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Background: It is important to be able to estimate the anticipated
net population benefit if the performance of hospitals is improved to
specific standards.

Objective: The objective of this study was to show how G-computation
can be used with random effects logistic regression models to
estimate the absolute reduction in the number of adverse events if the
performance of some hospitals within a region was improved to meet
specific standards.

Research Design: A retrospective cohort study using health care
administrative data.

Subjects: Patients hospitalized with acute myocardial infarction in
the province of Ontario in 2015.

Results: Of 18,067 patients hospitalized at 97 hospitals, 1441
(8.0%) died within 30 days of hospital admission. If the performance
of the 25% of hospitals with the worst performance had their per-
formance changed to equal that of the 75th percentile of hospital
performance, 3.5 deaths within 30 days would be avoided [95%
confidence interval (CI): 0.4–26.5]. If the performance of those
hospitals whose performance was worse than that of an average

hospital had their performance changed to that of an average hos-
pital, 6.0 deaths would be avoided (95% CI: 0.7–47.0). If the per-
formance of the 75% of hospitals with the worst performance had
their performance changed to equal that of the 25th percentile of
hospital performance, 11.0 deaths would be avoided (95% CI:
1.2–79.0).

Conclusion: G-computation can be used to estimate the net pop-
ulation reduction in the number of adverse events if the performance
of hospitals was improved to specific standards.

Key Words: hospital performance, multilevel models, hierarchical
regression models, G-computation, health services research
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Hospital report cards are reports in which outcomes or
processes of care are compared across hospitals for pa-

tients treated for the same medical condition or undergoing
the same surgical procedure. Hospital report cards are used to
monitor the quality of care across hospitals. The American
states of New York, Pennsylvania, Massachusetts, New Jersey,
as well as the Canadian province of Ontario have reported
publicly on hospital performance for patients undergoing
coronary artery bypass graft (CABG) surgery.1–5 Similarly,
Pennsylvania, California, and Ontario have publicly reported
on hospital performance for patients hospitalized with acute
myocardial infarction (AMI).6–8 The HospitalCompare website
produced by Medicare.gov reports on hospital-specific risk-
adjusted 30-day mortality rates for patients hospitalized with
AMI, heart failure, and pneumonia and for those undergoing
CABG surgery (www.medicare.gov/HospitalCompare/Data/
Death-rates.html). Hospital report cards permit the identification
of health care providers that provide quality of care that is
significantly above or below average. Quality improvement
interventions can be targeted at providers with worse-than-
expected outcomes to improve the quality of care provided to
their patients and to improve the outcomes of their patients.
Similarly, hospital report cards permit the identification of
health care providers that provide excellent quality of care. The
reasons for their excellent performance can be investigated, so
that information on best practices can be disseminated to all
health care providers.

Publication of hospital report cards can lead to inter-
ventions tailored to improve hospital performance. Following
the publication of Ontario’s first public report card on the
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outcomes of patients hospitalized with AMI, individual hos-
pitals implemented initiatives to improve the quality of care
provided to these patients.9 The EFFECT trial was a cluster-
randomized trial that examined the effect of public reporting
of hospital performance on an array of quality indicators for
patients hospitalized with AMI or heart failure.10 Following
the public reporting of hospital performance, individual
hospitals implemented quality improvement initiatives to
improve their performance on specific indicators.10

An important quantity to know when designing and
evaluating interventions to improve hospital performance is
the absolute reduction in the number of adverse events (eg,
deaths) across the entire population or jurisdiction if the
performance of individual hospitals were to improve to spe-
cific normative standards. In proposing this metric, we as-
sume that there is variation in performance across hospitals,
with some hospitals having acceptable performance, and
other hospitals having unacceptable performance. We want to
estimate the absolute reduction in the number of adverse
events if all hospitals with unacceptable quality of care were
to improve their performance to be equal to the threshold
defining acceptable quality of care. This would permit an
estimate of the net population benefit if the performance of
underperforming hospitals was improved to equal that of their
high-performing peers. Knowledge of this quantity would
provide information as to anticipated benefits if the perfor-
mance of hospitals with inferior performance improved to that
of a typical hospital. This quantity is not intended to inform
on the need for quality improvement initiatives at specific
hospitals. Instead, this quantity is important for the prioriti-
zation of system-wide quality improvement efforts. It can
inform health planners about the potential absolute reduction
in the number of deaths, across all hospitals, if the perfor-
mance of all hospitals were changed to meet certain norma-
tive standards.

The paper is structured as follows: In the Statistical
methods for estimating absolute reduction in the number of
adverse events section, we describe statistical methods to
estimate the absolute reduction in the number of adverse
events due to improvements in hospital performance. In the
Case study section, we provide a case study illustrating
the application of these methods using data on patients hos-
pitalized with AMI in Ontario. In the Discussion section, we
summarize our findings and place them in the context of the
existing literature.

STATISTICAL METHODS FOR ESTIMATING
ABSOLUTE REDUCTION IN THE NUMBER OF

ADVERSE EVENTS
In this section, we describe statistical methods to esti-

mate the absolute reduction in the number of adverse events
(eg, death) at the population level due to improvements in
hospital performance. The method is based on the use of
random effects logistic regression models (also known as
multilevel logistic regression models or hierarchical logistic
regression models) and is motivated by the G-computation
method for estimating the effects of interventions and
exposures.11 We describe bootstrap-based methods for use

with multilevel data to construct confidence intervals (CIs)
around this estimated reduction in the number of adverse
events.

The Potential Outcomes Framework and
G-Computation for Binary Exposures

The potential outcomes framework allows one to formal-
ize the definition of the effects of exposures or interventions.12

We describe this framework in a setting in which one active
treatment is compared with one control treatment; however, the
framework can be easily extended for settings with nonbinary
categorical exposures or continuous exposures.

The 2 potential outcomes, Y(1) and Y(0) are the out-
comes under the active and control treatments, respectively.
Y(1) denotes a subject’s outcome after receiving the active
treatment, while Y(0) denotes the same subject’s outcome
when receiving the control treatment, under identical cir-
cumstances and at the identical time. Let Z denote an in-
dicator variable denoting the actual treatment received (Z= 1
denoting receipt of the active treatment and Z= 0 denoting
receipt of the control treatment). For a given subject, the
effect of treatment is defined as Y(1)−Y(0). The average
treatment effect is defined as E[Y(1)−Y(0)], the average effect
of treatment in the population. However, for a given subject,
only 1 of the 2 potential outcomes can be observed.

Parametric G-computation is a regression-based method
for estimating the effects of interventions or exposures. A
multivariable parametric regression model is used to regress
the outcome on treatment status and baseline covariates.11 In
conventional parametric G-computation, assuming outcomes
are binary, the following logistic regression model can be fit:

logit ðpÞ ¼ b0 þb1Xþ b2Z: ð1Þ
where p denotes the probability of the occurrence of the bi-
nary outcome Y, and X denotes a vector of baseline co-
variates. In equation (1), β1X denotes the effect of patient
characteristics on the log-odds scale, while β2Z denotes the
effect of the binary treatment or exposure on the log-odds
scale. Unlike a linear model, random variation is not induced
through the inclusion of a subject-level error term, but
through the distribution, Y∼Be(pi). Using the fitted logistic
regression model, the predicted probability of the outcome is
estimated for each subject as if that subject had not been
treated: P̂ð0Þ ¼ expðb0 þb1XÞ

1þexpðb0 þ b1XÞ. Second, the predicted proba-
bility of the outcome is estimated for each subject as if that
subject had been treated: P̂ð1Þ ¼ expðb0 þ b1Xþ b2Þ

1þexpðb0 þ b1Xþ b2Þ. For a given
subject, the effect of the treatment can be estimated as the
difference between the 2 imputed potential outcomes:
P̂ð1Þ � P̂ð0Þ. Finally, the average treatment effect of interest
can be estimated by averaging the subject-specific treatment
effects over the entire sample.

If one had a categorical exposure with a few levels (eg,
hospital A vs. hospital B vs. hospital C), one can easily modify
the above approach. One would modify formula (1), so that,
rather than a binary treatment/exposure variable, one would
have a categorical variable with 3 levels (possibly represented
using indicator variables for 2 of the 3 hospitals). One would
then use the fitted model to estimate the probability of the
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outcome if, possibly contrary to what was observed, all patients
were treated at hospital A. One would then determine the mean
predicted probability of the outcome if all patients were treated
at hospital A. This procedure would then be repeated for
hospitals B and C. Then, the risk difference comparing out-
comes if all hospitals were treated at hospital A versus hospital
B can be computed (along with the 2 other pair-wise com-
parisons). If the number of hospitals was large, this approach
would be statistically inefficient due to the inclusion of a large
number of indicator variables for representing the hospitals. In
the Estimation of the Absolute Reduction in the Number of
Adverse Events Due to Hospital Improvement in Performance
section, we describe how this approach can be modified for use
with a large number of hospitals.

Estimation of the Absolute Reduction in the
Number of Adverse Events Due to Hospital
Improvement in Performance

In this section, we describe statistical methods to esti-
mate the absolute reduction in the number of adverse events
due to improvements in hospital performance. The method is
based on the use of G-computation with hierarchical logistic
regression models. Let Yij denote the binary outcome for the
ith subject treated at the jth hospital [eg, Yij= 1 denotes that
the patient experienced the outcome (eg, death), while Yij= 0
denotes that the patient did not experience the outcome] and
let Xij denote a vector of risk factors measured on this subject
that will be used for risk adjustment.

The following random intercept logistic regression
model can be fit to the data:

logitðpijÞ ¼ a0 þa0j þbXij: ð2Þ
where pij= Pr(Yij= 1), α0 denotes the average intercept, α0j
denotes the hospital-specific random effects for the jth hos-
pital, and β denotes the vector of regression coefficients as-
sociated with the patient-level risk factors or covariates. We
make the distributional assumption that a0j � Nð0;s2Þ.
Hospitals whose random effects are positive (α0j> 0) have
adverse events that occur with a higher probability than at an
average hospital, while hospitals whose random effects are
negative (α0j< 0) have adverse events occur with a lower
probability than at an average hospital. Let â0,â, b̂, and ŝ2

denote the estimated average intercept, the predicted hospital-
specific random effect for the jth hospital, the estimated
vector of regression coefficients, and the estimated variance
of the random effects distribution, respectively.

The predicted probability of the outcome for the ith
patient at the jth hospital can be estimated as:

pij ¼
exp ðâ0 þ â0j þb̂XijÞ

1þ exp ðâ0 þ â0j þb̂XijÞ
: ð3Þ

This denotes the predicted probability of the outcome
for this subject conditional on the predicted hospital-specific
random effect, which represents an estimate of the hospital’s
current performance. The predicted or expected number of
adverse events at all hospitals can be determined as:
PK
j¼1

PNj

i¼1
pij; where Nj denotes the number of subjects at the jth

hospital and K denotes the number of hospitals. This repre-
sents an estimate of the expected number of adverse events
across all hospitals conditional on the current performance of
the hospitals.

One can estimate the predicted or expected number of
adverse events if hospital performance improved at some or
all of the hospitals. For example, those hospitals whose rel-
ative performance was worse than that of an average hospital
(ie, α0j> 0) have their performance set equal to that of an
average hospital (ie, α0j= 0), while those hospitals whose
relative performance was better than average (ie, α0j< 0) have
their performance left unchanged. One can then estimate each
patient’s predicted probability of an adverse event under this
modification of hospital performance:

pmodified
ij ¼

exp ðâ0 þ b̂XijÞ
1þ exp ðâ0 þb̂XijÞ

if â0j 4 0

exp ðâ0 þ â0j þ b̂XijÞ
1þ exp ðâ0 þ â0j þ b̂XijÞ

if â0j o¼ 0

8>><
>>:

: ð4Þ

Note that in the first component of this formula, the
random effect has been omitted, implying that the random
effect has been set equal to zero, which is the random effect
for an average hospital. This modified probability can then be
summed over all patients at all hospitals to determine the
predicted or expected number of adverse events if those
hospitals whose performance was worse than average had
their performance improved to equal that of an average hos-
pital. The difference between the expected number of adverse
events under current hospital performance and that under
the modified performance denotes the expected change in the
number of adverse if those hospitals that had worse perfor-
mance than that of an average hospital had their performance
improved to be the same as that of an average hospital.

The Multilevel Bootstrap for Estimating
Confidence Intervals

Bootstrap-based methods can be used to estimate CIs
for the absolute reduction in the number of adverse events.13

We describe the use of the nonparametric residuals bootstrap
adapted for use with 2-level multilevel data structures.14–16

First, the predicted hospital-specific random effects are
centered so as to have mean zero. Let S2 denote the maximum
likelihood estimate of the variance of the predicted hospital-
specific random effects [note that S2 differs from s2 following
formula (2); the former is the sample variance of the predicted
hospital-specific random effects, while the latter is the pop-
ulation variance of the true hospital-specific random effects].
Let R2 denote the estimated variance of the distribution of
hospital-specific random effects obtained from the fitted
multilevel logistic regression model (thus R2 is an estimate of
s2). We define an inflation factor by R/S, and each of the
empirical or predicted hospital-specific random effects is
multiplied by this inflation factor.16 This accounts for the
shrinkage in the predicted cluster-specific random effects. The
inflated random effects will have the same sample variance as
the variance of the distribution of the random effects from the
fitted model. The nonparametric residuals bootstrap draws a
bootstrap sample of hospital-specific random effects from the
set of inflated hospital-specific predicted random effects.
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Given that there are K hospitals, one draws K random effects
ðabs0j Þ from this empirical distribution. For each subject, one
then modifies formula (3) by replacing the predicted hospital-
specific random effects with those drawn from the set of in-
flated empirical hospital-specific random effects:

pbsij ¼
exp ðâ0 þabs0j þb̂XijÞ

1þ exp ðâ0 þabs0j þb̂XijÞ
: ð5Þ

One then simulates a binary outcome for each subject
as: Ybs

ij � Bernoulliðpbsij Þ. Using the simulated data (Ybs,X),
one then applies the methods described in the Estimation of
the absolute reduction in the number of adverse events due to
hospital improvement in performance section to estimate the
absolute decrease in the expected number of adverse events
under the given modification of hospital performance. This
reduction in the number of adverse events is denoted by Δbs.
This procedure is followed B times, resulting in Dbs

i ; i¼1;:::;B.
Percentile-based bootstrap CIs can be constructed by using
the 2.5th and 97.5th percentiles of the empirical distribution
of Dbs

i .

CASE STUDY
We provide a case study to illustrate the application of the

methods described in Statistical methods for estimating absolute
reduction in the number of adverse events section. We use data
on patients hospitalized with AMI in the province of Ontario.
We consider 3 different scenarios for improvements in hospital
performance.

Data Sources
We used data from the Ontario Myocardial Infarction

Database (OMID), which contains data on patients hospi-
talized with an AMI at Ontario hospitals between 1992 and
2016.17 For the case study, we used hospitalizations that
occurred in the 12-month period between April 1, 2015, and
March 31, 2016. Because of the study inclusion and exclusion
criteria, no patient had > 1 hospitalization during the 1-year
time frame of the study.17 The data have a multilevel struc-
ture, with patients nested within hospitals. Similar to the
HospitalCompare project, we excluded hospitals that treated
<25 AMI patients during the 1-year period (www.medicare.
gov/HospitalCompare/Data/Death-rates.html). The study
sample consisted of 18,067 patients treated at 97 hospitals.
The number of patients treated per hospital ranged from 25 to
979, with a median of 123 (25th–75th percentiles: 55–206).

Eleven patient-level variables, consisting of the variables
in the Ontario AMI Mortality Prediction model (age, sex, con-
gestive heart failure, cardiogenic shock, arrhythmia, pulmonary
edema, diabetes mellitus with complications, stroke, acute renal
disease, chronic renal disease, and malignancy), were used for
risk-adjustment in the subsequent analyses.18 The one continuous
explanatory variables (age) was centered around the sample
average. Information on the presence of the 9 comorbidities
was extracted from the 24 secondary diagnosis fields from the
discharge abstract database for the given hospitalization.

We considered 2 binary outcomes: death within 30 days
of hospital admission and death within 1 year of hospital
admission. These outcomes included both in-hospital deaths

and out-of-hospital deaths. A total of 1441 (8.0%) patients
died within 30 days of hospital admission, while 2881
(15.9%) died within 1 year of admission.

Statistical Analyses
For each of the 2 binary outcomes, we fit a random

effects logistic regression model to regress the binary
outcome on the 11 variables in the Ontario AMI Mortality
Prediction model. The model incorporated random hospital-
specific intercepts that were assumed to follow a normal
distribution. We used the methods described above to esti-
mate the population impact of the following 3 levels
of hospital improvement: (i) those hospitals whose random
effects were in the highest quartile of the empirical random
effects distribution had their random effect decreased to equal
that the 75th percentile of the empirical random effects dis-
tribution; (ii) those hospitals whose estimated random effects
were positive (ie, α0j> 0) had their random effects set equal to
zero (ie, α0j= 0); (iii) those hospitals whose random effects
exceeded the 25th percentile of the empirical random effects
distribution had their random effect decreased to equal the
25th percentile of the empirical random effects distribution.
The first modification is the most modest, with only 25% of
hospitals experiencing an improvement in performance, with
the remaining 75% of hospitals having their performance
unchanged. The improved performance at those hospitals that
were in the top quartile was still worse than that of 75% of
hospitals. The second modification is moderate, with 50% of
hospitals experiencing an improvement in performance. The
third modification was the most comprehensive, with 75%
of hospitals experiencing an improvement in performance.
When estimating bootstrap-based CIs, we used B=5000 bootstrap
replicates.

The random effects logistic regression models were fit using
PROC GLIMMIX in SAS (version 9.4), while G-computation was
conducted using a series of data steps.

Results
The estimated odds ratios and associated 95% CIs for

the hierarchical logistic regression models predicting 30-day
and 1-year mortality are reported in Table 1. The estimated

TABLE 1. Estimated Odds Ratios From the 2 Logistic
Regression Models
Variables 30-Day Mortality 1-Year Mortality

Intercept −3.38 −2.67
Age (per 10 y increase) 1.80 (1.70–1.89) 2.04 (1.95–2.13)
Female 1.12 (0.99–1.27) 1.03 (0.93–1.13)
Congestive heart failure 1.73 (1.50–1.99) 2.28 (2.04–2.55)
Stroke 2.77 (1.93–4.00) 1.91 (1.36–2.67)
Pulmonary edema 3.32 (1.84–6.01) 2.74 (1.57–4.78)
Diabetes with complications 1.23 (1.09–1.40) 1.55 (1.41–1.71)
Cancer 2.78 (2.17–3.57) 6.68 (5.42–8.25)
Chronic renal failure 1.19 (0.94–1.51) 1.85 (1.54–2.23)
Acute renal failure 2.14 (1.80–2.55) 2.02 (1.74–2.35)
Cardiogenic shock 18.30 (14.30–23.40) 12.69 (9.79–16.46)
Arrhythmia 1.60 (1.39–1.85) 1.57 (1.39–1.76)

The cells contain the estimated odds ratios and associated 95% confidence intervals.
The intercept denotes the average intercept of the random effects logistic regression model.
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variances of the distributions of the random effects were
0.00863 and 0.02206 for the models for 30-day and 1-year
mortality, respectively. These are equivalent to standard
deviations of 0.093 and 0.149. Thus, the hospital-specific
random intercepts would come from an N (−3.38, σ= 0.093)
and N (−2.67, σ= 0.149), respectively. Increasing patient age
and 8 of the 9 comorbid conditions were associated with an
increased odds of 30-day mortality. The 95% CIs for female
sex and chronic renal failure both contained the null value.
Increasing patient age and all 9 comorbid conditions were
associated with an increased odds of 1-year mortality. The
95% CI for female sex contained the null value.

For 30-day mortality, the median predicted hospital-
specific random effect was zero, while the first and third
quartiles were −0.008 and 0.006, respectively. The fifth and
95th percentiles were −0.021 and 0.023, respectively. For
1-year mortality, the median predicted hospital-specific ran-
dom effect was −0.002, while the first and third quartiles were
−0.033 and 0.047, respectively. The fifth and 95th percentiles
were −0.135 and 0.109, respectively.

The absolute reduction in the number of deaths avoided
within 30 days and 1 year under the 3 different scenarios
about improvements in hospital performance are reported in
Table 2. In the analytic sample, 1441 patients died within
30 days of hospital admission. If the performance of the 25%
of hospitals with the highest adjusted mortality had similar
performance to the hospital at the 75th percentile of
performance, the estimated reduction in the number of
deaths within 30 days would be 3.5. If the performance
of those hospitals whose performance was worse than that of
an average hospital had their performance modified to be
equal to that of an average hospital, the estimated reduction in
the number of deaths within 30 days would be 6.0. If the
performance of the 75% of hospitals with the highest adjusted
mortality had similar performance to that of the hospital at the
25th percentile, the estimated reduction in the number of
deaths within 30 days would be 11.0. On the basis of the
observed number of deaths of 1441, the percentage of deaths
that could be avoided by these 3 modifications of hospital
performance were 0.2%, 0.4%, and 0.8%, respectively. For all
3 scenarios of hospital improvement, an estimated 95% CIs
excluded the null value of zero. The CIs provide an indication
of the precision with which the absolute reduction in
mortality is estimated. Narrower intervals imply that this
quantity is estimated with greater precision. If the CI contains

the null value of zero, then the reduction in the number of
deaths is not statistically significantly different from zero (ie,
no net reduction in the number of deaths). Note the relatively
wide CIs, indicating moderate uncertainty in the absolute
reduction in the number of deaths due to hospital
improvement. Furthermore, the width of the CIs increases
as the number of hospitals at which improvements occur
increases. Similar results, with amplification in the absolute
reduction in the number of deaths, were observed for 1-year
mortality.

Complementary Analyses
We conducted a set of complementary analyses to es-

timate hospital-specific risk-adjusted mortality rates. We fit 2
conventional logistic regression models in which each of the
2 binary outcomes (30-day and 1-year mortality) was re-
gressed on the 11 patient characteristics described above.
From each of the fitted models, we computed the expected
number of deaths at each hospital as the sum of the predicted
probabilities of the outcome across all patients at that hos-
pital. Risk-adjusted mortality rates were computed for each
hospital as the ratio of the observed number of deaths to the
expected number of deaths, multiplied by the overall
cohort-wide mortality rate.19 Ninety-five percent CIs were
constructed using a method described by Hosmer and
Lemeshow.20 Hospitals whose 95% CI lay entirely above the
overall cohort-wide mortality rate were classified as high-
mortality outliers, while those whose 95% CIs lay entirely
below the overall cohort-wide mortality rate were classified as
low-mortality outliers. For 30-day mortality, 5 hospitals were
classified as high-outliers while 3 hospitals were classified as
low-outliers. For 1-year mortality, 6 hospitals were classified
as high-outliers, while 3 hospitals were classified as low-
outliers.

For each hospital that was identified as a high-mortality
outlier, we computed the number of excess deaths as the
difference between the observed number of deaths and the
expected number of deaths and summed this quantity across
the high-mortality outliers. For 30-day mortality, the excess
number of deaths at the 5 high-mortality outliers was 34.4.
For 1-year mortality, the excess number of deaths at the 6
high-mortality outliers was 43.8.

Finally, for each hospital, we computed the observed
number of deaths. We also computed the ratio of observed-to-
expected number of deaths at each hospital based on the fitted
logistic regression model. For those hospitals whose ob-
served-to-expected ratio exceeded the 75th percentile (ie,
were in the top 25% of hospitals), we set the observed-to-
expected ratio to equal the 75th percentile of this ratio (ie, the
performance of these hospitals was improved). We then de-
termined the anticipated number of observed deaths (under
this improvement) by multiplying the expected number of
deaths by this modified ratio of observed-to-expected deaths.
We then determined the difference between the actual
observed number of deaths and the anticipated number of
observed deaths under this improvement and summed this
quantity across those hospitals whose observed-to-expected
ratio exceeded the 75th percentile. The nonparametric or
cases bootstrap, in which 5000 bootstrap samples of hospitals

TABLE 2. Estimated Absolute Decrease in the Number of
Deaths Within 30 Days and 1 Year With Associated 95%
Confidence Intervals

Improvement Scenario
30-Day
Mortality

1-Year
Mortality

Top 25% of hospitals have performance
changed to that of the 75th percentile

3.5 (0.4–26.5) 17.9 (6.9–66.4)

Hospitals whose performance is worse
than average have performance
changed to that of an average hospital

6.0 (0.7–47.0) 44.5 (13.8–121.8)

Top 75% of hospitals have performance
changed to that of the 25th percentile

11.0 (1.2–79.0) 73.3 (23.0–206.2)
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were drawn, was used to construct 95% bootstrap percentile
CIs for this quantity.14,15 For 30-day mortality, we estimated
that 45.6 deaths (95% CI: 26.8–65.1) would be avoided by
improving the performance of 25% of hospitals with the
highest observed-to-expected ratios. For 1-year mortality, the
corresponding figure was 45.4 deaths (95% CI: 30.3–67.5).

DISCUSSION
We described a method based on G-computation in

conjunction with a fitted random effects logistic regression
model to estimate the absolute reduction in the number of ad-
verse events if the performance of some hospitals was improved
to specified normative standards. We illustrated the utility of
this method by applying it to data consisting of patients hos-
pitalized with an AMI in Ontario, Canada. We found that in the
given year, 6.0 deaths would be avoided within 30 days of
hospital admission if the performance of those hospitals whose
performance was worse than that of an average hospital had
their performance improved to equal that of an average hospital.
Providing this information would not be intended to inform
quality improvement initiatives at specific hospitals. Instead,
this information would provide an estimate of the expected
reduction in the number of deaths (or other adverse events)
across the health care system, if the performance of all hospitals
was improved to meet specific normative standards.

We compared the use of G-computation using hier-
archical models with methods based on fitting conventional
logistic regression models and computing ratios of observed-
to-expected mortality. We found that estimates of the expected
reduction in the number of deaths, if the top 25% of hospitals
were to have their performance improved, was substantially
attenuated towards zero when using G-computation with hier-
archical models compared with when using conventional
model-based indirect standardization. We hypothesize that at
least part of this attenuation is due to the shrunken estimates of
the predicted random effects that are obtained when using hi-
erarchical regression models.

Hospital report cards are expensive and time-consuming
to produce. The methods described in this study permit esti-
mation of the expected reduction in the number of adverse
events if the performance of a subset of hospitals was to im-
prove to equal specific standards. These methods do not permit
estimation of the impact of a particular intervention such as
implementing standing orders. However, the described methods
do provide an estimate of the anticipated population benefit if
performance at some hospitals was improved so as to equal the
performance that is already being achieved by other hospitals.
On the basis of the assumption that the risk-adjusted perfor-
mance observed at some hospitals is a realistic goal for all
hospitals, these methods provide an estimate of the anticipated
population benefit if this achievable performance was attained
by all hospitals. By applying the proposed methods to different
conditions (eg, patients undergoing CABG surgery, patients
hospitalized for heart failure, and patients hospitalized for
AMI), conditions and procedures could be ranked according to
the anticipated absolute population benefit if the performance of
poorly performing hospitals was improved to that of an average
hospital. This would allow health system administrators and

policymakers to prioritize which conditions or procedures
should be the focus of a hospital report card.

The use of G-computation to address the effects of
policies or of questions around the structure of the health care
system appears to be rare. A search of PubMed (www.ncbi.
nlm.nih.gov/pubmed) using the search term “G-computation”
identified 90 articles (date of search: August 22, 2019).
Almost all applications of G-computation involved examining
the effects of conventional treatments and exposures, and
not to address health systems questions. One of the few
exceptions was a study that used conventional G-computation
with a binary exposure to estimate the reduction in surgical
deaths due to the regionalization of higher risk surgical
procedures.21 It was estimated that the regionalization of col-
orectal surgery, esophagectomy, and pancreaticoduodene-
ctomy in Ontario would reduce the average annual number of
perioperative deaths by 20.2, 2.0, and 3.6, for the 3 procedures,
respectively. Another novel application of G-computation was
a study that examined transportation planning policies on the
number of bicyclist fatalities.22 The novelty of the current
application is the combining G-computation with random
effects logistic regression models. While not using the term
G-computation, 2 further studies were identified that used
similar approach to address questions around the effect of
changing hospital or regional performance. Simpson et al23

examined between-hospital variation in rates of severe intra-
ventricular hemorrhage in preterm babies in Australia and New
Zealand. They found that if all neonatal intensive care units
could achieve a rate equal to the 20th percentile, then 60 cases
of severe intraventricular hemorrhage could be prevented over
3 years. Similarly, Yu et al24 studied between-health areas
survival from colorectal cancer in New South Wales, Australia.
They estimated that 784 patients who died within 5 years due
to colon cancer could have had their survival increased to
> 5 years if the excess risk of death in all health areas was
reduced to the 20th percentile.

There are certain limitations of the current study. First,
we relied on administrative health care data. While these data
provide population-based coverage, they do not contain in-
formation on risk factors such as blood pressure and smoking
status as well as on factors such as coronary disease anatomy.
It is possible that the estimated reduction in the number of
deaths could change were we able to account for additional
risk factors. However, the primary objective of the current
study was to describe a methodological framework for esti-
mating the absolute reduction in deaths were hospital per-
formance to improve. Second, our estimate of the absolute
reduction in the number of deaths relies on the assumption
that the regression model has been correctly specified. If the
model were misspecified, then it is possible that the estimated
reduction in deaths is subject to bias. However, the model
was developed in Ontario and was then subsequently vali-
dated in both Manitoba and California.18 Thus, it is likely that
the model accurately predicts AMI mortality.

In summary, G-computation in conjunction with ran-
dom effects logistic regression models can be used to estimate
the absolute reduction in the number of adverse events if the
performance of some health care providers was improved so
as to meet specified normative standards. This method allows
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for an estimation of the possible net benefit of campaigns to
improve hospital performance.
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