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Abstract: In recent years, heteroatom-incorporated specially structured metal-free carbon nano-
materials have drawn huge attention among researchers. In comparison to the undoped carbon
nanomaterials, heteroatoms such as nitrogen-, sulphur-, boron-, phosphorous-, etc., incorporated
nanomaterials have become well-accepted as potential electrocatalysts in water splitting, supercapac-
itors and dye-sensitized solar cells. This review puts special emphasis on the most popular synthetic
strategies of heteroatom-doped and co-doped metal-free carbon nanomaterials, viz., chemical vapor
deposition, pyrolysis, solvothermal process, etc., utilized in last two decades. These specially struc-
tured nanomaterials’ extensive applications as potential electrocatalysts are taken into consideration
in this article. Their comparative enhancement of electrocatalytic performance with incorporation of
heteroatoms has also been discussed.

Keywords: carbon nanomaterials; nitrogen doping; sulphur doping; co-doping; electrocatalysts

1. Introduction

Energy demand and energy production are continuously establishing a dispropor-
tional relation to each other, which leads to a crucial environmental crisis globally. The
over consumption of fossil fuels and excessive CO2 emission results in global warming,
and consequently, the scientific community is being faced with the most challenging situa-
tion in mitigating this serious environmental crisis [1–3]. Moving towards this aim, fuel
cells, metal–air batteries, water electrolysers, rechargeable batteries and electrochemical
capacitors constitute various technologies in respect to energy production/storage [4].
In recent years, these applications are mainly covered with various research works on
oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution
reaction (HER) and electro-reduction reaction of carbon dioxide (CO2RR) [5–8]. However,
these electrochemical processes are largely restricted due to their high activation energy
barriers, especially in oxygen reduction reaction (ORR) kinetics performed at the cath-
ode [9,10]. The much slower cathodic ORR limits the overall output performance of these
useful technologies [11]. Usually, electrocatalysts play a pivotal role in reducing the activa-
tion energy barriers of ORR process. In last two decades, platinum (Pt)-based materials
are continuously considered the most potential electrocatalysts in this regard, leading to
relatively higher current density and lower overpotential value [12–15]. However, large-
scale application of these materials was restricted due to their cost ineffectiveness, easy
dissolution of Pt, instability due to CO deactivation and fuel crossover effect. For these
reasons, today, researchers are more inclined to develop electrocatalysts with the follow-
ing priorities: minimization of the Pt metal loading; alloying of Pt with other transition

Molecules 2022, 27, 670. https://doi.org/10.3390/molecules27030670 https://www.mdpi.com/journal/molecules

https://doi.org/10.3390/molecules27030670
https://doi.org/10.3390/molecules27030670
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/molecules
https://www.mdpi.com
https://doi.org/10.3390/molecules27030670
https://www.mdpi.com/journal/molecules
https://www.mdpi.com/article/10.3390/molecules27030670?type=check_update&version=2


Molecules 2022, 27, 670 2 of 26

metals to improve catalytic performance (Pt–Co, Pt–Ni, Pt–Fe, Pt–Ru, Pt–Pd, Pt–Rh, Pt-
TiO2 and Pt–Sn catalysts) [16–18]; advanced nonprecious metals and metal oxides [19–23];
metal-incorporated carbon materials [24–27]; and even metal-free catalysts [28–30] with
remarkable electrocatalytic performance, enhanced durability and greater electrochemical
stability with satisfying cost-effectiveness. The nonprecious metal-based catalysts always
show lower catalytic activity in comparison to Pt/C, and they also show poor durability
due to metal leaching during application. In contrast, the metal-free carbon-based materials
perform excellent catalytic activity during ORR [31–35]. Moreover, they are extraordinarily
chemically stabile, cost-effective, and environmentally friendly. These remarkable prop-
erties make various carbon nanostructures, viz., graphene, carbon nanotubes (CNTs) and
carbon nanohorns (CNHs), hugely popular in many potential applications. The family
of carbon allotropes is mainly constituted of a huge sp2 lattice, which is an extended π

conjugation system, resulting in greater thermal and electrical conductivity. Moreover,
these specially structured materials act as a substrate in various covalent and noncovalent
modifications on their lattice structure, which results in the improvement of their inherent
characteristics and adoption of new ones [36–39].

The carbon nanomaterials can be functionalized with the alteration of their surface,
interfacial structure and electronic properties, extending their applicability to higher levels.
One of the most cutting-edge functionalization technologies is chemical doping, when
carbon lattice is enriched with heteroatoms. They can be incorporated in the adsorptive
form (in the case of metal atoms), which leaves the sp2 lattice intact. However, heteroatoms
of similar radius to C, e.g., N, O, P, S, B, etc., are used to bind different configurations, where
substantial effect can be seen through sp3 defects. Incorporation of heteroatoms, which are
more electronegative than C, can polarize the sp2 network accordingly, therefore resulting
into novel electrochemical properties. In last two decades, introduction of heteroatoms
into the graphitic framework structures garnered great attention from researchers. Boron,
nitrogen, phosphorus, sulphur, fluorine, chlorine, bromine, iodine, selenium, antimony
and tellurium have widely been used as heteroatoms [40–49]. Several reviews have been
published in last few years on heteroatom-doped nanomaterials applied suitably in ORR;
however, very few scientists have covered their overall applicability in other electrochemical
reactions. This review covers heteroatom doping on metal-free carbon nanomaterials as a
potential electrocatalyst, discussing the future challenges and perspectives in this rapidly
evolving field. In this work, special attention is also paid to their synthetic strategies and
how their structural orientation could affect their applications as electrocatalysts. Scheme 1
represented the various types of elecctrocatalytic applications of hetero-atom doped metal-
free nano-materials. This article is not restricted to discussing their applications in oxygen
reduction reaction only; we also investigate their applications in all types of electrochemical
processes. This review work also provides a brief overview of the gradual research progress
of these materials in last two decades and the challenges confronted in potential applications
of them as metal-free electrocatalysts. Figure 1a,b and Table 1 described the developments of
heteroatoms incorporated metal-free carbon nanomaterials and their potential applications
in different electrocatalytic activities in last two decades.
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Figure 1. (a) [50–62] and (b) [63–72]: Developments of heteroatoms incorporated metal-free carbon 
nanomaterials in last two decades. 

Table 1. Heteroatom-incorporated metal-free carbon nanomaterials, synthesis and application in 
last two decades. 

Year Materials Synthesis Method Application 
2009 N-doped carbon nanotubes  Chemical vapor deposition method ORR in fuel cell application [50] 
2010 N-doped graphene Chemical vapor deposition method  ORR in fuel cell application [51] 

2011 N-doped carbon nanotubes  
Chemical vapor deposition method [52], 
Amine Flames [53], Chemical vapor depo-
sition method [54] 

ORR in microbial fuel cells [52], 
Supercapacitors [53] 

2012 
(i) N-doped graphene foam, 
(ii) N-doped graphene quan-
tum dots 

(i) Postsynthesis annealing in ammonia 
(ii) Solution Chemistry 

(i) Dye-sensitized solar cells [55], (ii) ORR [56] 

2013 
N-doped carbon nanomateri-
als 

Solvothermal process Water oxidation [57] 

2014 C3N4@NG Chemical vapor deposition method HER electrocatalysts [58]  

2015 

(i) Nitrogen-doped gra-
phene/CNT composite, 
(ii) N,P-doped carbon foam, 
(iii) Carbon nanocages 

(i) Modified Hummers’ method for the GO 
fabrication [73]  
(ii) Pyrolysis of a polyaniline aerogel 
(iii) Hard templating method 

(i) ORR in acidic fuel cell [59], 
(ii) ORR and OER [60], 
(iii) ORR [61] 

2016 
N,P-co-doped carbon net-
works 

Soft template and Pyrolysis ORR and HER [62] 

2017 
Carbon-based metal-free nano-
materials 

Solvothermal process OER, ORR and HER [63] 

2018 
(i) N-doped hierarchical po-
rous carbon nanosheets, 
(ii) N-doped porous carbon, 

(i) Template-free method, (ii) Pyrolysis, 
(iii) Solvothermal method 

(i) ORR [64], (ii) Electrocatalytic N2 reduction 
[65], (iii) Electrochemical synthesis of ammonia 
(ESA) through the nitrogen reduction reaction 
(NRR) [66]  

Figure 1. (a) [50–62] and (b) [63–72]: Developments of heteroatoms incorporated metal-free carbon
nanomaterials in last two decades.



Molecules 2022, 27, 670 4 of 26Molecules 2022, 27, x 3 of 26 
 

 

 
Scheme 1. Schematic representation of hetero-atom doped metal-free electrocatalysts in different 
potential application fields. 

 

Scheme 1. Schematic representation of hetero-atom doped metal-free electrocatalysts in different
potential application fields.

Table 1. Heteroatom-incorporated metal-free carbon nanomaterials, synthesis and application in last
two decades.

Year Materials Synthesis Method Application

2009 N-doped carbon nanotubes Chemical vapor deposition method ORR in fuel cell application [50]

2010 N-doped graphene Chemical vapor deposition method ORR in fuel cell application [51]

2011 N-doped carbon nanotubes
Chemical vapor deposition method [52],
Amine Flames [53], Chemical vapor
deposition method [54]

ORR in microbial fuel cells [52],
Supercapacitors [53]

2012 (i) N-doped graphene foam,
(ii) N-doped graphene quantum dots

(i) Postsynthesis annealing in ammonia
(ii) Solution Chemistry (i) Dye-sensitized solar cells [55], (ii) ORR [56]

2013 N-doped carbon nanomaterials Solvothermal process Water oxidation [57]

2014 C3N4@NG Chemical vapor deposition method HER electrocatalysts [58]

2015

(i) Nitrogen-doped
graphene/CNT composite,
(ii) N,P-doped carbon foam,
(iii) Carbon nanocages

(i) Modified Hummers’ method for the
GO fabrication [73]
(ii) Pyrolysis of a polyaniline aerogel
(iii) Hard templating method

(i) ORR in acidic fuel cell [59],
(ii) ORR and OER [60],
(iii) ORR [61]

2016 N,P-co-doped carbon networks Soft template and Pyrolysis ORR and HER [62]

2017 Carbon-based metal-free nanomaterials Solvothermal process OER, ORR and HER [63]

2018

(i) N-doped hierarchical porous
carbon nanosheets,
(ii) N-doped porous carbon,
(iii) MOF-derived nitrogen-doped highly
disordered carbon

(i) Template-free method, (ii) Pyrolysis,
(iii) Solvothermal method

(i) ORR [64], (ii) Electrocatalytic N2 reduction
[65], (iii)Electrochemical synthesis of
ammonia (ESA) through the nitrogen
reduction reaction (NRR) [66]

2019 Nitrogen-doped carbon-based catalysts Solvothermal method Acidic oxygen reduction [67]

2020

(i) Tellurium-doped, mesoporous carbon
nanomaterials, (ii) Nitrogen-doped
metal-free nanomaterials, (iii)
Nitrogen-doped metal-free nanomaterials

(i) Pyrolysis, (ii) Solvothermal,
(iii) Solvothermal

(i) Bifacial dye-sensitized solar cells [68] (ii)
Bifunctional oxygen electrocatalyst for
ultrastable zinc-air batteries [69],
(iii) Selective catalytic oxidation of hydrogen
sulphide [70]

2021
(i) Oxygen- and nitrogen-doped metal-free
microalgae carbon nanoparticles, (ii)
Nitrogen-doped graphene/CNT composite

(i) Potassium hydroxide (KOH)
activation of Spirulina Platensis
microalgae, (ii) Pyrolysis

(i) Hydrogen production from sodium
borohydride in methanol [71], (ii) ORR in
acidic fuel cell [72]
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2. Nitrogen-Doped Metal-Free Carbon Nanostructured Electrocatalysts
2.1. Nitrogen-Doped Carbon Nanotube Electrocatalysts

The functionalized nanotubes garnered significant attention in the field of the rein-
forced and conductive plastics, sensing materials and photovoltaic materials as scanning
probe microscopy tips and many more applications. There have been two broad methods
to synthesize substituted N-doped CNTs: (a) in situ process for insertion of nitrogen atom
into the CNTs during the reaction, only [74–78]; and (b) postfunctionalization of CNTs
with nitrogen by using various precursors and compounds like organic moieties. How-
ever, the postfunctionalization method has not been well investigated until now [79–81].
These nanomaterials have also been synthesized using other potential synthetic strategies,
viz., arc discharge, laser ablation and plasma etching [82–87]. However, these method-
ologies required higher temperature conditions and a limited type of nitrogen or carbon
precursors. Moreover, rapid evaporation of precursors and application of nitrogen or
ammonia atmosphere has been required. In the chemical vapor deposition (CVD) method,
the process could completed at a lower temperature range with and without the presence
of an organometallic catalyst and by using a wide range of carbon or nitrogen precursors.
This method could produce 20–25 g of N-carbon nanotubes per gram of catalyst, and
nitrogen atoms are embedded into the hexagonal carbon network at various ratios with
10 atoms [81]. In the literature, nitrogen incorporation has been reported with nitrogen
contents of <1 atom% to 20 atom% [75,88,89]. Highly oriented nanotubes with regular
diameter and bond-length were termed in literature as “carpet-like” structures [90]. In this
work, nitrogen was incorporated into the already synthesized CNT structure; however, this
synthesis method was depicted as highly complex and tedious with multistep techniques.
The first step is initiated with a chemical oxidation process of tips or structural defects of
CNTs, followed by coupling with other molecules through carboxylic, carbonyl and/or
hydroxyl groups. The covalent functionalization via bond formation to the π-conjugated
structure of CNT leads to the rehybridization of sp2 bond to sp3. In this type of structure, ni-
trogen is attached to carbon following two different manners: (a) pyridine-type nitrogen, in
which each nitrogen atom is bonded to two different carbon atoms, leading to the formation
of cavities within the side wall of the tube, and (b) substitution N, in which a nitrogen atom
bonds with three C atoms, as presented in Figure 2. Nitrogen contains an additional electron
in its structure, in comparison to the carbon network; therefore, a nitrogen-incorporated
CNT structure usually exhibits metallic properties [90–92]. The nitrogen group can also
enhance the reactivity on the graphene in comparison to the pure CNT structures, which
results in the potential applications of these materials in fast-responsive sensing technology;
as effective field-emissions sources; and as polystyrene, epoxy composites, protein and
nanoparticle immobilizers [78,93–96]. The most popular covalent functionality, with the
application of plasma etching or by HNO3/H2SO4 treatment, includes carbonyl or carboxyl
groups [97].

The plasma etching technique is essentially applicable during functionalization pro-
cesses in a nitrogen atmosphere. In the next step, carboxyl groups are acylated with thionyl
chloride to establish a basis for different amine compounds [98] or to combine with DNA
and proteins [99,100]. The noncovalent functionalization is mostly conducted by adsorp-
tion or through the wrapping of the CNTs in polymer polynuclear aromatic compounds,
surfactants or biomolecules by Vander Waals forces and π–π interactive forces. Other
synthetic approaches of CNTs include the arc evaporation method of graphite [82,101]. The
noncovalent methods are more favourable over covalent, as the chemical functionalization
can be performed on the CNTs without affecting their structures and electronic networks
on the nanotubular structures.
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2.1.1. Chemical Vapour Deposition (CVD) Method

Chemical vapour deposition (CVD) is a technique to synthesize carbon nanotubes
in bulk amounts, which involves the pyrolysis of different organic molecules, viz., CH4,
C6H6, C2H2, etc., in inert atmosphere over Ni, Co, Fe, etc., catalysts [102,103]. Due to the
simplicity and cost-effectiveness of CVD, researchers prefer to follow this methodology
during the functionalization process.

In 1997, Dai et al. introduced H2O plasma etching technology to generate surface
patterns of polar groups with oxygen [104]. This methodology was further followed by
Yu et al. [86] to develop SiO2 nanoparticles as the metal-free catalysts, in which a SiO2/Si
wafer with a 30 nm-thick SiO2 coating was employed with H2O plasma etching at 30 W, 250
kHz and 0.62 Torr for 20 min. This plasma-etched substrate was placed into a tube furnace
for the synthesis of CNTs by using the CVD method. Figure 3 represents the schematic
diagram to represent the growth of CNTs. These materials acted as potential electrocatalysts
in an oxygen reduction reaction analysed in 0.5 M H2SO4 solution saturated with N2 or
O2. Figure 4 shows the various electrochemical studies conducted in this work. All the
electrocatalytic studies have shown excellent results and long-term stability in an acidic
medium in comparison to undoped CNTs. The authors also claimed that, due to the highly
generic nature of the plasma etching technique, this synthetic strategy can be well accepted
in various fields, from energy applications to electronic and biomedical systems [86].
Kim et al. mentioned a similar synthesis process in an Ar atmosphere at 800 ◦C for 1 h
duration in which ferrocene, pyridine or ethylenediamine used as a catalyst carbon and
nitrogen precursor, respectively [50]. TEM images of bamboo-structured N-doped CNTs
(NCNTs) are presented in Figure 5. These products were used as excellent electrocatalysts
in ORR of fuel cell applications. The same research group reported synthesis of nitrogen-
doped CNTs by following a single step the CVD method in which either ferrocene or iron (II)
phthalocyanine was used as the catalyst and pyridine as the carbon and nitrogen precursor,
respectively. These materials have also used successfully as ORR electrocatalysts [105].
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In 2011, Feng et al. [52] reported N-doped CNTs to be effective electrocatalysts in
microbial fuel cells (MFCs), boasting cost-effectiveness and long durability. Moreover,
these materials were depicted as more effective cathodic catalysts than the commonly
used platinum catalyst with a maximum power density value of 1600 ± 50 mW·m−2.
These N-doped CNTs have shown a lower drop in the percentage of power density than
that of Pt/C over 25 cycles. Another research group reported the CVD synthesis floating
catalyst method of nitrogen-doped carbon nanotubes using ferrocene/aniline together with
toluene as an added carbon source [106]. Yang et al. synthesized aligned nitrogen-doped
CNT bundles over 700–800 ◦C by taking ammonium-exchanged zeolite-β as the substrate
material, ferric nitrate as the catalyst and acetonitrile as the carbon precursor [107]. In the
same year, He et al. reported controllable synthesis of aligned CNx with a large surface area
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by pyrolyzing CH3CN/Fe(C5H5)2 on SiO2 and Si substrates over the temperature range of
750–900 ◦C. The specific diameters of CNTs diminished on Si substrates in comparison to a
well-documented rise with temperature on silica, as the growth process followed different
mechanisms of formation of catalyst particles [108]. Kim et al. developed N-doped, double-
walled CNTs using chemical vapor deposition in which a CH4/NH3/Ar mixture flowed
with the rate of 50/10/500 sccm on MgO-supported catalyst powders at the temperature of
850 ◦C for 10–30 min. of duration [109]. The synthesized CNTs are formed with a diameter
of 10–20 nm. The SEM and HRTEM images of N-doped double walled-CNTs presented in
Figure 6.
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Figure 6. (a) SEM image shows the nanotube bundles with a diameter of 10–20 nm (b) HRTEM
image reveals that the bundles are consisted mainly of double walled CNTs DWNTs. (c) A magnified
image showing the outer diameter in the range of 1.5–2 nm (Reproduced with permission from
Kim et al. [109]).

In recent years, Li et al. reported a one-step CVD method to synthesize three-
dimensional nitrogen-doped CNT/graphene hybrid material on nickel foam [110]. In
this study, nickel foam and melamine were mixed with the mass ratio of 1:5 kept in a
horizontal quartz tube reactor and heated to within the temperature range of 600–800 ◦C
in a hydrogen atmosphere for around 20 min at a flow rate of 70 sccm. In 2020, another
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research group mentioned a two-step synthetic strategy to develop nitrogen-doped carbon
nanotubes derived from g-C3N4 [111]. In this case, exfoliated graphitic carbon nitride
was functionalized with nickel oxides and placed in a ceramic boat to keep in the tubular
furnace at 900 ◦C in a nitrogen atmosphere. Hydrogen was introduced for 3 h in the
first step and ethylene for 10 min for the reduction process. The synthesis of N-doped
MWCNTs with straight structure was reported by Xu et al. by using phthalocyanine
derivatives [112] and the mixture of ethylene/hydrogen and ammonia at around 680 ◦C
in a presence of alumina-supported iron catalysts in a CVD furnace [113]. The amount of
nitrogen incorporated into CNT can be controlled by using different amounts of nitrogen
precursors [80,114]. The rate in which nanotubes grow during synthesis can be enhanced
with the increase in its precursor significantly, resulting into the increase in intensity ratio
of the D to G bands in Raman spectra. The inner structure of N-doped CNTs constitutes
regular morphological transformation from the straight and smoother walls (0 atom% N)
to 1.5 atom% N-containing, bamboo-structured CNTs; further, it changed to corrugated
structures with 3.1 atom% and higher nitrogen [115]. It has been analysed by Wang et al.
that, during the synthesis of N-doped CNTs, when melamine is used as the C/N initiator,
it can incorporate 20 atom% nitrogen. In this type of synthesis method, the N atom present
in the reaction medium self-assembled with gaseous carbon without any assistance from
metal [116]. These N-doped CNTs were utilized successfully as ORR electrocatalysts in
methanol fuel cells measured in alkaline media. Figure 7 shown the various electrochemical
studies of NCNT/GC.
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Figure 7. (a) Chronoamperometric studies with NCNT/GC and Pt–C/GC electrodes in oxygen
saturated 0.1M KOH. (b) Responses after the introduction of 10% CO. (c) Cyclic voltammograms of
Pt/GC and (d) cyclic voltammograms of NCNT/GC electrodes oxygen saturated 0.1 M KOH, with
and without 3 M methanol solution (Reproduced with permission from Wang et al. [116]).
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The incorporation of nitrogen atoms usually shows very strong ability to promote
the self-assembled CNTs. Nitrogen could create highly active sites in carbon networks,
which results in remarkable electrocatalytic performance comparable to traditional Pt-based
materials as electrocatalysts. Their high activity with excellent stability and selectivity
always made N-doped CNTs better electrocatalysts in this purpose. These materials were
also strongly resistant to CO poisoning, had a robust structure and were economically
favourable. Due to doping in CNT structures, a basic shape could be transformed from a
hollow cylinder to a bamboo-shaped structure. The resultant doped materials contained
plenty of compartments, the lengths of which gradually decreased with variation in N
concentration [117].

2.1.2. Chemical and Electrochemical Modification Method

The chemical modification methods to synthesize nitrogen-doped CNTs included two
different approaches, viz., covalent and noncovalent. During the covalent modification,
oxygen-containing functional groups, viz., carboxyl and hydroxyl, were formed and gen-
erated on the surface. Among the functional groups, carboxylic acid groups were chosen
as the best options, as they could easily proceed a variety of reactions in the modification
process and could be easily developed using different oxidizing treatments, e.g., ozonol-
ysis, sonication in nitric and sulfuric acid, refluxing in nitric acid, etc. In the next step,
carboxyl-functionalized CNTs were grafted with the functional moieties by using the
terminal oxidation process following various mechanisms from the defect site, from chem-
istry oxidation reactions and esterification/amidation processes to the already oxidized
CNTs [118,119], mechanochemical modification [120,121], ionic liquids, cycloaddition re-
actions [122,123], electrochemical modification reactions, diazotization [124] and radical
additions [125].

The efficient and successful doping and tailoring technologies in CNTs involved the
controlling of redox properties of the dopant. Nitrogen-doped CNTs have excellent electro-
catalytic activity compared to Pt electrodes, which could be acclaimed by the formation of
additional active sites on the surface of the materials and has led to better dispersion of
the Pt particles over the N–CNT and performed better in methanol oxidation [126]. From
the results, it was analysed that doped CNTs as electrode materials always enhanced the
output power of the thermoelectrochemical cells. Doping enhanced the electrochemical
active surface area (ESCA) values in the CNT electrodes in proportional way. Wei et al.
reported doped CNTs mixed with glutaraldehyde functionalized chitosan (GCS), which
depicted an improved biocompatibility and higher conductivity in enzyme immobiliza-
tion process, due to the enhanced kinetics from the N–CNTs [127]. The electrochemical
modification process was carried out through two types of coupling reactions, working
under oxidative or reductive conditions. In 2002, Kooi et al. worked on anodic coupling
reaction to the SWCNTs by using two different aromatic amines, viz., 4-aminobenzylamine
and 4-aminobenzoic acid [128]. The noncovalent functionalization process could be carried
out through the porphyrin assembled on the N-doped MWCNTs via the Fe-N coordination.
Tu et al. reported this noncovalent modification by porphyrin, which led the MWNTs
insoluble in water, however, performed well as catalysts and biosensors [129].

2.2. Nitrogen-Doped Carbon Hollow Spheres

The carbon spheres usually referred to the spherical shaped carbon in semicrystalline
or crystalline form, and constituted solid, hollow or core-shell morphological structures. Re-
searchers have paid huge attention to nitrogen-doped hollow spherical structures in recent
years due to their lower density, greater surface area values, better electrical conductivity,
and excellent structural stability. In 2012, Zhu et al. developed a hierarchical porous hollow
carbon nanospheres as an oxygen reduction electrocatalyst for zinc–air batteries, which
contained active pyridinic-N and graphitic-N by using polystyrene spheres and aniline as
the corresponding template and precursor [130]. Gu et al. reported N-doped porous carbon
spheres with excellent porosity characteristics, which was used as a potential electrocatalyst
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in ORR. The unique spherical structures with remarkable stability and recyclability made
these materials the most promising ORR electrocatalysts [131]. Hydrothermal carboniza-
tion method was adopted to make these materials by using biomass glucose, followed by
treatment in ammonia and by subsequent activation treatment. Another research group
reported the development of N-doped carbon nanodots @ nanospheres, which were applied
as efficient electrocatalyst in ORR, in which high electrocatalytic activity was shown with an
onset potential of −0.08 V, and they showed greater durability and greater resistance to the
methanol cross-over effect; these results were comparable to commercially available Pt/C
electrocatalyst. These N-doped carbon nanodots of sizes 2–6 nm were successfully formed
by using the hydrothermal method from natural biomass (e.g., fresh grass) at 180 ◦C for 10 h
duration. Furthermore, these carbon nanodots were subsequently immobilized onto func-
tionalized microporous carbon nanospheres (MCNSs) with an average diameter of ∼100 nm
and a surface area of 241 m2 g−1 via a simple hydrothermal process to self-assemble a
carbon-based nanocomposite (N-CNDs@MCNSs) in the presence of oxygen (O)-containing
surface functional groups [132]. Today, a significant number of research works were car-
ried out on nitrogen encapsulation on metal/metal oxides/carbon nanosphere materials
potentially applied as electrodes or electrocatalysts [133–140]. In the current review, those
works were not considered, as they are not metal-free nanostructured materials.

2.3. Nitrogen-Doped Graphene Electrocatalysts

Graphene has been two-dimensionally structured with sp2 hybridized carbon with
interesting physical and chemical characteristics. To achieve the desired performance
in electrochemical and biochemical applications, nitrogen-enriched graphene materials
were synthesized using a wide range of methodologies [141–151]. In 2011, Zhang et al.
developed N-doped graphene by thermally annealing graphene oxide in the presence am-
monia [152]. Another research group reported a facile and catalyst-free method to develop
large-scale synthesis of nitrogen-doped graphene with 10.1 wt% nitrogen content by using
the economically favourable industrial material melamine as the nitrogen source [153].
Sheng et al. synthesized nitrogen-doped graphene using the solvothermal method with the
reaction between tetrachloromethane with lithium nitride under mild conditions [154]. Fig-
ures 8 and 9 present the schematic diagram to synthesize these materials and their potential
electrocatalytic applications in ORR under alkaline media, respectively. Another simple
way to produce N-doped graphene nanosheets following the solvothermal route is via the
reaction between graphene oxide and urea with a nitrogen content of 10.13 atom% [155].
Temperature played a pivotal role in the solvothermal process during the doping of ni-
trogen in the graphene network [152,153]. Another research group developed pyrrolic
and pyridinic type nitrogen incorporation in a graphene structure at 300 and 500 ◦C, re-
spectively, with the annealing treatment of graphene oxide in the presence of glycine and
AgNO3 [156]. This particular methodology produced N-doped graphene with 13.5 atom%
of nitrogen into the materials. The CVD method was also adopted by using methane and
ammonia; these materials were utilized as metal-free electrocatalysts in ORR applied in
fuel cells [157]. Many research groups have also applied the arc discharge method in H2
and He atmosphere and under pyridine vapour to produce the nitrogen-doped graphene
structure [158,159].

Yang et al. reported synthesis of N-doped graphene, the result of which was success-
fully demonstrated as highly efficient metal-free bifunctional electrocatalysts in the oxygen
reduction and evolution reaction [160]. In this report, e- donating quaternary nitrogen
sites were responsible for ORR; in contrast, e- withdrawing pyridinic nitrogen acted as
active sites in OER, resulting into greater transports of electrons and electrolytes [160].
The schematic diagram to synthesize N-doped graphene nanoribbon networks shown in
Figure 10 [160].
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Figure 9. (A) Typical cyclic voltammograms (CVs) for ORR obtained at a bare GCE (a),
graphene/GCE (b), and NG5/GCE (N% = 7.1%) (c) in O2 saturated 0.1 M KOH aqueous solu-
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Liu et al. synthesized pyrrolic–nitrogen doped graphene, which was successfully
adapted as carbon-free electrocatalysts in electrocatalytic reduction of carbon dioxide to
formic acid in their comparative study with the computational method [161]. Earlier,
Ju et al. developed nitrogen-doped graphene nanoplatelets as potential metal-free, counter-
electrode materials used in organic dye-sensitized solar cells [162]. Rahsepar et al. followed
a hybrid hydrothermal-microwave process to synthesize N-doped graphene, which exhib-
ited remarkable electrocatalytic activity in ORR [163]. The number of catalytic sites was
enhanced due to the incorporation of N-atom into graphene. Maouche et al. developed
nitrogen-doped graphene with porous structures, which was successfully employed as
an ORR electrocatalyst [164]. In this work, a facile fabrication technology was carried out
with graphitic carbon nitride (g-C3N4) and graphene oxide (GO) as raw materials. Another
research group utilized N-doped graphene as an electrocatalyst in ORR under alkaline
medium and in anion exchange membrane fuel cells [165].

3. Sulphur and Sulphur-Nitrogen Co-Doped Metal-Free Carbon Nanomaterials
as Electrocatalysts

Nitrogen-doped carbon nanomaterials were accepted as potential electrocatalysts in
ORR by researchers due to their charge transfer-induced performance using N contained in
the graphitic framework, which further induced oxygen adsorption and reduction process
at a comparatively lower overpotential value, which we briefly explained in the previous
paragraph. In recent studies, other heteroatoms, viz., sulphur, phosphorus, boron and
fluorine, were also studied to incorporate in carbon materials to promote their electrocat-
alytic activity in ORR as metal-free electrocatalysts in comparison to the undoped carbon
nanomaterials [166–169]. However, dual doping of heteroatoms was believed to produce
more effective electrocatalysts due to the synergistic effect between heteroatoms during
ORR procedure in electrochemical performance and also in theoretical calculations. Their
excellent synergistic effects induced the formation of higher numbers of catalytic sites with
a remarkable reactant transport effect due to their hierarchical pore structures and greater
electron transfer rate, which is generated by their three-dimensional continuous networked
structures [170]. Li et al. mentioned that an optimal doping level could be the pivotal factor
to control doping density and maximum catalytic performance in resultant materials [171].
In these types of nanomaterials, the total difference in electronegativity (d) generated
from nitrogen and sulphur in comparison to what carbon might have generated indicates
a more robust contribution of innovative nonelectroneutral sites in comparison to the
monoheteroatom-doped structure (dC = 2.55, dN = 3.04 and dS = 2.58). These special types
of materials were reported to be more favourable to positively charged sites in the oxygen
surface adsorption process, resulting in better ORR activity [172]. However, the reported
works were mostly on doping of heteroatoms on CNTs and/or graphene, which could not
be as effective for their high cost and complicated synthesis methodologies.

In 2012, Wohlgemuth et al. reported the one-pot hydrothermal synthesis of sulphur-
and-nitrogen-doped carbon aerogels which were utilized as potential electrocatalysts
ORR [173,174]. In this method, two co-monomers, viz., S-(2-thienyl)-L-cysteine (TC) and
2-thienyl carboxaldehyde (TCA), were used in S incorporation using the typical solvother-
mal method. Further, the samples were placed inside a furnace under N2 atmosphere and
were flushed for half an hour before being heated to 900 ◦C at a heating rate of 10 K min−1.
This secondary pyrolysis step was applied in tuning carbon aerogel conductivity and
heteroatom binding states. They had also conducted comparative electrocatalytic studies of
these materials with solely N-doped aerogels in ORR both in acidic and alkaline mediums.
They found co-doped materials to be better potential candidates in electrocatalytic study,
which might be affirmed due to the synergistic effect between nitrogen and sulphur [173].
Figure 11 represented the micrographs of sulphur-and-nitrogen-doped carbon aerogels.
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Initially in 2002, the incorporation of sulphur into electrocatalytic performance was
introduced by Wu et al. They had reported the development of sulphur-doped amorphous
carbon as a potential cathode material by heat treatment of a mixture of polyacrylonitrile
(PAN) and sulfuric acid [175]. Sulphur incorporation in the system enhanced the charge
capacity value in close correlation with the increase in the size of graphite crystallites,
interlayer distance and number of micropores. Choi et al. developed sulphur-doped car-
bons by using pyrolysis method of bioderived amino acids, viz., alanine, cysteine, glycine,
niacin and valine, and utilized the materials as ORR electrocatalysts successfully in fuel
cell applications. They had also synthesized a nitrogen-and-sulphur-co-doped catalyst by
using cysteine, which performed best in acidic media in comparison to the commercially
available Pt/C catalysts [176]. Previously, in 2006, Inamdar et al. introduced a new flame
technology to synthesize spherical iron oxide nanoparticles by burning ferrocene solution
using a spirit lamp [177]. The same research group synthesized carbon soot with various
configurations using the flame pyrolysis method [178]. Thiophene was selected as the
sulphur precursor material, and these nanomaterials were utilized as ORR electrocatalysts
successfully. Park et al. reported high-quality S-graphene by using a lower content of
oxygen-containing sulphur groups, with fluorinated graphite intercalation compounds
(FGIC)-derived graphene as the starting material. This synthesis process was conducted
at a comparatively lower temperature of 850 ◦C [179]. Zhang et al. developed graphene-
doped N–S using cysteine as a nitrogen/sulphur source material that was potentially
utilized in ORR with better performance than Pt/C. [180]. Similar work was reported by
Zhao et al. to synthesize N/S-co-doped hollow carbon microspheres with great electrocat-
alytic performance in alkaline media [181]. Wang et al. used residues from banana peel to
develop porous carbons, which were co-doped with N/S [182]. These materials were used
as ORR electrocatalysts tested in alkaline medium. As we know, carbon can be derived
from various sources by following simple methods. Cassava (Manihot esculenta) is a crop
which can generate a large amount of waste material as peel and pulp. It contributes over
700 MT waste materials in global upstream food waste [183]. Duran et al. used cassava
residues in preparation of sulphur-doped metal-free electrocatalysts through a thermal
functionalization with sulfuric acid which were used in ORR under alkaline media [184].

4. Phosphorus- and Phosphorus–Nitrogen-Co-Doped Metal-Free Carbon
Nanomaterials as Electrocatalysts

Phosphorus contains the same number of valence electrons as the nitrogen atom;
therefore, it shows similar chemical properties [185], although it has a greater atomic radius
value and higher electro-donating ability than nitrogen, which makes it a better choice as
a dopant to carbon materials. Despite of these advantages, fewer research groups have
been involved in the development of phosphorus-incorporated novel carbon nanomaterials
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with improved surface area and catalytic activity. Mostly, the reported studies were on
phosphorus incorporation in metal–metal oxide substrate. Figure 12 represents a schematic
diagram of P-doped, multilayered, graphene-based metal nanospheres using the solvother-
mal method. In 2012, Yang et al. demonstrated the novel structured, P-doped, ordered
mesoporous carbon (POMC) as a potential electrocatalyst in alkaline medium for ORR [185].
In this typical process, a mixture solution of triphenylphosphine (TPP) and phenol was
infiltered into an SBA-15 template at room temperature and pyrolyzed at 900 ◦C in Ar
media, following the removal of the template by etching with HF to obtain silica-free
POMC. The synthetic strategy with their micrograms and electrochemical studies is shown
in Figure 13. In 2013, Prasad et al. reported the microwave-assisted one-pot synthesis of
metal-free N-and-P-dual-doped nanocarbon as an electrocatalyst in ORR under alkaline
medium [186].
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In 2013, Li et al. synthesized P-doped graphene nanosheets by thermal annealing
a homogeneous mixture of graphene oxide (GO) and BmimPF6 ionic liquid [187]. This
innovative one-step method was economical and simple but scalable for mass produc-
tion of P-doped graphene. These materials with phosphorous doping of 1.16 at% were
proved to be better electrocatalysts in comparison to the commercial Pt/C catalyst in
ORR under alkaline medium [187]. A similar method was adopted by Qiao et al. to de-
velop N-and-P-dual-doped, reduced GO by pyrolyzing a homogeneous mixture of GO
and diammonium hydrogen phosphate [188]. This material performed well as ORR elec-
trocatalysts in alkaline medium following a four-electron pathway. A novel nanocasting
method using platelet-ordered mesoporous silica as a template was adopted by Yang et al.
in 2014 to develop P-doped, platelet-ordered, mesoporous carbon as excellent ORR elec-
trocatalysts in alkaline media [189]. Nitrogen-and-phosphorus-co-doped, dual-doped
hierarchical porous carbon foams were reported as efficient electrocatalysts in ORR devel-
oped through co-pyrolysis nitrogen- and phosphorus-containing precursors and poly(vinyl
alcohol)/polystyrene (PVA/PS) hydrogel composites as in situ templates [190]. Yu et al.
developed vertically aligned CNT arrays with co-doping of nitrogen and phosphorus using
the chemical vapour deposition method [191], which exhibited excellent electrocatalytic
stability and activity in ORR [191]. The electrochemical results had clearly shown enhanced
electrocatalytic activity with co-doping (Figure 14).
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5. Boron- and Boron–Nitrogen-Doped Metal-Free Carbon Nanomaterials
as Electrocatalysts

Nitrogen- and phosphorus-doped carbon nanomaterials have been most extensively
investigated in the literature, whereas S, Se, B and I have also been reported as potential
electrocatalysts [192,193]. In 2011, Yang et al. reported synthesis of boron-doped carbon
nanotubes as efficient electrocatalysts in ORR [194]. Many research groups reported the
synthesis of boron-and-nitrogen-co-doped carbon nanomaterials, although their intrinsic
synergistic effects have not been discussed yet. Zou et al. mentioned the influence of
co-doping in catalytic applications through mathematical modelling [195]. However, a
competent synthetic strategy should be established to anchor nitrogen and boron onto
the appropriate sites of the carbon structure instead of establishing the N–B bond. Many
researchers reported N,B-co-doped electrocatalysts, although their catalytic activity was
not strong [196–199]. In contrast, high-performing electrocatalysts followed complicated
synthetic strategies. Later, Zhou et al. synthesized a N,B-co-doped carbon catalyst with
excellent electrocatalytic performance during ORR in alkaline media, in which nitrogen and
boron were embedded into the carbon structure without establishing any bond between B
and N [200].

6. Heteroatom Doped Activated Carbon as Electrocatalysts

Activated carbon (AC) has widely been employed as a main candidate for an electrode
material in electrical double-layer capacitance (EDLCs) due to its high porous structure
having greater surface area values (1000–3000 m2 g−1) and relatively greater packing
density value of ~0.5 g cm−3 [201]. In the literature, many research groups synthesized
activate carbon materials from bamboo, coconut shell, waste sawdust, etc. [202–205]. The
hydrophobic characteristic of AC materials prevented the infiltration of the electrolytes in
electrode materials, which further controlled the ion accessible surface area [206]. Moreover,
the conductivity value of sp3 type AC is lesser than that of sp2 carbon, which resulted in
lower capacitance [207]. The activated carbon was preferred over CNTs, MOFs, carbides
and graphene, as later materials follow complicated, time-consuming and costly method-
ologies that restrict their large-scale application, regardless of containing higher surface
area value with controllable pore structure and having high chemical stability [208]. On
the other hand, graphene has very low volumetric capacitance value of less than 40 F/cm3,
in comparison to that of 60 F/cm3 from activated carbon [209–212]. Chemical doping was
an effective way to change the electronic and surface chemical properties of ACs [213].
The incorporation of single, dual or multiple heteroatoms into the carbon structure could
enhance its physical and chemical properties to a significant extent [214]. In 2017, Fu et al.
reported a highly efficient, low-cost approach to synthesize N-doped porous carbon materi-
als from natural coconut silk fibres via a facile heat treatment and chemical activation. The
resulting activated carbon showed excellent catalytic activity and admirable stability for
the ORR in alkaline media [215]. Another research group developed the high-performing
P-doped activated carbon as a catalyst in air-cathode microbial fuel cells [216]. In this case,
phosphorus was present as C–O–P groups, which creates a greater power density value and
better electrocatalytic performances [216]. It was reported that AC had shown poor specific
capacitance due to having an extensive range of pore size distribution that contradicted
with the supercapacitor requirement that pore size should match to the size of electrolyte
ions. The hydrophobic nature of ACs resulted in a limitation of ion-accessible surface area
due to poor infiltration of electrolyte-to-electrode materials [217]. The optimization was
required between pore size, pore structure, surface properties and electrodes’ conductivity
to enhance maximum capacitance [218]. In this regard, the role of incorporation of nitrogen
into ACs was mentioned by Zheng et al. They found a linear relationship between the
specific surface area and nitrogen content in functionalized AC towards the capacitance
value [219]. Incorporation of heteroatoms in ACs could also be explained through defect
mechanism, which was to design defective carbons for ORR [220]. This concept implied
that if the desired defect could be produced in AC structure, it could become an active
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electrocatalyst in ORR. In this regard, Yan et al. employed a simple N-doping and removal
method, making the inert activated carbon highly active for both the ORR and HER by
creating unique defects in the AC [221].

7. Conclusions

The heteroatom-doped nanomaterials have drawn huge attention in last two decades
in the field of nanoscience and nanotechnology due to their synthetic methodologies, unique
properties and potential electrochemical performances through the synergistic effects be-
tween the heteroatoms with carbon. The introduction of defects into the carbon-based
materials could easily change the distribution of electron density and electronic charge,
which could result in remarkable progress in the catalytic performance in various electro-
chemical reactions. In comparison to the undoped carbon nanomaterials, these specially
disordered doped and co-doped materials performed remarkably well as electrocatalysts
due to their larger functional surface area value and greater ratio of surface-active groups to
volume. This review article covered the most popular potential synthetic methodologies to
develop nitrogen, sulphur, phosphorus, boron and their multiple doped, metal-free carbon
nanomaterials and discussed elaborately about their electrocatalytic activity in various
electrochemical process. The results have clearly shown the enhancement of nanomaterials’
electrocatalytic activity due to co-doping of multiple heteroatoms into carbon nanostruc-
tures, affirmed from the synergistic effect between them. Despite the abundant studies on
this topic, many scientific questions are yet to be solved. No such doping methodology
has yet been developed that could precisely control the locations of the dopant and its
domain sizes. Moreover, it is not clearly understood how the supporting environment
interacts with catalytic active centres in these materials. Despite of the challenges, these
specially structured nanomaterials exist with many avenues and require more progress in
carbon-based nanotechnology with applications in the energy field.
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