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Identification of gene signatures 
for COAD using feature selection 
and Bayesian network approaches
Yangyang Wang1, Xiaoguang Gao1*, Xinxin Ru1, Pengzhan Sun1 & Jihan Wang2*

The combination of TCGA and GTEx databases will provide more comprehensive information for 
characterizing the human genome in health and disease, especially for underlying the cancer genetic 
alterations. Here we analyzed the gene expression profile of COAD in both tumor samples from TCGA 
and normal colon tissues from GTEx. Using the SNR-PPFS feature selection algorithms, we discovered 
a 38 gene signatures that performed well in distinguishing COAD tumors from normal samples. 
Bayesian network of the 38 genes revealed that DEGs with similar expression patterns or functions 
interacted more closely. We identified 14 up-DEGs that were significantly correlated with tumor 
stages. Cox regression analysis demonstrated that tumor stage, STMN4 and FAM135B dysregulation 
were independent prognostic factors for COAD survival outcomes. Overall, this study indicates that 
using feature selection approaches to select key gene signatures from high-dimensional datasets can 
be an effective way for studying cancer genomic characteristics.

Cancer is a major public health burden around the world, and it is the second leading cause of death in the United 
States1. According to the most recent American Cancer Society statistics for 2021, colon and rectum cancer (CRC) 
ranks the third in incidence and the third leading cause of cancer-related death worldwide. CRC remains one of 
the most common malignant tumors in the digestive system, and the type of colon adenocarcinomas (COAD) 
accounting for 95% of all cases of colon cancer2.

Cancers are well understood to be caused by genetic abnormalities in the target cells. In general, acquired 
mutations and epigenetic changes can influence tumor cell chromatin architecture and gene expression levels. 
As a result, identifying specific genetic markers that will promote molecular diagnosis and precision medicine in 
cancer is one of the most important aspects of cancer research. The Cancer Genome Atlas (TCGA, https://​www.​
cancer.​gov/​tcga) program, an invaluable resource of cancer genomics, provides publicly available datasets for 
the development of improved methods for cancer diagnosis, treatment, and prevention3,4. The TCGA program 
molecularly characterizes over 20,000 primary cancer and matched normal samples spanning 33 cancer types, 
including COAD. Another human genomics project, the Genotype-Tissue Expression (GTEx, http://​commo​
nfund.​nih.​gov/​GTEx), establishes a reference resource of gene expression from ‘normal’, disease-free tissues5,6. 
The GTEx project was established to characterize human transcriptomes within and across individuals for a 
wide range of primary tissues and cell types, including colon tissue6. Thus, combing the datasets from TCGA 
as tumor resources and GTEx as normal sample resources expands opportunities for data mining and deeper 
understanding of gene signatures in cancer research7–9.

Clinical diagnosis or prognosis prediction of cancer patients based on the high-throughput gene expression 
data depends greatly on the accuracy of disease classification. This necessitates the development of best classifica-
tion models for cancer samples with high accuracy and low risk of misclassification. Gene expression data, such 
as RNA-sequencing or microarrays, usually suffer from the dimensionality problem: too many gene features and 
relative few samples. It is usually impractical to go through all of the features during the gene expression analysis. 
As a result, feature selection tends to be a prominent approach for disease classification, especially in datasets with 
a large number of features. It can eliminate relatively unimportant variables and improve classification accuracy 
and performance10. Wu et al.11 selected 300 biomarkers from 13,990 features with the combination of seven 
algorithms, including logistic regression and feature selection methods. A hybrid feature selection algorithm also 
has been used for searching optimal tumor biomarkers with significant performance for distinguishing tumor 
and normal samples12. The wavelet kernel ridge and radial basis kernel ridge regression were proposed to select 
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the most relevant features which can be used for classification of microarray medical datasets13. Using a random 
forests model for feature selection, researchers identified a six-gene signature for predicting survival status in 
patients with head and neck squamous cell carcinoma (HNSCC) from the TCGA-HNSCC dataset14. Another 
five-gene signature (including RGS11, RGS10, RGS13, RGS4, and RGS3) has been identified as independent 
prognostic factors for ovarian cancer patients by using Lasso cox analysis15. In a study of melanoma, the feature 
selection approach was applied to discover and validate metastasis-related biomarkers based on single cell gene 
expression datasets16.

The current study aimed to identify gene signatures that could be used to classify COAD samples and normal 
colon tissues. Specifically, we established a feature selection model, SNR-PPFS, by combining the signal-to-ratio 
(SNR) ranking algorithm17,18 with the predictive permutation feature selection (PPFS) algorithm, a Markov 
blanket (MB) based feature subset selection method. The PPFS algorithm considers features both individually 
and collectively in order to provide the best set of features. Bioinformatic and biological analysis were also carried 
out to investigate the potential biological significance of the candidate genes identified through feature selection 
approaches. We anticipate that our research will provide a novel methodological foundation for the identification 
of COAD biomarkers as well as other cancer types.

Methods and materials
Data acquisition.  Figure 1 depicted an overview of the study design. The datasets for a combined cohort 
of TCGA, TARGET, and GTEx samples were obtained from the UCSC xena website19. Firstly, the total RSEM 
expected_count (DESeq2 standardized) dataset was downloaded as the total gene expression profiling, which 
containing 19,039 bio-samples from both tumors and normal tissues (https://​toil-​xena-​hub.​s3.​us-​east-1.​amazo​
naws.​com/​downl​oad/​TCGA-​GTEx-​TARGET-​gene-​exp-​counts.​deseq2-​norma​lized.​log2.​gz). We then chose 
samples of COAD tumor and normal colon tissue (selection criteria: for tumor tissue, primary_disease_or_tis-
sue = “Colon Adenocarcinoma”; for normal tissue, primary_site = “Colon”) from the total gene expression data-
set for the current study. Finally, 637 samples were recruited for research, including 289 COAD tumor samples 
(resourced from TCGA) and 348 normal samples. The 348 normal samples further contained 41 normal samples 
from the TCGA-COAD cohort and 307 normal colon tissues from GTEx. We also downloaded TCGA-COAD 
cohort’s phenotype and survival data for bioinformatic and biological analysis (phenotype data: https://​gdc-​hub.​
s3.​us-​east-1.​amazo​naws.​com/​downl​oad/​TCGA-​COAD.​GDC_​pheno​type.​tsv.​gz; survival data: https://​gdc-​hub.​
s3.​us-​east-1.​amazo​naws.​com/​downl​oad/​TCGA-​COAD.​survi​val.​tsv). The clinicopathological characteristics of 
the 289 COAD tumor samples were summarized in Table 1.

Gene feature selection using SNR‑PPFS algorithms.  After obtaining the gene expression dataset of 
637 samples, we subsequently performed feature selection to identify gene signatures as classifier between tumor 

Figure 1.   Overview of the study design.

https://toil-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA-GTEx-TARGET-gene-exp-counts.deseq2-normalized.log2.gz
https://toil-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA-GTEx-TARGET-gene-exp-counts.deseq2-normalized.log2.gz
https://gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-COAD.GDC_phenotype.tsv.gz
https://gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-COAD.GDC_phenotype.tsv.gz
https://gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-COAD.survival.tsv
https://gdc-hub.s3.us-east-1.amazonaws.com/download/TCGA-COAD.survival.tsv
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and normal groups. As shown in Fig. 1, the gene feature selection process consisted primarily of two steps, gene 
screening using the SNR algorithm and related gene selection using the PPFS method. All the steps were per-
formed based on Python 3.8.

Screening genes using the SNR algorithm.  SNR is an effective screening method that can quickly filter out genes 
that are unrelated to classification attributes. The expression is as follows. The numerator of the formula contains 
the average values of gene expression of the gene gi in the tumor and normal groups, and the denominator 
contains the standard deviations of the gene gi in the two groups. The higher the signal-to-noise ratio, the more 
important the gene is for classification.

Obtaining the Markov blanket genes using PPFS.  The definition of Markov blanket.  Markov blanket is a widely 
used feature selection approach, which can be described as the following definitions and Fig. 2. It has already 
contained all the information related to the target node, and the non-Markov blanket nodes can be discarded 
safely to achieve the purpose of feature selection.

SNR(gi) =
|u+(gi)− u−(gi)|

δ+(gi)+ δ−(gi)

Table 1.   Clinical characteristics of COAD cases (data from the TCGA database), as well as Cox regression 
analysis of the clinical parameters. BMI body mass index, OS overall survival, HR hazard ratio, CI confidence 
interval. Significant values are in bold.

Clinical characteristics Number

Univariate analysis Multivariate analysis

HR [95% CI] P HR [95% CI] P

Age (year)

 < 65 (year) 126

1.00 [0.98–1.03] 0.841 1.02 [0.99–1.05] 0.251 ≥ 65 (year) 161

Not reported 2

Gender

Female 132

1.24 [0.64–2.40] 0.523 0.88 [0.43–1.77] 0.715Male 155

Not reported 2

Race

Asian 11

0.91 [0.62–1.35] 0.644 0.96 [0.64–1.45] 0.845
Black 55

White 198

Not reported 25

BMI

 ≤ 18.4 1

0.95 [0.90–1.01] 0.010 0.94 [0.89–1.00] 0.068

18.5–23.9 57

24.0–27.9 61

 ≥ 28 96

Not reported 74

Tumor stage

Stage I 44

2.20 [1.45–3.33] 0.0002 2.39 [1.54–3.70]  < 0.0001

Stage II 110

Stage III 83

Stage IV 40

Not reported 12

OS_status

Alive 213

Dead 67

Not reported 9

OS_time (day)

Alive 1001.28 ± 885.48

Dead 776.99 ± 749.29

Total number 289
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Definition 1  (Markov condition) Any variable (node) in a bayesian network is independent of its non-descend-
ants given its parents.

Definition 2  (Faithfulness) Let G denote a Bayesian network. Let P denote a joint probability. G and P are said 
to be faithful to one another if all the conditional independencies entailed by G and the Markov condition is 
present in P.

Definition 3  (Markov blanket) Under the faithful condition, MB (Y) is the minimal set conditioned on which 
all other variables are independent of Y, i.e., (X\MB(Y)  Y|MB(Y)).

Predictive permutation feature selection.  The PPFS20 is a Markov blanket theory-based feature selection algo-
rithm that selects a subset of features based on their performance both individually and as a group. It can auto-
matically decide how many features to take and try to find the optimal combination of features, especially it 
performs well on high-dimensional data. In this case, we combined the SNR and PPFS to obtain the final gene 
signatures for classifying tumor and normal samples; the procedures were detailed in Algorithm 1.

Figure 2.   The diagram of an example of Markov blanket in a casual network. The T node with yellow color in 
the red rectangle is a target node, the other nodes form a Markov blanket of T node, and T node is independent 
of any node outside the rectangle.
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Bioinformatic and biological analysis.  Bayesian network and gene functional annotation.  Following 
the feature selection, we will identify candidate genes in tumors. We then used the Bayesian structure learning 
algorithm of PCStable21 to construct a gene regulatory network, based on the expression profiles of the candidate 
genes. Furthermore, the protein–protein interaction (PPI) network and functional annotation were carried out 
using the online platform STRING: functional protein association networks (https://​www.​string-​db.​org/).

PCA, PLS‑DA and heatmap analysis.  We conducted principal component analysis (PCA), partial least squares 
discriminant analysis (PLD-DA) and heatmap analysis to illustrate the performance of classification between 
tumor and normal groups. Specifically, the PCA, PLS-DA and heatmap analysis were carried out in R using the 
pca function in “FactoMineR” package, the plsda function in “mixOmics” package, and the pheatmap function 
in “pheatmap” package, respectively, based on the candidate gene expression profiling of 637 samples.

Differential expression and ROC analysis of candidate genes.  The R package “limma” was used to compare the 
expression of candidate genes in tumor and normal samples. To evaluate the performance of candidate genes in 

https://www.string-db.org/
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the diagnosis of COAD, the specificity, sensitivity, and area under the curve (AUC) values were obtained using 
receiver operator characteristic (ROC) analysis in MedCalc software.

Correlation analysis of candidate genes with the clinicopathological characteristics of COAD patients.  We used 
Pearson correlation in R to examine the relationship between gene expression and clinicopathological char-
acteristics of COAD patients, particularly tumor stage status. For survival analysis, R packages “survival” and 
“survminer” were applied. Both univariate and multivariate Cox regression analysis were performed to estimate 
the simultaneous effects based on the clinical parameters and candidate gene expression signature in COAD 
patients, with P < 0.05 as the statistically significant level. Kaplan–Meier survival curves of candidate genes were 
also visualized.

Results
Feature selection identified a 38 gene signatures for classifying COAD tumor and normal sam-
ples.  We found some genes with an expression value of “0” during the pre-processing, and we filtered out 
those genes with the expression of “0” in more than two-thirds of the 637 samples to reduce the noise. Following 
data pre-processing, we obtained expression profiling of over 50,000 gene symbols for each of the 637 samples. 
We then conducted feature selection to determine the most valuable gene features in classifying tumor and nor-
mal groups. The SNR approach identifies expression patterns with the greatest difference in average expression 
between two groups and the least variation in expression within each group; genes can be ranked according to 
their expression levels using the SNR test statistic. In this study, we first screened a total of 430 gene signatures 
by SNR method. Further, the 430 genes were matched by PPFS algorithm. Finally, the best set of gene features 
containing 38 genes was identified for classification.

Expression profiling analysis of the candidate 38 genes.  Previously, 38 genes were identified as 
classifiers between tumor and normal samples through feature selection approach. To investigate the expression 
patterns of these 38 genes in COAD tumors and normal samples, differential expression analysis was performed 
using Limma method. Table 2 displayed the fold change and statistical level of the candidate genes in tumor 
versus normal groups, as well as the specificity, sensitivity, and AUC values in ROC analysis. The majority (30 
out of 38 genes) of the differentially expressed genes (DEGs) were up-regulated in tumors, as shown in Table 2 
and the heatmap in Fig. 3. In particular, all these 38 genes demonstrated promising discrimination power in dis-
tinguishing tumors from normal samples (specificity range: 90.5–99.7, sensitivity range: 90.0–99.7, AUC range: 
0.954–0.998).

The heatmap, PCA and PLS-DA model of samples based on the 38 gene signatures were performed to visual-
ize the clustering performance. As expected, fully separated models between tumor and normal samples were 
observed when performing PCA and PLS-DA (Fig. 4). In the current study, the normal group was further sub-
divided into two subgroups according to the sample source databases: normal-TCGA and normal-GTEx. Thus, 
we also took into account the information of subgroups when performing the clustering analysis. As shown in 
Figs. 3 and 4, the two subgroups of normal samples overlapped to a small extent, and both sets of normal samples 
could be completely separated with tumor samples.

Using Bayesian network constructing gene regulatory network.  In this study, we proposed using 
Bayesian network to construct gene regulatory networks for the 38 candidate genes based on their expression 
profiles. The 38 DEGs interacted with each other to some extent (Fig. 5A). Specifically, in this connected net-
work, the eight down-DEGs interacted with the up-DEGs in relatively separate ways. Furthermore, we discov-
ered that the Bayesian network aids in the discovery of biological gene-regulatory interactions. For instance, we 
identified seven up-DEGs interacting with each other in the Bayesian network (as shown in circle in Fig. 5A). 
Further, a complete protein–protein interaction (PPI) network was obtained from the STRING online platform 
based on the seven up-DEGs (Fig. 5B). Functional annotation of the PPI network was primarily involved in 
biological process related to cell cycle and nuclear division, as well as gastric cancer disease (Fig. 5C). These 
findings indicated that in a Bayesian network, genes with similar expression patterns and functions are tend to 
be closer in the connections, which will help bridge the gap between an individual gene and a system biological 
interpretation in the high throughput bioinformatics research.

Correlation analysis of candidate genes and clinicopathological characteristics of COAD 
patients.  The TCGA database contains relatively comprehensive clinicopathological information on tumor 
samples. We then investigated whether the candidate genes were related to the clinicopathological characteris-
tics of COAD patients. As summarized in Table 1, the tumor samples could be divided into different subgroups 
based on basic clinical information such as age, gender, race, and body mass index (BMI). According to the 
PLS-DA model (Fig. S1), the 38-gene expression signature could not well distinguish different subgroups of 
tumor samples based on the above basic clinical information. While, from the 38 gene signatures, we identified 
14 candidate genes that were positively related to tumor stage status (P < 0.05 in Pearson correlation). Figure 6 
illustrated the relative expression of the 14 stage-positive related genes in tumor samples of different stages, and 
Table S1 and Fig. S2 summarized the correlation scatter plots, coefficient values and statistical levels of the Pear-
son correlation. What’s more, we found that the 14 DEGs were up-regulated in tumors compared to normal sam-
ples (Tables 1 and S1), implying that the stage related genes may help reflecting the tumor progression of COAD.

To investigate the prognostic factors for COAD, the Cox regression model for survival analysis was conducted. 
The risk score (HR > 1) was significantly positively correlated with tumor stage in both univariate and multivari-
ate Cox regression analysis, indicating that it could be recognized as an independent risk factor for patients’ 
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prognosis (Table 1 and Fig. S3). We also evaluated the effects of the 38 DEGs on survival outcomes. Overall, the 
expression pattern of 38 DEGs was not significantly correlated with the survival outcomes (P > 0.05) in univariate 
Cox regression analysis, as shown in Table S2. When we set the screening criteria to 0.05 < P < 0.1 as having an 
influential trend, then TRIB3, STMN4 and FAM135B were found to have survival correlations in univariate Cox 
regression analysis. The risk score was significantly correlated with the differential expression of STMN4 (HR > 1, 
P < 0.05) and FAM135B (HR < 1, P < 0.05) in multivariate Cox regression analysis of the three candidate genes, 
as summarized in Table S2 and Fig. 7A. The Kaplan–Meier survival curves also revealed that high TRIB3 and 
STMN4 expression was associated with a lower overall survival probability, whereas high FAM135B expression 
was a better survival outcome (Fig. 7B–D). Taken together, our suggested that STMN4 and FAM135B dysregula-
tion are independent prognostic factors for COAD patients.

Table 2.   Differential expression and ROC analysis of the 38 candidate DEGs. The differential analysis was 
performed by limma “package” in R. ROC analysis was carried out using MedCalc software. Genes with 
“*”showed the tumor stage-positive related genes (P < 0.05). Gene with “#”showed the survival-related genes 
(P < 0.05).

DEGs

Differential analysis ROC analysis

logFC AveExpr(Tumor) AveExpr(Normal) adj.P.Val Specificity Sensitivity AUC​

MMP7 8.597 10.269 1.672 2.24E−247 98.9 97.2 0.994

KRT80* 7.498 10.622 3.124 1.62E−317 99.7 99.0 0.998

NOTUM* 7.363 8.637 1.274 2.09E−175 98.6 95.5 0.993

TNS4 6.979 12.162 5.183 9.91E−181 98.3 91.7 0.987

S100P 6.859 12.859 6.000 2.83E−162 91.7 96.5 0.978

SERPINB5* 6.676 10.504 3.829 1.35E−162 93.4 91.0 0.970

GRIN2D* 6.441 10.372 3.931 1.59E−267 96.8 98.3 0.996

UBE2C* 6.256 11.824 5.568 2.34E−138 96.0 97.2 0.993

RRM2 6.203 12.360 6.157 2.62E−128 93.1 98.6 0.987

SAPCD2 6.107 11.959 5.852 1.36E−134 96.3 95.5 0.992

VWA2 6.032 9.438 3.406 1.29E−227 96.8 95.5 0.993

TPX2 6.020 12.635 6.615 1.96E−149 95.4 98.3 0.994

WNT2 5.954 8.294 2.341 6.37E−216 98.9 93.8 0.993

TOP2A* 5.555 13.049 7.494 2.35E−141 94.8 96.5 0.991

STRA6 5.416 7.839 2.423 4.36E−175 98.3 91.3 0.981

OTX1 5.411 6.538 1.127 1.21E−222 98.9 93.4 0.985

TRIM29 5.307 11.420 6.113 1.93E−195 98.6 92.0 0.990

INHBA* 5.167 10.480 5.313 3.06E−167 96.8 92.4 0.982

SGOL1 5.057 8.763 3.707 1.11E−146 99.7 93.1 0.989

TRIB3*# 4.798 11.587 6.789 1.96E−218 97.1 98.6 0.996

TRIP13 4.755 10.238 5.484 1.35E−204 97.7 99.7 0.997

TESC 4.410 10.367 5.957 2.79E−162 95.1 90.7 0.954

ZWINT 4.361 11.312 6.951 5.32E−124 90.8 95.5 0.976

SALL4* 4.249 7.514 3.265 8.32E−158 96.8 90.7 0.972

SPTBN2* 4.032 10.730 6.699 5.31E−219 98.3 99.0 0.993

RP11-386G11.5* 3.577 5.779 2.202 7.02E−165 96.3 93.1 0.984

TMEM97 3.373 11.728 8.355 1.33E−164 96.8 95.5 0.992

TOMM34* 3.230 12.094 8.865 1.15E−167 99.4 93.1 0.991

TMEM206* 2.650 9.031 6.381 1.57E−180 98.9 96.2 0.996

WDR43* 2.578 11.841 9.263 6.30E−148 97.4 99.7 0.996

TMEFF2 − 3.729 1.225 4.954 2.34E−167 92.8 93.4 0.966

STMN4# − 4.236 1.416 5.651 6.62E−161 94.5 91.3 0.962

FAM135B# − 4.303 1.583 5.885 4.34E−165 96.0 90.3 0.966

GLP2R − 4.818 4.532 9.349 2.26E−175 98.0 98.3 0.985

RERGL − 4.894 1.734 6.628 4.72E−163 90.5 93.1 0.968

SFRP5 − 6.143 2.305 8.448 4.49E−164 96.0 90.0 0.964

SCN7A − 6.757 3.803 10.560 2.82E−157 93.7 90.7 0.969

PLP1 − 7.039 3.251 10.290 4.04E−181 96.8 95.5 0.979
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Discussion
With the development of high-throughput techniques in biology and life sciences, more and more omics datasets 
are being generated, particular in the field of cancer research. In recent years, the application of GTEx project has 
greatly improved the ability to study the genomics of normal tissues or cell lines22,23, providing invaluable refer-
ence data for cancer studies of the corresponding tissues/organs. The feature selection approach helps to locate 
important and representative indicators from high-dimensional datasets, which is important for the advancement 
of precision medicine, such as cancer diagnosis and treatment. In our study, we utilized both SNR and PPFS 
methods before and after, and finally discovered a set of 38 genes with promising performance in distinguishing 
COAD tumors from normal colon tissues, based on the combining dataset from both the TCGA-COAD cohort 
and GTEx normal colon samples.

The Bayesian network (also known as causal network) is a directed acyclic graphical model developed in the 
late 1970’s. The nodes represent the variables and the linkages represent informational or causal dependencies 
among the variables in a Bayesian network. Bayesian networks are widely used for modeling and inferring gene 
regulatory networks in biological applications, which provides an efficient way to study functional genomes. Here 
we constructed a Bayesian network based on the 38-gene expression profiles and classification labels (tumor 
or normal). The differential analysis revealed that the majority of the 38 DEGs were up-regulated, with only 
eight DEGs being down-regulated in COAD tumors compared to normal colon tissues. Interestingly, the gene 
nodes in the Bayesian network tended to be initially clustered according to the expression pattern. Based on this 
hypothesis, we may be able to predict the expression changes of novel genes since DEGs with similar expression 
patterns are tend to cluster together in a Bayesian network. It’s also worth mentioning that Bayesian networks 
have been applied for inferring the structure of biological modules that reflect causal molecular mechanisms or 
statistical associations of the underlying system24. In this study, for example, a biologically meaningful STRING 

Figure 3.   Bi-clustering analysis of the 38 genes that were screened using feature selection. The analysis was 
carried out in R using the “pheatmap” package. All of the samples were mainly divided into two groups: tumor 
and normal, with the latter including normal_TCGA and normal_GTEx subgroups. The samples and genes 
were represented by the horizontal and vertical axis, respectively.
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Figure 4.   PCA and PLS-DA plot based on the expression pattern of the 38 genes. The analysis was performed 
using the “FactoMineR” package for PCA and the “mixOmics” package for PLS-DA in R. Each dot, triangle, and 
square represent a sample.

Figure 5.   Bayesian network of the 38 candidate genes as well as the PPI network analysis. (A) Bayesian network 
of the 38 candidate genes. The red and green eclipses represent the up-regulated and down-regulated DEGs 
in COAD tumors, respectively. (B) PPI network of the seven up-DEGs [the seven genes in circle of (A] from 
STRING functional database. (C) Functional annotation of the genes in the PPI network.
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PPI network involving seven up-DEGs was identified in the 38-gene Bayesian network. The seven DEGs in 
the PPI-network were all up-regulated in COAD tumor samples and were mainly enriched in cell cycle and 
division-related functions. Cell cycle deregulation is well known to be one of the most frequent alterations during 
tumorigenesis and development25,26. Thus, the findings above support the theory that using Bayesian networks 
not only provides useful information for disease classification, diagnosis and prediction, but also guides in 
inferring the structure of biological meaningful modules. However, Bayesian network model is not that perfect 
when imitating gene regulatory network. Gene regulatory networks are bipartite, since two genes can regulate 
each other in a network. In response to causality, the Bayesian network only forms a unidirectional mode rather 
than a bidirectional mode, which does not accurately reflect the actual gene regulation situation. What’s more, 
when the number of features (for example, genes) is relatively large, it is difficult to construct a Bayesian network, 
which further supports the significance of gene feature selection when studying the high-throughput dataset.

ROC analysis of the 38 DEGs showed ideal diagnostic accuracy, specificity, and sensitivity for COAD tumor 
samples, supporting our hypothesis that feature selection aids in obtaining effective gene features in cancer 
research. More importantly, parts of the candidate genes were found to be significantly correlated with tumor 
stage and survival outcomes in COAD patients. Studies have shown that TOP2A played important roles in 
the tumorigenesis of many types of cancer, including colon cancer, and knockdown of TOP2A suppressed the 
proliferation and invasion of colon cancer cells27. Previously, DNA microarray and two-color FISH detection 
revealed that the ubiquitin-conjugating enzyme E2C gene (UBE2C) was significantly overexpressed in both 
primary tumors and liver metastases of colon cancer28. TOP2A and UBE2C were also found to be up-regulated 
in COAD tumors when compared to normal tissues in this study. Meanwhile, the two genes were found to be 
positively correlated with tumor stage and to be functionally enriched in the gastric cancer network, implying that 
they may function as oncogenes in gastrointestinal tumors. Similarly, other stage-related up-DEGs discovered 
in our study have also been reported in colon cancer researches. A recent bioinformatic analysis, for example, 
revealed that key genes such as GRIND, KRT80, and SPTBN2 have high diagnosis values in CRC patients29. 
Furthermore, high levels of KRT80 mRNA were also observed in CRC cell lines30. INHBA promoted the pro-
liferation, migration, and invasion of colon cancer cells31, and has been shown to be a prognostic predictor for 
COAD patients32. SALL4 mRNA has been identified as a marker for the diagnosis of several cancers33,34. The 
anti-cancer effects of chrysin on tumor cells in colon cancer included induction of apoptosis and attenuation of 
the SALL4 expression35. It has also been proposed that SERPINB5 in CRC is associated with tumor location, poor 
histological differentiation, microsatellite instability, and poor prognosis36. TMEM206 was demonstrated to pro-
mote CRC malignancy by interacting with AKT and extracellular signal-regulated kinase signaling pathways37. 
A study showed that TOMM34 expression was elevated in the majority of human colon cancer samples, and the 
siRNA-TOMM34 approach effectively suppressed gene expression and significantly inhibited cell growth in colon 
cancer HCT116 cells38. Researchers identified several candidate cancer driver genes, including TOMM34, in both 
mRNA and protein levels in a proteogenomic study of human CRC samples39. NOTUM, one of the Wnt target 
genes, was found to be up-regulated in clinical specimens of colon cancer40. Similarly, immunohistochemistry 
detection confirmed WDR43 overexpression in CRC patient specimens41. What’s more, several studies have 
reported the oncogenic role of TRIB3 in CRC​42. In intestine cells, TRIB3 interacts with β-catenin and TCF4 to 
increase the expression of genes associated with cancer stem cells and promote CRC tumorigenesis43. Approaches 

Figure 6.   Relative gene expression plot of the 14 stage-positive related DEGs. GraphPad Prism was used to 
create the scatter plot, and each dot represents a sample.



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:8761  | https://doi.org/10.1038/s41598-022-12780-7

www.nature.com/scientificreports/

to inhibiting TRIB3 activity may be developed for cancer therapy43. In this research, we discovered a positive 
relationship between TRIB3 expression and tumor stage, and high levels of TRIB3 indicating a poorer survival. 
Furthermore, we discovered that the gene FAM135B, which had not previously been described in colon cancer, 
was down-regulated and served as a prognostic factor for COAD. Overexpression of FAM135B has been reported 
in esophageal squamous cell cancer (ESCC)44. The FAM135B/AKT/mTOR feedforward loop promoted ESCC 
progression45, and silencing FAM135B improved the radiosensitivity of esophageal carcinoma cell46. This phe-
nomenon contradicts our findings that FAM135B was significantly down-expressed in COAD samples, which 
needs to be confirmed further. Despite this, we may conclude that feature selection can greatly help to identify 
key candidate genes in cancer research. The majority of the candidate genes have previously been reported, with 
the same alteration trend as our findings. While another relatively novel gene features can be obtained for specific 
cancer types, this will broaden the field of biomarker discovery service for tumor diagnosis and treatment, both 
technically and theoretically.

Conclusions
In summary, we identified a 38 gene signatures with ideal performance when classifying COAD tumor from 
normal samples by using feature selection methods in this study. The majority of the 38 DEGs were significantly 
up-regulated in tumor samples compared to normal samples. In the Bayesian network, we found that genes with 

Figure 7.   Multivariate Cox regression and Kaplan–Meier survival curves of three candidate DEGs. The analysis 
was carried out in R using the “survival” and “survminer” packages. (A) Multivariate Cox regression forest plot 
of the three candidate genes. HR: hazard ratio; CI: confidence interval. (B–D) Kaplan–Meier survival curves for 
TRIB3, STMN4, and FAM135B, respectively. The cut-off points divided gene expression values into high (high) 
and low (low) groups.
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similar expression patterns or functions interacted more closely. Moreover, some of the candidate genes, such 
as TRIB3, KRT80, and FAM135B, were found to be correlated with tumor stage or survival outcomes, implying 
that these candidate genes could serve as promising prognostic biomarkers for COAD patients. Taken together, 
our study highlights the necessity and importance of feature selection approaches in cancer research, especially 
for high-dimensional datasets, which will significantly advance the development of precision medicine.

Data availability
The raw data of this study have been deposited in FigShare (https://​figsh​are.​com/) with the link: https://​doi.​org/​
10.​6084/​m9.​figsh​are.​19093​307.
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