with specific restriction enzymes or untreated as controls. (B) Digestion of genomic DNA of wildtype (WT) and batIM
knockout (Δ) strains of B. anthracis. (C) Sequence logo of sites around cytosines detected, by bisulfite sequencing, to be highly

methylated. (D) Boxplots of methylation frequency of each sequence included in 5´-GCNGC-3´. (E) Fully-methylated and hemi-

methylated motifs produced by M.BatI. Methylated cytosines were depicted with “Me” in a circle.

https://doi.org/10.1371/journal.pone.0265225.g002
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To determine the target sequence for methylation in more detail, the same genomic DNA

samples were subjected to bisulfite sequencing. When M.BatI WT was fully induced, 2.3%

(53,364/2,273,399) of cytosines throughout the genome were detected with more than 80% of

methylation frequency. Motif search with the flanking sequences of methylated cytosines

revealed that the first cytosine of the motif 5´-GCDGC-3´ was methylated (Fig 2C). D is the

degenerate base for A, T, and G, therefore the result suggested that the first cytosines were

methylated for 5´-GCAGC-3´, 5´-GCTGC-3´, and 5´-GCGGC-3´, but not for 5´-GCCGC-3´.

Consistently, the fraction of methylation signals at each motif included in 5´-GCNGC-3´

showed a significantly lower distribution of the signal only for 5´-GCCGC-3´ (Fig 2D). These

results suggested that methylation by M.BatI results in full-methylation and hemi-methylation

of 5´-GCWGC-3´ and 5´-GCSGC-3´, respectively (Fig 2E). This finding was consistent with the

results of the Fnu4HI digestion of genomic DNA (Fig 2A) because hemi-methylation of the

motif was reported to be enough for protection from digestion by Fnu4HI [46].

To further confirm the target sequence of M.BatI, methylation activity for four target

sequences included in 5’-GCNGC-3’ was tested with methylation and digestion of short

dsDNA oligos (Fig 3A and 3B). The dsDNA oligoduplexes were synthesized to contain two

overlapping subsites of the M.BatI target sequence. The M.BatI target sites were placed to form

the recognition site of a restriction endonuclease of known methylation sensitivity. In

dsDNA1, the overlapping M.BatI sites created a HaeIII recognition site (5´-GGCC-3´) [18]. If

M.BatI does not methylate the first cytosine of 5´-GCCGC-3´, the HaeIII site will be left

unmethylated after the treatment with M.BatI, and will be digested by HaeIII. In dsDNA2, the

overlapping M.BatI sites created a BstUI site (5´-CGCG-3´) [18]. If M.BatI methylates the first

Fig 3. Target sequence confirmation of M.BatI by digestion of M.BatI methylated dsDNA. (A) Structure of 60 bp dsDNA. The site with

overlapping sequences was positioned at one-third from the right end. (B) Design of overlapping sites in each dsDNA and the expected outcomes

by methylation and digestion reactions. Each site included a target site of another restriction enzyme (squares). Expected positions of methylation

were depicted with “Me” in a circle. (C) Digestion tests of dsDNA. Each dsDNA was first treated with M.BatI and digested with one of the four

restriction enzymes.

https://doi.org/10.1371/journal.pone.0265225.g003
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cytosine of 5’-GCGGC-3’, the BstUI site will get fully-methylated by M.BatI, and will be pro-

tected from BstUI digestion. The duplexes dsDNA3 and dsDNA4 were designed to analyze the

methylation of the 5’-GCTGC-3’ and 5’-GCAGC-3’ subsites (Fig 3B). By challenging each

dsDNA with corresponding restriction enzymes after treatment with M.BatI, methylation of

four sequences included in 5´-GCNGC-3´ was tested.

Each dsDNA was treated with M.BatI prepared by in vitro translation, then it was digested

with the corresponding restriction enzyme. Digestion was observed only in one case:

dsDNA1-HaeIII (Fig 3C, top panel). This result indicated that M.BatI methylate the first cyto-

sine of 5´-GCGGC-3´, 5´-GCAGC-3´, and 5´-GCTGC-3´, but not of 5´-GCCGC-3´, consistent

with the result of bisulfite sequencing above.

We concluded that the target sequence of M.BatI is the combination of full-methylation of

5´-GCWGC-3´ and hemi-methylation of 5’-GCSGC-3’, instead of 5´-GCNGC-3´. To the best of

our knowledge, this is the first report of a single MTase that methylates one or both strands of

subsites of a degenerate recognition sequence (Fig 2E).

The guanine 2-amino group protruding in the minor groove was shown to mediate differentia-

tion between A/T and G/C by DNA binding proteins [47–49]. To test whether the guanine

2-amino group has any role in the exclusion of the 5’-GCCGC-3’ sequence by M.BatI, we prepared

dsDNA substrate, in which the guanine opposite to the underlined cytosine was substituted with

hypoxanthine: 5’-GCCGC-3’/5’-GCIGC-3’. Hypoxanthine lacks the 2-amino group but still pairs

with cytosine. The result indicated that the 2-amino group has no role determining the specificity

of M.BatI (S3 Fig). Results of structural analysis of the major and minor groove surfaces suggest

that the W2/W2’ position in the major groove might be the place where recognition (rejection)

occurs, because this is the place where cytosine differs from the other three bases [48].

M.BatI was active and toxic in E. coli
We noticed that M.BatI killed E. coli cells when it was induced above a certain level (Fig 4A

and 4B). Analysis of E. coli genomic DNA extracted from cultures after an hour of induction

at various levels showed that genomic DNA isolated from the condition with more cell death

showed higher distribution of methylation signals in bisulfite sequencing and greater protec-

tion against Fnu4HI digestion (Figs 2D and 5A). This result motivated us to investigate

whether the toxicity of M.BatI was caused by its DNA methylation activity.

We first tested if the complete abolishment of methylation activity decreased the toxicity by

constructing a variant lacking DNA methylation activity by substituting the 86th cysteine resi-

due with glycine at the activity center of M.BatI. Loss of DNA methylation activity was con-

firmed clearly by the lack of protection from digestion by restriction enzymes and the

complete loss of 5mC signal in the measurement using UPLC-MS/MS (Figs 1B, 3C and 5B).

The C86G variant, however, still showed toxicity comparable to WT when induced (Fig 4C).

We also attempted whether we can isolate variants that maintain DNA methylation activity but

with lower toxicity. The plasmid expressing M.batI was transformed into E. coli ER2796 and

selected with induction of M.BatI. All survived colonies were pooled and were used for preparation

of plasmids. The plasmids were digested with Fnu4HI to remove variants without methylation

activity, then transformed in ER2796 with a fresh background. By analyzing the final surviving

transformants, we successfully isolated two M.BatI variants: A98V and D75N. A98V showed a bac-

teriostatic effect rather than bactericidal, while D75N showed no toxicity (Fig 4D and 4E). DNA

methylation activity was maintained in both A98V and D75N, but the level of methylation was

lower than in WT as shown by UPLC-MS/MS measurement and in the DNA digestion experi-

ment (Figs 1B, 3C and 5B), suggesting that methylation activity could have correlation with the

toxicity.
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Fig 4. Toxicity of M.BatI variants in E. coli. The number of colony forming units was determined after induction at 0 h with aTc for E. coli strains

expressing (A) no M.BatI, (B) wildtype M.BatI, (C) M.BatI C86G, (D) M.BatI A98V, and (E) M.BatI D75N. Black, no induction; Green, aTc 1 ng/ml;

Blue, aTc 10 ng/ml; Orange, aTc 100 ng/ml.

https://doi.org/10.1371/journal.pone.0265225.g004

Fig 5. Genomic DNA modification by M.BatI with different levels of induction and mutations. (A) Digestion of genomic DNA induced with different

concentrations of aTc. (B) Digestion of genomic DNA modified by M.BatI variants.

https://doi.org/10.1371/journal.pone.0265225.g005
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We concluded from these analyses that the toxic effects of M.BatI in E. coli is caused by a

mechanism other than its DNA methylation activity.

Genomic context of M.BatI homologs

The chromosome sequence of B. anthracis is highly conserved, thus the batIM gene was pres-

ent in all B. anthracis strains which were deposited with complete genome sequences in NCBI.

Other than B. anthracis, homologs of batIM were found in other species of B. cereus group

such as Bacillus thuringiensis (BMB171_RS12805) and Bacillus toyonensis (CN616_RS22970)

(Figs 6 and S2). When sequences of batIM homologs and their flanking 15 kb regions were

compared, sequences were clustered into three groups, suggesting that batIM homologs were

present in several different genomic contexts. Annotation of genes in the flanking regions

revealed that all homologs were found in the vicinity of genes coding phage related enzymes

such as integrase, recombinase, and phage parts proteins, suggesting that all batIM homologs

were possessed by prophages. Therefore, the homologs would have spread among some of the

B. cereus group species by several different phages.

A similar prophage of B. anthracis was, however, found in other species with inactivated

batIM homologs. For example, Bacillus thuringiensis HD682 possessed a prophage similar to

that in B. anthracis (Fig 6, bottom), but the batIM homolog was truncated. Therefore, batIM
homologs might be not always required for the life cycle of the prophage and also repressed

and inactivated in species other than B. anthracis.

Fig 6. Genomic context of batIM and its homologs. Red, batIM and its homologs; pink, genes annotated as terminase,

integrase, or recombinase encoding genes; yellow, annotated as head, tail, or other structural proteins encoding genes.

https://doi.org/10.1371/journal.pone.0265225.g006
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Discussion

We characterized M.BatI, the orphan 5mC MTase of B. anthracis. It showed no methylation

activity in B. anthracis in vivo but showed activity and even toxicity when expressed in E. coli.
Bisulfite sequencing elucidated that the enzyme produces two sequences with different methyl-

ation patterns: 5’-GCWGC-3’ with full-methylation and 5’-GCSGC-3’ with hemi-methylation.

Its homologs were found on different prophage like regions in other species of the B. cereus
group, suggesting the spread of the gene by several different phages.

Among MTases, 6mA and 4mC MTase have common conserved motifs while the 5mC

MTase consists of different conserved motifs [41,43]. Although many mammalian species

mainly possess 5mC MTase and DNA modification patterns were analyzed mainly by bisulfite

sequencing, SMRT sequencing by PacBio sequencers were mainly used for epigenetic analyses

of bacterial species probably because of its higher sensitivity for detection of 6mA and higher

prevalence of 6mA MTase in bacteria. The SMRT sequencing, however, has a much lower sen-

sitivity for 5mC unless a sequencing library was prepared with additional treatment [50].

Therefore, many of the bacterial methylome analyses by SMRT sequencing failed to detect

motifs of 5mC MTases. Analysis of bacterial 5mC MTase by bisulfite sequencing was con-

ducted only in a few studies [51–55]; thus, accumulation speed of target sequences of bacterial

5mC MTase was slower than that of bacterial 6mA MTase. The discovery of the unique target

sepcificity of M.BatI implies that the diversity of target sequences of bacterial cytosine MTases

have yet to be fully elucidated and more analysis with genome-wide methods should be con-

ducted for bacterial 5mC MTase.

Bacterial MTases usually have a single recognition sequence, which is either fully- or hemi-

methylated by the enzyme. M.BatI acts differently on subsites of its degenerate recognition

sequence: it methylates one subsite on both strands and another subsite only on one strand

(Fig 2E). MTases with multiple target sequences were already reported for MTases of phages

of Bacillus species [45,56,57]. In the coding sequences, they contained multiple target recogni-

tion domains positioned in tandem and resulted in multiple recognition sequences [58,59].

This was, however, not the case for M.BatI because M.BatI had an even shorter length of target

recognition domain compared to a single target recognition domain of MTases (S2 Fig). In

addition, all the multiple recognition sequences of the Bacillus phage MTases produced fully-

methylated sites. Therefore, although batIM was present on the prophage region of B. anthra-
cis, the mechanism for possessing unique target sequence and methylation patterns seems to

be different from those of other Bacillus phage MTases with multiple target sequences. Some

residues in the target recognition domain of M.BatI might interrupt binding or methylation

reaction against 5´-GCCGC-3´ specifically, but the detail of the mechanism remains unknown.

According to the REBASE [18], the largest database of restriction and modification

enzymes, a target sequence of MTases close to that of M.BatI, which could be represented as

5´-GCDGC-3´ using degenerate base, was observed in a few results of PacBio sequencing of

Bacillus species FDAARGOS_235, Bacillus licheniformis SCDB 14, and Streptococcus oralis
FDAARGOS_367 (S3 Table). Although all the similar motifs were reported to include 4mC as

a methylation product, their methylation frequency was always less than 31%. These observa-

tions suggest the possibility of miscalls of 5mC because PacBio usually detects 4mC with high

sensitivity comparable to 6mA. Bacillus species FDAARGOS_235 possessed a homolog of M.

BatI, but the other two did not, thus the recognition motif including both fully-methylated and

hemi-methylated might be found not only with M.BatI but also with other MTases.

Because DNA methylation activity of bacterial MTases was known to affect the phenotypes

of cells, we first expected that the toxicity of M.BatI in E. coli cells could be due to DNA meth-

ylation activity, but our observations showed that the toxicity was caused possibly by other
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factors. One possible explanation is its tight binding to the genomic DNA on target sequences,

which was previously suggested for toxic variants of other 5mC MTases such as M. EcoRII and

M. HhaI [60–62]. In these cases, substitution of the cysteine to glycine at the catalytic center

led to toxicity against E. coli cells. The two mutations we found in M.BatI, A98V and D75N,

might affect the binding activity and resulted in less toxicity, which also resulted in the

decrease of DNA methylation activity. Unusual tight binding of MTases to the DNA substrate

was suggested as a source of the toxicity, but the mechanism was not yet understood in detail

[41] and biochemical analyses are required to validate this hypothesis.

In conclusion, we characterized the specificity of a bacterial cytosine MTase, M.BatI, with a

unique activity that results in one fully-methylated and one hemi-methylated sequence. To our

knowledge, this is the first discovery of bacterial cytosine MTase that produces both fully-

methylated and hemi-methylated sites. More investigation of the recognition sequences of bac-

terial cytosine MTases by genome-wide analysis such as bisulfite sequencing would lead to the

discovery of new recognition sequences and possibly to an expansion of recognition sequence

diversity of MTases.
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