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Abstract

Fire severity affects both ecosystem N-loss and post-fire N-balance. Climate change is alter-

ing the fire regime of interior Alaska, although the effects on Siberian alder (Alnus viridis

ssp. fruticosa) annual N-fixation input (kg N ha-1 yr-1) and ecosystem N-balance are largely

unknown. We established 263 study plots across two burn scars within the Yukon-Tanana

Uplands ecoregion of interior Alaska. Siberian alder N-input was quantified by post-fire age,

fire severity, and stand type. We modeled the components of Siberian alder N-input using

environmental variables and fire severity within and across burn scars and estimated post-

fire N-balance using N-loss (volatilized N) and N-gain [biological N-fixation and atmospheric

deposition]. Mean nodule-level N-fixation rate was 70% higher 11-years post-fire (12.88 ±
1.18 μmol N g-1 hr-1) than 40-years post-fire (7.58 ± 0.59 μmol N g-1 hr-1). Structural equation

modeling indicated that fire severity had a negative effect on Siberian alder density, but a

positive effect on live nodule biomass (g nodule m-2 plant-1). Post-fire Siberian alder N-input

was highest in 11-year old moderately burned deciduous stands (11.53 ± 0.22 kg N ha-1

yr-1), and lowest in 11-year old stands that converted from black spruce to deciduous domi-

nance after severe fire (0.06 ± 0.003 kg N ha-1 yr-1). Over a 138-year fire return interval, N-

gains in converted black spruce stands are estimated to offset 15% of volatilized N, whereas

N-gains in burned deciduous stands likely exceed volatilized N by an order of magnitude.

High Siberian alder density and nodule biomass drives N-input in burned deciduous stands,

while low N-fixer density (including Siberian alder) limits N-input in high severity black

spruce stands not underlain by permafrost. A severe fire regime that converts black spruce

stands to deciduous dominance without alder recruitment may induce progressive N-losses

which alter boreal forest ecosystem patterns and processes.
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Introduction

Alder (Alnus spp.) forms a symbiotic relationship with the nitrogen-fixing Frankia bacteria

resulting in significant implications for N cycling in post-disturbance ecosystems throughout

interior Alaska and elsewhere in the boreal forest [1–4]. Annual stand-level alder N-fixation

input can exceed 100 kg N ha-1 yr-1, leading to substantial increases to ecosystem N pools in

primary succession on floodplains [4,5] and recently deglaciated uplands [6–8], as well as

some post-fire stand types of boreal forest uplands [2,4,9]. Alder N-fixation input is associated

with altered biogeochemical patterns such as soil acidification, increased N cycling and avail-

ability, and elevated aquatic productivity [10–12]. However, the ecosystem consequences of

Siberian alder (A. viridis ssp. fruticosa) N-fixation input after fire disturbance in black spruce

(Picea mariana) forests of Alaska are poorly understood.

Climate warming in interior Alaska over the past 60 years [13] has increased the frequency,

size, and severity of wildfires [14]. This change in fire regime is linked to a shift in dominant

vegetation from black spruce to deciduous-dominated forests, representing a vegetation transi-

tion that is novel over the past several thousand years [15,16]. During the extreme 2004 Alaska

fire season, volatilization of soil organic N ranged from 0–94% and averaged 50% in burned

black spruce stands [17]. Sustained losses of N—resulting from higher rates of N-volatilization

than N-fixation input—have been observed in the fire dependent longleaf pine savannas of the

southeastern United States [18]. Despite the importance of fire in shaping community and

ecosystem dynamics in the boreal forest [19], little is known about the effect of fire on the den-

sity, growth, and N-fixation of Siberian alder (interchangeably referred to here as alder) or the

associated feedbacks to ecosystem N balance and post-fire plant community development. The

historic boreal forest fire regime (i.e., predominantly low to moderate severity fires) facilitated

increased alder growth and reproduction on burned areas in Canadian boreal forest [20].

However, evidence from a Swedish boreal forest suggests that during extreme fire events, there

is a complete destruction of rhizomatous shrubs and seed banks [21]. Extreme fire events

within the Alaskan boreal forest could significantly reduce alder recolonization and resprout-

ing, thereby limiting total N inputs and subsequently ecosystem resilience to disturbance.

Post-fire alder development is influenced by pre-fire alder distribution, as well as the patterns

and factors affecting alder recruitment, growth and N-fixation across upland boreal forest

stand types (e.g., black spruce versus deciduous dominance). While it is likely that these factors

are strongly influenced by fire severity, the interactive effects of fire severity and site conditions

on alder density, growth and N-fixation have not been studied.

Alder has been described as a common component of post-fire successional dynamics [22],

yet its abundance in various post-fire successional stands ranges from absent to very dense

[23,24]. Such a variable distribution is likely due to a combination of fire history and other

environmental factors. Disentangling the effects of Alaska’s changing fire regime on alder dis-

tribution and abundance and the associated impacts on post-fire N-balance and ecosystem

resilience requires examination of the patterns and factors influencing alder N-fixation inputs

and their relationship to fire severity effects at landscape scales. Because high fire severity has

been shown to reduce post-fire rhizomatous shrub abundance in the boreal forest [21], we

hypothesized that high severity fires limit post-fire alder density and therefore stand-level N-

fixation inputs during secondary succession. However, in order to test for an effect of fire

severity on alder density (and therefore stand-level N-fixation input), we must disentangle fire

severity effects from other potential effects. Our specific objective was to characterize how

alder density, nodule-level N-fixation, nodule-level biomass, alder ramet and leaf traits, and

plant-level N-fixation input vary across a fire severity gradient, fire age, and environmental

characteristics (soil and topography). Our final goal of this study was to describe the
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relationship among fire severity, alder symbiotic N-fixation input, and post-fire N-balance.

Our data show that high severity fire substantially reduces alder density which contributes, at

least initially, to a strong imbalance between the high amount of N that was volatilized and the

low amount of N-input during secondary succession.

Materials and methods

Study area

Our study area encompassed two burn scars within the Yukon-Tanana Uplands ecoregion

[25] of interior Alaska. Study plots were located on public land owned by the State of Alaska

and the Fairbanks North-Star Borough, and private land owned by the University of Alaska

Fairbanks. Access to University of Alaska Fairbanks lands was granted by the Poker Flats

Research Range and the Bonanza Creek Long Term Ecological Research program. This field

study did not involve protected or endangered species. One of the burn scars sampled—the

1971 Wickersham Dome Fire (WDF)—is located approximately 35 km NW of Fairbanks,

Alaska (64.9˚ N, 147.9˚ W) and covers 5,500 ha. The 2004 Boundary Fire (BF) scar is located

approximately 40 km NE of Fairbanks and covers over 210,000 ha. Study plots were located

between 100 m and 5 km from the burn scar edge and did not overlap roads, trails, fire-fight-

ing treatments or other unnatural features. Fire history records indicate that no other fires

occurred in the study area at least since 1940 [26]. Discontinuous permafrost is found 40–50

cm below the soil surface, but ridgetops and upper south-facing slopes often lack permafrost

[27]. Throughout the study area alder occurs as a tall shrub that can form dense patches with

multiple individuals close to one another—particularly on disturbed sites such as trails and

roadsides where the mineral horizon is exposed.

Field and laboratory methods

Siberian alder density. Siberian alder density (plants ha-1) sampling occurred in summer

2014. Each study plot was circular (100-m diameter) and plots were spaced 200 m apart along

randomly located toposequence transects of varying lengths [WDF (n = 21 transects), BF

(n = 40 transects)]. Plots within the BF were randomly located within the same topographic

range sampled in the WDF (324–581 m elevation, 0–360˚ aspect, and 0–26˚ slope). Alder den-

sity was estimated by measuring the distance between plot center and the nearest alder (if >50

m, then truncated to 50 m) on WDF sample plots (n = 80) and BF sample plots (n = 183). An

individual alder was defined as one or more tightly clustered ramets spatially distinct from

another individual on the same plot. Distances were later used in a non-parametric formula

for estimating plant density (see Statistical analysis). We chose to measure alder density with

this method because it is a more robust estimator of non-parametric plant distributions than

other methods of estimating plant density [28–30].

Nodule-level N-fixation. A subsample of the 2014 alder density plots was chosen for N-

fixation sampling between June 29th and July 29th of 2015—the peak of the season for N-fixa-

tion activity [4,31]. The 2014 plots were stratified by burn scar and stand type (see Stand types,
topography, and fire severity). We alternated sampling between burn scars daily so that sam-

pling dates for each burn scar were evenly spread throughout the 30-day sampling period. On

each day we randomly selected a stand type and then randomly selected a plot within the cho-

sen stand type for measurement. This method of selecting plots controlled for variation in N-

fixation activity throughout the day and throughout the 30-day sampling period. We subsam-

pled as many of the 2014 plots as possible during the 30-day sampling period. Within the BF,

nodules from 48 alders across 19 plots and four stand types were sampled for N-fixation, and

in the WDF, nodules from 48 alders across 21 plots and three stand types were sampled. At
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each plot, experimental or control nodules were collected from alders of representative height

and vigor. Experimental nodules were then incubated in 15N2 gas following previously estab-

lished methods for alder nodule 15N2 uptake [31]. Experimental and control nodules from

individual alders were separately stored in 5 ml cryovials which were preserved in liquid nitro-

gen during transfer from the field to the lab. In the lab, nodules were dried at 65 ˚C and ground

before mass spectrometry analysis [31–33]. Calculations of nodule-level N-fixation rate

(μmole N g nodule-1 hr-1) followed previous methods that account for the fixation of both 15N2

and 14N2 [4,31,32]. Rates of nodule-level N-fixation in this study reflect maximal rates relative

to the assumed lower rates in spring, fall and other periods of summer.

Nodule-level biomass. Between July 30th and September 28th, 2015, plant-level live nod-

ule biomass (g nodule m-2 plant-1) was sampled at each plot that had been sampled for N-fixa-

tion [BF (n = 19), WDF (n = 21)]. At each plot, we systematically selected five alders of

representative height and vigor that were not previously sampled for nodule-level N-fixation

rate [BF (n = 95 alders), WDF (n = 105 alders)]. Below each alder five random soil cores (5.5

cm diameter) were collected within the area of nodulation—an area we defined as a 1 m buffer

around the perimeter of the outermost ramets of an individual alder. Each soil core included

the entire organic horizon and the upper 5 cm of mineral horizon. Cores from a single alder

were pooled and plant-level live nodule biomass was calculated in the lab using established

methods [32,33]. The plant-level live nodule biomass values were then averaged at each plot

for a plot-level estimate of plant-level live nodule biomass.

Siberian alder ramet and leaf traits. For each alder density plot sampled in 2014 (n = 80

plots in the WDF, n = 183 plots in the BF), the plot was divided into four quarters; in each

quarter the ramet basal diameter (cm), ramet height (m), number of ramets, and live or dead

status of each ramet were measured for the individual alder nearest to plot center. For each

alder that was sampled for nodule-level N-fixation in 2015 (n = 48 alders across 21 plots in the

WDF; n = 48 alders across 19 plots in the BF) 10 leaves were collected at the time of N-fixation

sampling and used to estimate specific leaf mass (mg cm-2) following Ruess and others [33].

Stand types, topography, and fire severity. For each alder density plot sampled in 2014

(n = 263), dominant plant cover was quantified using the Braun-Blanquet relevé method [34].

Trees and shrubs were identified to species, grasses and forbs to genus, and all non-vascular

plants as Sphagnum, “other moss,” or “lichen.” Cover was determined separately for dead trees

(diameter > 7.6 cm) that were on the ground and all other forms of plant litter. Post-fire stand

types of each burn scar were determined with a hierarchical clustering of plot-level cover esti-

mates using PC-ORD, Version 5.0; Euclidean distance measures and Warde’s linkage method

were used in the calculation [35]. Any species occurring in< 5% of all plots was removed from

the dataset before relativizing species cover based on each species maximum cover. Indicator

Species Analysis (ISA) in PC-ORD [36] was used to identify which hierarchical grouping con-

figuration produced the most distinct stand types for each burn scar. Pre-fire stand types for

the BF were determined by the proportion of burned tree species (standing and down) and

unburned canopy-dominant tree species. Pre-fire stand types were later confirmed using a

pre-fire satellite image (May 2002 Landsat 7 ETM image).

Sample plot slope, aspect, and elevation, and solar radiation were determined using a 30-m

resolution digital elevation model and the Spatial Analyst toolbox in ArcGIS [37]. Fire severity

was determined for each plot within the BF using the difference in normalized burn ratio

(dNBR) as derived from 30-m resolution Landsat imagery [38]. Raster pixels with a majority

overlap on a circular sample plot were averaged together for a plot-level mean dNBR value.

Fire severity was not determined for the WDF plots due to a lack of pre-fire satellite imagery.

Soil properties. Beneath each alder sampled for nodule-level N-fixation (n = 48 alders

across 21 plots in the WDF; n = 48 alders across 19 plots in the BF), moisture (%) and
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temperature (˚C) of the organic horizon were measured with a CS620 HydroSense water-con-

tent probe (Campbell Scientific, Logan, UT, USA) and a TM99A REOTEMP digital thermom-

eter (REOTEMP Instruments, San Diego, CA, USA), respectively. We controlled for variation

in temperature and moisture among stand types and between burn scars through the previ-

ously described method of random plot selection during the 30-day sampling period.

Additional soil measurements were collected on plots sampled for nodule-level N-fixation

(n = 21 plots in the WDF; n = 19 plots in the BF), but this time measurements were collected

around a randomly chosen alder of representative height and vigor that was not sampled for

N-fixation. Depth of organic horizon (cm) was measured at ten random locations along a ran-

domly oriented, 20 m transect that bisected the alder at 10 m. Of the ten soil depth locations,

one was randomly selected for Oi (fibric—minimally decomposed organic matter), Oe

(hemic—moderately decomposed organic matter), and Oa (sapric—highly decomposed

organic matter) depth measurements and a mineral horizon sample approximately 5 cm below

the organic horizon. Bulk density (g cm-3), soil pH, total nitrogen (% N), carbon (% C) and

phosphorus (% P) were all measured from mineral horizon samples following Mitchell and

Ruess [9].

Post-fire N-balance. There are several mechanisms for N-loss and N-gain in the boreal

forest ecosystem. To determine the effect of post-fire alder N-input on total ecosystem N-bal-

ance, we estimated post-fire N-loss by multiplying rates of wildfire N-volatilization [17,39] by

the amount of combustible N [17,40]. We then estimated N-gains using values from previous

studies and this study. N-gains included the dominant sources of biological N-fixation (BNF)

input in the boreal forest: feathermoss N-fixation input [41,42], free-living soil bacteria N-fixa-

tion input [43], Peltigera spp. N-fixation input [44], and Siberian alder N-fixation input from

this study. Feathermoss N-fixation input was calculated by multiplying feathermoss cover val-

ues from this study by feathermoss N-fixation rates from other studies in the boreal forest

[41,42]. Estimates of N-deposition [45] were also added to total N-gains. We then calculated

within-stand post-fire N-balance by computing the difference between estimates of N-loss

during fire and N-gain during the first 138-yr fire return interval (FRI). The average FRI for

areas below 800 m on the Yukon-Tanana Uplands is 138 years [46]. It is important to note that

our aim was to calculate N-exchange between terrestrial and atmospheric pools of N rather

than estimating N-turnover within the terrestrial system that may include processes ultimately

affecting N retention, such as nitrification.

Statistical analysis

Non-parametric density estimator. Alders in this study were non-randomly aggregated

across the landscape; therefore, alder density was determined using distance to the nearest

alder at each plot [WDF (n = 80 plots) and the BF (n = 183 plots)] and a nonparametric estima-

tor of density [28–30] implemented with the R function np.density.est [30]. A nonparametric

median test was used to identify significant differences in nearest alder distance by post-fire

age (11 vs 44 years) and among stand types within each burn scar.

Scaling-up nodule-level N-fixation. Alder annual plant-level N-fixation input (g N m-2

plant-1 yr-1) was calculated by combining nodule-level N-fixation rates with plant-level live

nodule biomass. The method for calculating plant-level N-fixation input follows established

methods which account for seasonal variation in nodule-level N-fixation rates [4,31,32] and

the assumption of 24-hour N-fixation that has been documented in other studies [47,48].

Annual stand-level N-fixation input (also referred to as alder N-fixation input) (kg N ha-1

yr-1) was calculated by multiplying the average area of nodulation for a plant within a stand
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type (m2 plant-1) by alder annual plant-level N-fixation input and stand type alder density, as

determined with the 2015 plot data [WDF (n = 21 plots) and the BF (n = 19 plots)].

Alder N-input and growth traits by burn scar and stand type. The ANOVA and Krus-

kal-Wallis tests were used to assess for significant differences in alder density, nodule-level N-

fixation rate, alder growth traits (nodule biomass, ramet height, ramet diameter, specific leaf

mass, number of live ramets, and number of dead ramets), and plant-level N-fixation input by

burn scar and stand type. Unless stated otherwise, all statistical tests were conducted in R [49]

and statistical significance was determined at α = 0.05. The Shapiro-Wilk test was used to

assess the normality of variables, and non-normal variables were transformed using the Box-

Cox power transformation. In the BF, non-normal variables included nodule-level N-fixation

rate, live nodule biomass, dead nodule biomass, mean ramet diameter, mean ramet height,

depth of the organic horizon, depth of the fibric layer, depth of the sapric layer, soil N, soil C,

soil P, and plant-level N-fixation input. In the WDF non-normal variables included depth of

the hemic layer, depth of the organic horizon, soil N, soil C, soil P, soil temperature, soil mois-

ture, soil pH, mean ramet diameter, mean ramet height, dead nodule biomass, specific leaf

mass, plant-level N-fixation input, and elevation. At the regional scale (both burn scars), non-

normal variables included live nodule biomass, dead nodule biomass, mean ramet diameter,

mean ramet height, live ramets per plant, and dead ramets per plant, soil moisture, depth of

organic horizon, soil pH, depth of hemic layer, and solar radiation.

Homogeneity of variance across factor levels of categorical variables was tested with

Levene’s test. One-way ANOVAs were used to test for differences in alder N-input and growth

traits between burn scars and among stand types. For significant ANOVA results, Tukey’s test

of honest significant difference was used to test factor level differences. For non-normal vari-

ables that could not be adequately transformed, differences were tested with the Kruskal-Wal-

lis test and the Dunn-Bonferroni post-hoc test. Descriptive statistics throughout the text are

untransformed and expressed as the mean ± 1 standard error, except alder density (plants

ha-1) and alder annual stand-level N-fixation inputs (kg N ha-1 yr-1), which are both reported

as the mean ± 1 standard deviation. The alder growth traits were intercorrelated (all |r|> 0.3,

p< 0.05). We therefore used principal component analysis (PCA) of alder growth traits to dis-

til suites of correlated variables into one or few variables. An integrator growth variable was

created through PCA in SPSS [50] using the 2015 plots [WDF (n = 21 plots) and the BF

(n = 19 plots)] as sampling units and we then used this integrator variable to observe the rela-

tionship among alder growth traits, burn scars, vegetation stand types, and environmental

characteristics [50]. The KMO Measure of Sampling Adequacy and Bartlett’s test of sphericity

were used to test each variable’s sample size and if the matrix was an identity matrix.

Multiple linear regression and AICc model selection. Modeling was used to determine

the significance and relative importance of predictors of alder density (as represented by dis-

tance to nearest alder), nodule-level N-fixation rate, alder growth PCA axes, plant-level live

nodule biomass, and annual plant-level N-fixation input. Response variables were modeled

separately in R using the 2015 plot data [WDF (n = 21 plots) and the BF (n = 19 plots)], multi-

ple linear regression, and Akaike information criterion (AICc) best model subset multi-model

inference. The response variables were modeled across both burn scars and within each burn

scar using environmental characteristics, post-fire age (regional models only), and fire severity

(dNBR) (BF models only) as predictors. Potential predictors included plot-level environmental

variables, post-fire age (only for models that include both burn scars), and fire severity (BF

models only). The potential predictors were normalized, tested for significant correlation with

the response (Pearson’s, p< 0.05), and non-collinear predictors (|r| < 0.6) were included in a

global model. Post-fire age was included in all regional-scale global models (i.e., models that

include both burn scars), and fire severity (dNBR) was included in all BF global models.
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Separate global models were created for each response variable at the regional-scale (n = 6

global models) and for each burn scar (n = 12 global models). Best model subsets (AICc� 2

units of lowest AICc) were selected with the dredge function from the MuMIn package in R

[51], and β coefficients were standardized following Cade [52] and then averaged with the

model.avg function from the MuMIn package.

Structural equation models. Multiple linear regression and AICc model selection did not

indicate a direct effect of fire severity on any of the response variables. Therefore, we used

structural equation models (SEM) to detect direct and indirect effects of fire severity on alder

density, growth traits (PCA1 and PCA2), and N-fixation in the black spruce plots of the BF

(n = 11). We created SEMs only for the black spruce stands because our landscape-level sample

design captured the entire gradient of fire severity only in this stand type.

SEM predictors included significant predictors from the AICc best model subsets and fire

severity. SEM models were fit using the lavaan package in R [53]. Non-significant (p> 0.05)

variables in the SEM models were sequentially removed until only significant predictors

remained. Modification indices were used to identify ecologically significant missing paths

[54] that were not initially included in the AICc best model subset. SEM model fitness was

determined using the chi-square test (p> 0.05), the root mean square error of approximation

(RMSEA; lower 90% confidence intervals of RMSE close to zero), and the comparative fit

index (CFI > 0.9) [54].

Results

Stand type classification

Hierarchical clustering and indicator species analysis of the relevé plot data produced three

distinct post-fire stand types for the WDF that were named according to their dominant tree

species: Black Spruce, Deciduous, and Mixed (black spruce and deciduous codominance)

(Table 1). In the BF, four post-fire stand types emerged and were named according to their

dominant pre-fire stand type and level of fire severity (Deciduous-Moderate, Black Spruce-

Moderate, Black Spruce-Moderate to High, Black Spruce-High) (Table 1).

Siberian alder density

Alder density was low in severely burned stands during early post-fire succession, but it likely

increases by intermediate post-fire succession. Alder density in the younger BF (65 ± 14 plants

ha-1) was 150% lower than the WDF (162 ± 39 plants ha-1) (p < 0.001, Fig 1). Between-fire dif-

ferences were driven by very low alder density in the Black Spruce-High stand type within the

BF (2 ± 1 plant ha-1) (Fig 1). Alder density in the Black Spruce-High stand type was roughly

97% lower compared to Black Spruce-Moderate (p = 0.013) and Black Spruce-Moderate to

High (p< 0.001) stand types (59 ± 27 and 61 ± 20 plants ha-1, respectively), and 99% lower

than the Deciduous-Moderate stand type (164 ± 44 plants -1) (p< 0.001, Fig 1). Within the

WDF, alder density in the Black Spruce stand type (98 ± 34 plants ha-1) was 34% and 50%

lower compared to the Deciduous and Mixed stand types (154 ± 53 and 195 ± 74 plants ha-1,

respectively), though differences were not significant (p = 0.478, Fig 1).

Regional-scale alder density was associated with an interaction between fire severity and

environmental characteristics 11 years after fire. A strong effect of site-specific environmental

characteristics on alder density was present after 40 years of post-fire succession. Across both

burn scars, plots with high moisture in the organic horizon were associated with lower alder

density (β = -6.68), p = 0.012) (Table 2). Within the BF, alder density was highest in plots that

had a deeper Oe layer (β = 7.24), p = 0.048) (Table 2). A SEM for black spruce dominant plots

showed a significant (p = 0.026) indirect negative effect of fire severity on alder density via O
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soil depth (Fig 2A), where higher severity fire results in more combustion of the organic layer.

Within the WDF, variation of alder density across all plots was negatively associated with

moisture in the organic horizon (β = -9.83) and positively associated with slope (β = 7.30)

(p = 0.005 and p = 0.034, respectively); wet and/or shallow-sloped plots had lower alder density

than drier and/or steeper-sloped plots (Table 2).

Alder growth traits and plant-level N-fixation input

Alder individuals fixed lower amounts of N per year in the intermediate burn scar compared

to the early burn scar, especially within black spruce dominant stands—likely due to lower

rates of nodule-level N-fixation rather than lower nodule biomass. Mean nodule-level N-

fixation rate in the BF (12.88 ± 1.18 μmol N g-1 hr-1) was 70% higher than in the WDF

(7.58 ± 0.59 μmol N g-1 hr-1) (p< 0.001), (Fig 1). Within the BF, nodule-level N-fixation rate

was not significantly different among stand types (p> 0.05) (Fig 1). Within the WDF, nodule-

level N-fixation rate in Black Spruce stands (5.85 ± 1.04 μmol N g-1 hr-1) was not significantly

different than Deciduous stands (p = 0.433), but was 37% lower than Mixed stands (p = 0.020)

(7.52 ± 0.43 and 9.34 ± 0.77 μmol N g-1 hr-1, respectively) (Fig 1). We did not detect a signifi-

cant difference (p = 0.384) in plant-level live nodule biomass between the BF (16.30 ± 3.56 g

nodule m-2 plant-1) and the WDF (9.45 ± 1.58 g nodule m-2 plant-1), nor among stand types

Table 1. Wickersham dome fire and the boundary fire stand types.

Stand type (% of burn scar study area) dNBR Indicator species or other cover type

WICKERSHAM DOME FIRE

Black Spruce (42%) NA Moss, Rhododendron groenlandicum, Vaccinium vitis-
idaea, Picea mariana (seedling), Betula glandulosa,

Sphagnum spp., Equisetum spp., Eriophorum spp., Rubus
chamaemorus, Polygonum alpinum, Rhododendron
palustre ssp. decumbens

Deciduous (39%) NA Litter, Betula neoalaskana (tree), Populus tremuloides
(tree), dead and down trees, Populus tremuloides
(seedling), Rosa acicularis, Geocaulon lividum, Picea
glauca (tree)

Mixed (19%) NA Lichen, Picea mariana (tree), Vaccinium uliginosum, Salix
spp., Cornus canadensis, Empetrum nigrum

BOUNDARY FIRE

Deciduous-Moderate (28%) 354 ± 30 a Betula neoalaskana (tree), Betula neoalaskana (seedling),

litter, Calamagrostis spp., dead and down trees, Populus
tremuloides (seedling), Chamerion angustifolium, Rubus
idaeus, Cornus canadensis, Populus tremuloides (tree),

Rosa acicularis, Lycopodium spp.

Black Spruce-Moderate (32%) 350 ± 35 a Sphagnum spp., Rubus chamaemorus, Picea mariana
(tree), Lichen, Rhododendron palustre ssp. decumbens,
Eriophorum spp., Vaccinium vitis-idaea, Picea mariana
(seedling), Vaccinium oxycoccos, Moss, Betula nana,

Empetrum nigrum, Andromeda polifolia, Polygonum
alpinum, Petasites frigidus

Black Spruce-Moderate to High (20%) 499 ± 28 d Vaccinium uliginosum, Rhododendron groenlandicum,

Betula glandulosa, Betula sp. (hybrid shrub), Arctagrostis
latifolia

Black Spruce-High (20%) 664 ± 28 c Salix spp. and Carex spp.

dNBR classes for the Boundary Fire are low (25 to 275), moderate (276 to 549), and high (� 550) and values

represent the mean ± standard error. Different letters among dNBR values indicate significant differences at

p < 0.05. Indicator species are listed in order of descending indicator value.

https://doi.org/10.1371/journal.pone.0238004.t001
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Fig 1. Siberian alder nodule productivity, plant-level N-input, plant density, and stand-level N-fixation input in the Boundary Fire

(n = 19), Wickersham Dome Fire (n = 21), and stand types within each burn scar. Significant differences are determined at p< 0.05 between

burn scars (A or B), and among stand types of the Boundary Fire (a or b) and Wickersham Dome Fire (� or ^). Graph order from top to

bottom: nodule-level N-fixation rate (μmol N g-1 hr-1), plant-level live nodule biomass (g nodule m-2 plant-1), annual plant-level N-fixation

input (g N m-2 plant-1 yr-1), alder density (plants ha-1), and annual stand-level N-fixation input (kg N ha-1 yr-1).

https://doi.org/10.1371/journal.pone.0238004.g001
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within the BF or WDF (p = 0.230 and p = 0.225, respectively, Fig 1). However, alder annual

plant-level N-fixation input in the BF (6.86 ± 1.65 g N m-2 plant-1 yr-1) was significantly higher

than the WDF (2.26 ± 0.03 g N m-2 plant-1 yr-1) (p = 0.036, Fig 1). Within the WDF, alder

annual plant-level N-fixation input varied by stand type—Black Spruce stands (1.17 ± 0.07 g N

m-2 plant-1 yr-1) were roughly 60% lower than Deciduous and Mixed stands (3.17 ± 0.04 and

3.00 ± 0.07 g N m-2 plant-1 yr-1, respectively); however the difference between Black Spruce

and Mixed stands was significant whereas the Black Spruce and Deciduous stand difference

Table 2. Landscape models (AICc) for Siberian alder N-input and growth traits.

Response Predictor Variable (standardized beta coefficient, importance value)

REGION

Siberian alder density Moisture in organic horizon (-6.68, 1), mineral horizon C:N (-3.05, 0.38)

PCA1 Depth of organic horizon (-0.64, 1), depth of hemic layer (0.29, 1),

mineral horizon N:P ratio (-0.21, 0.52), post-fire age (0.19, 0.52), mineral

horizon pH (0.14, 0.13)

PCA2 Post-fire age (0.43, 1), moisture in organic horizon (-0.28, 0.84),

mineral horizon C:N ratio (-0.27, 0.51), mineral horizon P (-0.19, 0.16),

mineral horizon bulk density (0.18, 0.14)

Plant-level live nodule biomass Depth of organic horizon (-7.08, 1), post-fire age (-2.27, 0.46)

Nodule-level N-fixation rate Post-fire age (-2.68, 1)

Annual plant-level N-fixation input Depth of organic horizon (-2.16, 1), post-fire age (-2.02, 1), soil N:P

ratio (-1.24, 0.56), depth of hemic layer (-0.89, 0.37)

BOUNDARY FIRE

Siberian alder density Depth of hemic layer (7.24, 0.77), depth of sapric layer (-6.49, 0.50),
dNBR (-6.32, 0.47)

PCA1 Depth of organic horizon (-0.42, 0.99), mineral horizon pH (0.34,

0.95), moisture in organic horizon (-0.34, 0.82)

PCA2 Elevation (0.34, 0.99), mineral horizon pH (0.29, 0.96)

Plant-level live nodule biomass Depth of organic horizon (-8.08, 0.82), mineral horizon N:P (-6.41,

0.61), moisture in organic horizon (-5.69, 0.33), mineral horizon pH (5.05,

0.15), slope (-4.74, 0.12)

Nodule-level N-fixation rate Mineral horizon C:N ratio (-2.37, 0.52), slope (-1.98, 0.47), dNBR (1.76,

0.34), mineral horizon bulk density (1.82, 0.18)

Annual plant-level N-fixation input Mineral horizon N:P ratio (-3.55, 0.78), depth of organic horizon

(-3.08, 0.78), slope (-2.77, 0.22)
WICKERSHAM DOME FIRE

Siberian alder density Moisture in organic horizon (-9.83, 0.94), slope (7.30, 0.74)

PCA1 Depth of organic horizon (-0.59, 0.94)

PCA2 Mineral horizon C:N ratio (-0.58, 1), moisture in organic horizon (-0.34,

0.5)

Plant-level live nodule biomass NA

Nodule-level N-fixation rate Elevation (1.90, 1)

Annual plant-level N-fixation input Elevation (0.77, 0.69), Depth of organic horizon (-0.67, 0.54)

Response variables: Siberian alder density (plants ha-1), PCA1 [plant-level live nodule biomass (+), mean ramet

height (+), mean ramet diameter (+), and specific leaf mass (-)], PCA2 [number of live ramets per plant (+) and dead

ramets per plant (+)], plant-level live nodule biomass (g nodule m-2 plant-1), nodule-level N-fixation rate (μmol N g-1

hr-1), and annual plant-level N-fixation input (g N m-2 plant-1 yr-1) across the region (n = 40), the Boundary Fire

(n = 19), and the Wickersham Dome Fire (n = 21). Standardized beta coefficients and importance values are in

parentheses, respectively, for each predictor variable. The baseline level for post-fire age in the regional models is the

younger Boundary Fire. Significant predictors (p < 0.05) are in bold. Marginally significant predictors (p < 0.1) are

italicized.

https://doi.org/10.1371/journal.pone.0238004.t002
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Fig 2. Structural equation model of A) Siberian alder density (plants ha-1), B) PCA1 [plant-level live nodule

biomass (+), mean ramet height (+), mean ramet diameter (+), and specific leaf mass (-)], and C) Plant N-fix

[annual plant-level N-fixation input (g N m-2 plant-1 yr-1)] in post-fire black spruce dominant plots of the

Boundary Fire (n = 11). Fire severity = difference in normalized burn ratio (dNBR), O depth = depth of organic

horizon, Oe depth = depth of hemic layer, Soil pH = mineral horizon pH, Soil moisture = moisture in organic horizon,

Soil CN = mineral horizon C:N ratio, Nodule N-fix = nodule-level N-fixation rate (μmol N g nodule-1 hr-1),
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was not significant (p = 0.043 and p = 0.082, respectively, Fig 1). The low sample size within

Deciduous stands (n = 5) may explain the lack of significant difference from Black Spruce

stands (S1 Table). We did not detect significant differences in alder annual plant-level N-fixa-

tion input among stand types of the BF (p = 0.395, Fig 1).

Higher alder growth in deciduous dominated versus black spruce dominated stands reflects

general patterns of boreal forest aboveground annual primary productivity. Additionally, the

height, diameter, and number of alder ramets per plant was strongly influenced by time since

fire as opposed to environmental characteristics. The PCA of alder growth traits resulted in

two significant axes that explained 48% and 26% of alder growth, respectively (S2 Table).

Alder plant-level live nodule biomass, mean ramet height, and mean ramet diameter loaded

positively onto the first PCA axis (hereafter referred to as PCA1), whereas specific leaf mass

loaded negatively onto PCA1. The number of live ramets per plant and dead ramets per plant

both loaded positively onto the second PCA axis (hereafter referred to as PCA2). Dead nodule

biomass was excluded from the PCA due to insufficient sample size (KMO < 0.5).

Higher values of PCA1 indicate plots with alders that were relatively tall, with greater basal

diameter, thinner leaves, and higher plant-level live nodule biomass (Fig 3). Across the region,

the BF and WDF did not have significantly different PCA1 values (p = 0.708, Fig 3A) (S3

Table). Significantly higher PCA1 values were observed in Deciduous-Moderate stands com-

pared to Black Spruce-Moderate stands in the BF (p = 0.026, Fig 3B) (S4 Table), and in Decid-

uous versus Black Spruce stands of the WDF (p< 0.001, Fig 3B) (S1 Table).

The number of live ramets per plant and dead ramets per plant both loaded positively onto

the second PCA axis (hereafter referred to as PCA2). PCA2 was significantly higher in the

WDF than in the BF (p = 0.001, Fig 3A, S3 Table), which reflects alder’s characteristic sprout-

ing of new ramets over time. PCA2 did not vary significantly among stand types within the BF

or among stand types within the WDF (p = 0.498 and p = 0.642, respectively) (Fig 3B, S4 and

S1 Tables).

Eleven years after fire (BF), alders growing in a shallow, low-moisture organic horizon with

higher pH of the mineral horizon had more live nodules, more ramets, and larger ramets com-

pared to other alders. However, alder growth in the BF was lower on black spruce dominant

plots that experienced high severity fire—suggesting that high severity fire had a stronger effect

on alder density than soil conditions. Forty years after fire (WDF), alder showed higher growth

(height, diameter, and more numerous ramets and nodules) in shallow organic horizons, espe-

cially where mineral horizon C:N ratios were low, such as deciduous- or mixed-dominated

stands of higher aboveground annual primary productivity. Yet, the level to which alder may

drive soil conditions rather than respond to them is unclear.

Across both burn scars, PCA1 [a composite variable of alder plant-level live nodule biomass

(+), mean ramet height (+), mean ramet diameter (+) and specific leaf mass (-)] was highest in

plots of low depth of the organic horizon (β = -0.64, p< 0.001) and high depth of the hemic

layer (β = 0.29, p = 0.017) (Table 2, Fig 3A). Within the BF, higher mineral horizon pH (β =

0.34, p = 0.026) and low moisture in the organic horizon (β = -0.34, p = 0.033) were additional

predictors of high PCA1 (Table 2). SEM models for black spruce dominant plots in the BF

(n = 11) indicated a direct negative effect of fire severity on PCA1 (p< 0.001), but a net posi-

tive effect of fire severity on PCA1 through its negative effects on O soil depth (p = 0.026) (Fig

2B). In contrast, PCA1 in the WDF was solely associated with O soil depth (β = -0.59)

NODBIO = plant-level live nodule biomass (g nodule m-2 plant-1), Soil NP = mineral horizon N:P ratio. Standardized

beta coefficients are shown for predictor variable pathways. Negative pathways are shown in red dotted lines, and

positive pathways are shown in blue solid lines. Wider lines indicate stronger beta coefficients.

https://doi.org/10.1371/journal.pone.0238004.g002
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(p = 0.007) (Table 2). Though post-fire age had no effect on PCA1 regionally (p = 0.120)

(Table 2), differences in which variables predicted PCA1 across both burn scars suggest that

environmental variables promote early post-fire growth although those variables are not as

important to alder growth by intermediate succession.

PCA2 [a composite of live ramets (+) and dead ramets (+)] was strongly associated with

post-fire age (β = 0.43, p = 0.003) and moisture in the organic horizon (β = -0.28, p = 0.048)

Fig 3. Principal component analysis (PCA) of Siberian alder growth traits: Plant-level live nodule biomass (NODBIO), mean

ramet height (Height), mean ramet diameter (MRD), specific leaf mass (SLM), live ramets per plant (LRPP), and dead ramets

per plant (DRPP). The PCA is displayed by burn scar (A) and by stand type within each burn scar (B). Brown arrows and labels

represent the orientation of Siberian alder growth traits used in the PCA. Ellipses represent the 95% confidence interval for each

burn scar or stand type. Black arrows with associated blue labels symbolize the important predictor variables of each PCA axis as

determined by AICc best model subset for both burn scars: Moisture = moisture in organic horizon, O depth = depth of organic

horizon, Oe depth = depth of hemic layer, Age = post-fire age.

https://doi.org/10.1371/journal.pone.0238004.g003
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across both burn scars (p< 0.05, Table 2, Fig 3A). Within the younger BF, higher elevation

(β = 0.34) and higher soil pH (β = 0.29) were both positively associated with higher PCA2

(p = 0.001 and p = 0.005, respectively) (Table 2). Within the WDF, however, PCA2 was best

predicted by an inverse relationship with mineral horizon C:N ratio (β = -0.58, p = 0.011)

(Table 2).

Alder annual stand-level N-fixation input

Fire appears to alter site conditions to favor higher alder annual plant-level N-fixation input

within all stand types, but it also reduced alder density and therefore lowered alder annual

stand-level N-fixation input—especially within severely burned black spruce dominated

stands. Estimates of alder annual stand-level fixation inputs are a product of alder annual

plant-level N-fixation input, alder density, and area of nodulation. As a result of higher

alder annual plant-level N-fixation input in the BF compared to the WDF (p = 0.036) and

higher alder density in the WDF compared to the BF (p < 0.001) there was no significant

difference in alder annual stand-level N-fixation inputs between these two burn scars

(2.75 ± 0.08 and 2.91 ± 0.06 kg N ha-1 yr-1, respectively) (Fig 1). However, within the WDF,

alder annual stand-level N-fixation input in the Black Spruce stand type (0.83 ± 0.04 kg N

ha-1 yr-1) was 82% lower compared to the Deciduous stand type (4.72 ± 0.02 kg N ha-1 yr-1)

(Fig 1). Within black spruce dominant stands of the BF, alder annual stand-level N-fixation

inputs averaged 93% lower (0.86 ± 0.03 kg N ha-1 yr-1) than the Deciduous stand type

(11.53 ± 0.22 kg N ha-1 yr-1) (Fig 1). In the BF, alder annual stand-level N-fixation input

within the Black Spruce-High stand type (0.06 ± 0.003 kg N ha-1 yr-1) averaged 88% and

97% lower than Black Spruce-Moderate and Black Spruce-Moderate to High stand types,

respectively (Fig 1).

Environmental characteristics associated with alder annual plant-level N-fixation input

interact across spatiotemporal scales. Local plot conditions (e.g. soil chemistry and O soil

depth) were influenced by fire severity and were associated with alder annual plant-level N-

fixation input eleven years after fire. Forty years after fire broader-scale landscape variables

(e.g. topography) were associated with alder annual plant-level N-fixation input. Across both

burn scars, depth of organic horizon (β = -2.16) and post-fire age (β = -2.02) were the stron-

gest predictors of alder annual plant-level N-fixation input (p < 0.011 and p = 0.008, respec-

tively) (Table 2). The components of alder annual plant-level N-fixation input (plant-level

live nodule biomass and nodule-level N-fixation rate) were separately associated with depth

of organic horizon (β = -7.08, p < 0.001) and post-fire age (β = -2.68, p < 0.001), respectively,

across both burn scars (Table 2). Within the younger BF, alders growing in a low mineral

horizon N:P ratio (β = -3.55, p = 0.019) and shallow organic horizon (β = -3.08, p = 0.034)

had the highest alder annual plant-level N-fixation input—a result largely due to the signifi-

cantly higher plant-level live nodule biomass in shallow organic horizons (β = -8.08,

p = 0.022) and low mineral horizon N:P ratios (β = -6.41, p = 0.035) (Table 2). A SEM of

alder annual plant-level N-fixation input for black spruce dominant plots in the BF (n = 11)

showed that fire severity had a direct negative effect on depth of organic horizon (p < 0.001)

and therefore an indirect positive effect on live nodule biomass (Fig 2C). Thus, high fire

severity had a positive, indirect association with alder annual plant-level N-fixation input in

the BF (Fig 2C). Within the WDF, alders at lower elevations (valley bottoms) had lower nod-

ule-level N-fixation rates compared to alders at higher elevations (ridgetops) (β = 1.90,

p < 0.001), resulting in a marginal effect on annual plant-level N-fixation input (β = 0.77,

p = 0.077) (Table 2).
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Post-fire N-balance

A positive post-fire N-balance (N-gains minus N-loss) is estimated in low to moderate severity

fires after the first FRI, whereas high severity black spruce stands—where N-fixer density is

very low and N-volatilization quite high—likely exhibit a negative N-balance. For a black

spruce dominant stand which self-replaces after low severity fire, N gains are estimated to

offset volatilized N over a subsequent 138 yr (FRI)—mostly due to feathermoss N-input

(Table 3). For a deciduous stand that self-replaces after either low or high severity fire, N-gains

are estimated to exceed volatilized N by an order of magnitude during a subsequent 138 yr

FRI—mostly due to high Siberian alder N-input (Table 3). For a black spruce dominant stand

that converts to deciduous dominance after high severity fire, N-gains are estimated to offset

15% of volatized N during a subsequent 138 yr FRI—an imbalance due to relatively high N-

volatilization and relatively low BNF input, including that from Siberian alder (Table 3). Given

the particularly low alder density after high severity fire, it is unlikely that our underestimation

of plant-level live nodule biomass accounts for the large difference between N-loss and N-gain

in high severity stands.

Other potential sources of post-fire N-gains may include 1–2 kg N ha-1 yr-1 from Lupine
spp., 0.78 kg N ha-1 yr-1 from Shepherdia canadensis, or 9 kg N ha-1 yr-1 from Myrica gale

Table 3. Estimates of post-fire N-balance by stand type and fire severity. Feathermoss N-fixation input (kg N ha-1 yr-1), free-living soil bacteria N-fixation input (kg N

ha-1 yr-1), Peltigera ssp. N-fixation input (kg N ha-1 yr-1), Siberian alder N-fixation input (kg N ha-1 yr-1), and N-deposition (kg N ha-1 yr-1) are shown by stand type and

age [early (0–20 yr), mid (20–60 yr), and late (60–138 yr)]. The total of all N-inputs during a 138 yr fire return interval (FRI) (kg N ha-1) is shown by stand type. N-loss due

to volatilization (kg N ha-1) and N-balance (kg N ha-1) are shown by stand type and fire severity.

Stand

Type and

Age

Feathermoss N-

fixation input1
Free-living soil

bacteria N-

fixation input2

Peltigera spp.

N-fixation

input3

Siberian alder N-

fixation input

N-

dep.5
FRI N-

input6
Low Severity Moderate

Severity

High Severity

N-

loss7
N-

balance8
N-

loss7
N-

balance8
N-

loss7
N-

balance8

Black Spruce (self-replacing)

Early 0.27–1.67 0.84–0.99 0.22–0.94 0.52 ± 0.03 0.3 486 270 216 900 -414 NA NA

Mid 0.68–4.25 0.83 ± 0.04

Late 1.42–7.66 0.83 ± 0.044

Black Spruce to Deciduous (conversion)

Early 0–0.15 0.95–1.44 0.02–0.12 0.06 ± 0.003 0.3 195 NA NA NA NA 1350 -1155

Mid 0.01–0.48 0.06 ± 0.0034

Late 0.03–0.54 0.06 ± 0.0034

Deciduous (self-replacing)

Early 0–0.15 0.95–1.44 0.02–0.12 11.53 ± 0.22 0.3 974 84 890 NA NA 227 747

Mid 0.01–0.48 4.72 ± 0.02

Late 0.03–0.54 4.72 ± 0.024

1 Estimated using stand-level feathermoss N-fixation rates from other studies [41,42] and feathermoss cover (%) in stands of this study
2 Free-living soil bacteria N-fixation input for similar stand types in Nohrstedt [43]
3 Estimated from rates of Peltigera spp. N-fixation input in similar stand types of Katmai National Park and Preserve [44]
4 Direct measurement unavailable; estimates were made with N-fixation input values from younger stand types
5 N-deposition estimates from the National Atmospheric Deposition Program [59]
6 Sum of feathermoss N-fixation input, free-living soil bacteria N-fixation input, Peltigera spp. N-fixation input, Siberian alder N-fixation input, and N-deposition in

each stand type over a 138 yr FRI.
7 Black Spruce and Black Spruce-to-Deciduous values were calculated using estimates of N-loss (%) for low [39], moderate [17], and high severity fire [17] and total

combustible N [17]. Deciduous stand values were calculated using hypothetical values for N-loss (Low Severity: 10% of foliage, 50% of litter, 10% of soil organic layer;

High Severity: 100% of foliage, 100% of litter, 20% of soil organic layer) and measured values for total combustible N [40].
8 Difference between 138 yr post-fire FRI N-input, and N-loss during the preceding fire event.

https://doi.org/10.1371/journal.pone.0238004.t003
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[55–57]; however, all three species occurred at either zero or trace percent cover in stands of

this study. Thawed permafrost also presents another potential source of post-fire N-gains with

nearly 30 kg N ha-2 made available to vegetation from 1 cm of thawed permafrost [58]. Yet,

less than 10% of plant-available N within thawing permafrost is taken-up by deep-rooted

plants during late growing season [59].

Discussion

We sought to disentangle the effects of fire severity from other potential effects on alder den-

sity (and therefore stand-level N-fixation input). We characterized how alder density, nodule-

level N-fixation, nodule-level biomass, alder ramet and leaf traits, and plant-level N-fixation

input vary across a fire severity gradient, fire age, and environmental characteristics (soil and

topography). The results of this study support our hypothesis that high severity fires limit

post-fire alder density and stand-level N-fixation inputs during secondary succession, but the

association between fire severity and altered alder N-input is complex. We found that 11-years

post-fire, high severity fire limits alder N-input via reductions to alder density; however, this

effect was limited to black spruce dominant stands. Forty years after fire, alder annual stand-

level N-fixation input in black spruce dominant stands was much lower than either deciduous

or mixed stands largely due to lower nodule-level N-fixation rates that occurred in deep, wet

organic horizons. Siberian alder annual stand-level N-fixation input varied among stand types

and over time, with early-succession high severity black spruce dominant stands having the

lowest inputs and early-succession moderately burned deciduous stands the highest inputs—a

difference driven by variation in alder density and live nodule biomass along fire severity and

soil chemistry gradients. Changing soil conditions coincide with differences in alder character-

istics throughout secondary succession, making it difficult to parse alder’s preferred soil condi-

tions from alder’s effect on soil conditions. However, the results from this study suggest that

high severity fire and unfavorable soil conditions interact to limit post-fire alder N-input in

the boreal forest. In converted black spruce stands these limitations on post-fire alder N-input,

combined with high N-volatilization, result in net N-losses after the first fire return interval.

However, potential alder recruitment and spread in these stands over successive fire return

intervals may eventually recover N-losses from severe fire.

Spatiotemporal variation in Siberian alder N-fixation input

Siberian alder annual stand-level N-fixation inputs (kg N ha-1 yr-1) in this study were compara-

ble to values for Siberian alder growing in intermediate-age white spruce stands [9], but

approximately half those reported for thin-leaf alder (A. tenuifolia) growing along intermedi-

ate-age boreal forest floodplains [4,33]. Yet, Siberian alder N-fixation input is comparable to

thin-leaf alder N-fixation input at the patch-scale. Large, dense patches of Siberian alder (~ 1

ha) were periodically encountered in both the Deciduous-Moderate and Black Spruce-Moder-

ate stand types of the BF, but none occurred in any of the N-fixation sampling plots. If we

scale-up Siberian alder annual plant-level N-fixation inputs (g N m-2 plant-1 yr-1) for these

large patches they are estimated to fix approximately 91 ± 30 kg N yr-1 and 33 ± 31 kg N yr-1

for Deciduous-Moderate and Black Spruce-Moderate stand types, respectively. Therefore,

post-fire Siberian alder is capable of fixing N at rates similar to thin-leaf alder of boreal forest

floodplains [1,4,31,33].

Our estimate of stand-level N-fixation input is likely conservative due to the spatial restric-

tions we imposed on alder nodule sampling. Similar to previous studies, our measurements of

plant-level live nodule biomass also were restricted to within a 1-meter radius of genets

[9,31,33]. However, we and others [9] have observed nodules several meters from individual
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plants in all stand types, and although at low density, these nodules were outside our sampling

radius.

Effect of fire severity on Siberian alder N-fixation input

Throughout boreal Alaska, fire severity, pre- and post-fire vegetation, depth of organic hori-

zon, and environmental conditions are closely linked [60]. Our data suggest there is also a cou-

pling between fire severity and alder N-input and growth traits in black spruce dominant

stands after fire. We found that combustion of organic horizons during high severity fires was

associated with a decrease in alder density, likely due to the destruction of rhizomes that are

predominately found at the interface between the organic and mineral horizons [21,61]. Sig-

nificantly lower alder density in severely burned black spruce dominant stands 11 years after

the BF portends a link between the increasing incidence of high-severity fires and changing

alder population dynamics across the Alaskan boreal forest.

Higher plant-level live nodule biomass and nodule-level N-fixation was observed in areas

where fire destroyed the organic horizon. Lantz and others [20] showed that increased fire

severity led to improved seedbeds and higher alder productivity. The accumulation of ash fol-

lowing the combustion of thick organic mats in black spruce dominant stands can increase

available P in surface soils [62], and higher soil P is associated with increased nodule growth

and higher annual plant-level N-fixation input by alder [4,31,33]. The Oi and Oe layers of the

organic horizon were often combusted during the Boundary Fire, possibly contributing to

increased soil aeration within the Oa layer—a condition that is known to increase nodule bio-

mass [63] as well as N-fixation rates [33]. Despite our results which show fire can induce

higher nodulation and nodule-level N-fixation, high severity fire in black spruce stands lowers

alder density to an extent at which annual stand-level N-fixation inputs are considerably

reduced. Though disturbances often lead to hotspots of alder seed recruitment and growth

[20,64,65], a key question is whether the combination of lower alder density and higher alder

nodulation and nodule-level N-fixation after severe fire will result in an overall increase or

decrease of alder N-fixation inputs over longer time periods.

Post-fire N-balance

Understanding factors influencing alder distribution, expansion and productivity are critical

to forecasting post-fire N-balance in a changing boreal forest. Our N-balance estimates suggest

that wildfire-induced stand conversions [15] resulting from a more severe fire regime [14]

could be associated with declining landscape-level N pools in stands not underlain by perma-

frost. In stands that convert from black spruce to deciduous dominance, we estimated low

BNF input—and therefore low N-gains—due to low density of alder and other N-fixers. High

alder density, growth, and N-fixation have been documented within deciduous stands of this

study and others [9,23,24], therefore alder is capable of high post-fire N-input in newly con-

verted deciduous stands. Yet, alder populations not only need to establish in newly converted

deciduous stands, but also persist over multiple fire cycles to offset the magnitude of N volatil-

ized during stand conversion.

Landscape-scale Siberian alder N-fixation input and ecological impacts

Our results highlight differences in alder annual stand-level N-fixation input among stand

types, landscape positions, fire severity levels, and post-fire successional stands. The complex

spatial distribution of factors influencing alder annual stand-level N-fixation input must be

mapped at the regional scale to better assess post-fire N-balance across the landscape. By map-

ping just one of these factors (stand type), we found that 28% of the BF study area was
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Deciduous-Moderate, 32% was Black Spruce-Moderate, 20% was Black Spruce-Moderate to

High, and 20% was Black Spruce-High (Table 1). The distribution of stand types combined

with their estimated N-balance throughout a single fire return interval suggests that a future

fire regime of increased fire severity could lead to reconfigurations N across the landscape.

Specifically, nearly one-third of the landscape (Deciduous-Moderate) would accumulate N

due to very high alder density and productivity, while one-fifth (Black Spruce-High) would

trend toward N-depletion without alder recruitment and spread. Progressive N-losses over

several fire cycles could further expand areas trending toward N-depletion and significantly

alter ecosystem patterns and processes within upland boreal forests. Future analyses of within-

stand alder patch distribution as well as patch- and landscape-scale mapping of the factors

affecting post-fire N-balance are needed to help predict ecosystem consequences of changing

N-pools.
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