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Accuracy of machine learning for
differentiation between optic neuropathies
and pseudopapilledema
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Abstract

Background: This study is to evaluate the accuracy of machine learning for differentiation between optic
neuropathies, pseudopapilledema (PPE) and normals.

Methods: Two hundred and ninety-five images of optic neuropathies, 295 images of PPE, and 779 control images
were used. Pseudopapilledema was defined as follows: cases with elevated optic nerve head and blurred disc
margin, with normal visual acuity (> 0.8 Snellen visual acuity), visual field, color vision, and pupillary reflex. The optic
neuropathy group included cases of ischemic optic neuropathy (177), optic neuritis (48), diabetic optic neuropathy
(17), papilledema (22), and retinal disorders (31). We compared four machine learning classifiers (our model,
GoogleNet Inception v3, 19-layer Very Deep Convolution Network from Visual Geometry group (VGG), and 50-layer
Deep Residual Learning (ResNet)). Accuracy and area under receiver operating characteristic curve (AUROC) were
analyzed.

Results: The accuracy of machine learning classifiers ranged from 95.89 to 98.63% (our model: 95.89%, Inception V3:
96.45%, ResNet: 98.63%, and VGG: 96.80%). A high AUROC score was noted in both ResNet and VGG (0.999).

Conclusions: Machine learning techniques can be combined with fundus photography as an effective approach to
distinguish between PPE and elevated optic disc associated with optic neuropathies.
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Background
Pseudopapilledema (PPE) is defined as an optic nerve
with an elevated optic disc and blurred margins that is
similar to papilledema or disc swelling associated with
various optic neuropathies [1]. Although PPE is a benign
condition, it should be differentiated from other optic
neuropathies to reduce the need for unnecessary exam-
ination and to provide precise diagnosis, prognosis and
therapeutic options to the patients. Recently, multi-
modal imaging analysis including B-scan ultrasonog-
raphy, fundus photography, autofluorescence, fluorescein
angiography, and optical coherence tomography (OCT)
have provided useful information for exact diagnosis of

PPE [2–4]. However, the exact differentiation is still
difficult.
Machine learning is the use of artificial computer

intelligence to enable computers to learn automatically,
without being programmed. In ophthalmology, machine
learning has been used to analyze various disorders such
diabetic retinopathy age-related macular degeneration,
and glaucoma [5–8]. We investigated the accuracy and
sensitivity of machine learning for differentiation be-
tween PPE, optic neuropathies and normals.

Methods
Patients
Pseudopapilledema was defined as follows: cases with an
elevated optic nerve head and blurred disc margins, with
normal visual acuity (> 0.8 Snellen visual acuity), visual
field, color vision, and pupillary reflex. Only those pa-
tients who did not change their optic nerve head and
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visual function for more than one year were included in
the present study. The optic neuropathies group in-
cludes 177 cases of ischemic optic neuropathy, 48 of
optic neuritis, 17 of diabetic optic neuropathy, 22 of
papilledema, and 31 of retinal disorders such as central
retinal vein occlusion or posterior uveitis (Fig. 1a). Nor-
mal controls were enrolled from routine examination
without any abnormal findings and visual problems.

Data preparation
Fundus photographs were collected from Kim’s Eye Hos-
pital. Fundus photography was obtained using a non-
mydriatic auto fundus camera (AFC-330, Nidek, Japan).
A total of 1369 images were obtained, including 295

images of optic neuropathies, 295 of PPE, and 779 nor-
mal control images. The obtained images were scaled to
a fixed width of 500 pixels while keeping the aspect ratio
constant. To remove variations in lightning and bright-
ness of images, the local average color was subtracted
using Gaussian filtering [9]. Finally, pixels of each image
was normalized to have 0 mean and 1 standard devi-
ation. In order to produce fixed-size input necessary for
machine learning models, each photos were cropped
with size of 240 × 240 pixels at the region of optic nerve.
Figure 1b shows the schematic view of the image pre-
processing step. The entire set of 1369 images were split
into an 876-image training dataset for training the
model, a 274-image validation dataset for validation of

Fig. 1 a Optic disc findings in fundus photography. Various features from pseudopapilledema (upper low) and swollen disc from optic
neuropathies (lower low). b Schematic view of image pre-processing process c Schematic view of image augmentation process
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the model while training, and a 219-image test dataset
for evaluation of the final model. The validation dataset
was generated by a random split of 20% of the entire
dataset; the test dataset was generated by a random
split of 20% of the remaining images after validation
split (Table 1). Normal and PPE patients had normal
findings on OCT (Cirrus HD-OCT, Carl Zeiss Medi-
tec Inc., Dublin, CA and Spectralis, Heidelberg Engin-
eering, Heidelberg, Germany), and visual field tests
(Humphrey 740 visual field analyzer, Carl Zeiss Medi-
tec Inc., Dublin, CA).

Convolutional neural network
Data augmentation
To overcome possibility of overfitting the model due to
small dataset, image augmentation technique was ap-
plied to each image. Augmentation process was con-
ducted by cropping all four corners of an image and in
the middle generating five images with a fixed size of
224 × 224 pixels. This cropping process was repeated
after flipping the image which creates 10 augmented im-
ages from a single original image. Providing augmented
images to a machine learning model can help overcome
overfitting and to better in decision-making due to en-
larged dataset with different pixel representation
[10]. Figure 1c shows the shows augmentation process.

Training model
We have constructed a convolutional neural network,
using Google’s Tensorflow deep learning framework as
backend [11]. In order to produce best working model,
an optimum set of working hyper-parameters are
needed. These hyper-parameters include learning rate,
activation function, patch size, filter size, number of fully
connected layers, and number of hidden nodes in each
fully connected layer. However, trying out all possible
combinations of hyper-parameters is very time consum-
ing and computationally expensive. Many methods have
been proposed for hyper-parameter tuning such as grid
search, random search [12], genetic algorithm [13], and
Bayesian optimization [14]. We implemented Bayesian
optimization for our hyper-parameter tuning process
using python package Scikit-Optimize. Seven hyper-pa-
rameters were tuned using Bayesian optimization
including number of convolution layers, number of con-
volution filters, number of convolution patch size,

number of fully connected layers, number of hidden
nodes in each fully connected layer, activation function
(rectifier linear unit, exponential linear units, hyperbolic
tangent), and learning rate. Max pooling layers were
fixed after every convolutional layer with patch size 2 × 2
and stride 2, and dropout layers with rate 0.5 were fixed
after every fully connected layer. Mattern kernel was
used for Bayesian optimization and expected improve-
ment was used for acquisition function. The best hyper-
parameters were selected after 100 rounds of updating
the Gaussian process model. Figure 2 shows a schematic
view of hyper-parameter tuning process. The training
was conducted again with the selected hyper-parameters
with Adam optimizer [15] and cross entropy as a loss
function until the average loss of validation data for each
epoch started to increase.

Transfer learning
We conducted transfer learning [16], which involved
training with a predefined (trained) model using three
well-known convolutional neural networks. These in-
clude GoogleNet Inception v3 [17], 19-layer Very Deep
Convolution Network from Visual Geometry group
(VGG) and 50-layer Deep Residual Learning also known
as ResNet [18, 19]. These networks were trained using
approximately 1.2 million images from ImageNet Large-
Scale Visual Recognition Challenge. We modified the
fully connected layers of the three networks to fit our
classification needs. Bayesian optimization was used to
tune the hyper-parameters. Four hyper-parameters were
tuned including number of fully connected layers, num-
ber of hidden nodes, activation function, and learning
rate. Dropout layers with rate 0.5 were fixed after every
fully connected layer. Fine-tuning was conducted after
hyper-parameter tuning using Adam optimizer and cross
entropy as a loss function. Training was considered fin-
ished when the average loss of validation data for each
epoch started to increase.

Evaluation
The model obtains an image and conduct mathematical
calculation defined by training the model and ultim-
ately outputs three probabilities. These probabilities
represent a probability of being photograph of a normal
subject, PPE and papilledema. Since we used aug-
mented data (10 images per photography), we gener-
ated 30 probabilities (10 for each class) from a single
image. By averaging these probability values by class,
we obtained three probabilities which corresponds to
image being normal, PPE and papilledema (Fig. 3b).
The model makes decision by choosing the class with
maximum probability. Using this strategy, we evaluated
our model as well as GoogleNet Inception v3, VGG,
and ResNet transferred model. Also, we have calculated

Table 1 Sample number for Convolutional Neural Network

Normal Pseudopapilledema Papilledema Total

Entire Data 779 295 295 1369

Training Data 505 197 174 876

Validation Data 155 53 66 274

Test Data 119 45 55 219
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micro-averaged sensitivity and specificity of each model
and generated ROC (receiver operating characteristic)
curve which indicates overall performance of how well
the models classify images into three groups (Normal,
PPE, papilledema).

Results
Table 2 shows the summarized results of our model and
transfer learning model. After hyper-parameter tuning,
our model exhibited 3 convolution layers and 5 fully con-
nected layers. The first convolution layer had a patch size

Fig. 2 Schematic view of Bayesian optimization. Seven hyper-parameters were tuned using Bayesian optimization: learning rate, activation
function, number of convolution layers, convolution patch size, filter size, number of fully connected layers, and number of hidden nodes in each
fully connected layer

Fig. 3 a. Schematic view of our model. It consists of 3 convolutional layer each with max pooling layer followed by 5 fully connected layers and
a softmax layer. b. Evaluation process. Ten augmented images were averaged to give a single probability for each class
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of 2 × 2 with 27 filters, the second had a patch size of 12 ×
12 with 40 filters, and the last convolution layer had a
patch size of 29 × 29 with 35 filters. Max pooling layer was
applied after every convolutional layer with a patch size of
2 × 2 and a stride of 2. The fully connected layers con-
sisted of 366, 177, 512, 159, and 133 hidden nodes, re-
spectively. A dropout rate of 0.5 was used in fully
connected layers. As for activation function, ReLu (Recti-
fier linear unit) was used.
Figure 3a shows the schematic architecture of our CNN

model. The Inception V3 model exhibited 1 fully connected
layer with 60 hidden nodes along with Rectifier linear unit
as an activation function. The VGG model exhibited 3 fully
connected layers with each layer having 512 hidden nodes
and Exponential linear unit as an activation function. The
ResNet model had 1 fully connected layer with 325 hidden
nodes with hyperbolic tangent as an activation function. All
the transferred models had dropout layer with dropout rate
0.5 after every fully connected layer. Further, all models
used softmax layer as a classification layer. The best per-
forming model based on test accuracy was the ResNet
transfer learned model. The ROC curve for each model is
depicted in Fig. 4a and the confusion matrix based on test
data for each model is depicted in Fig. 5. At the cost of
0.007 difference of AUROC, our model used the least num-
ber of parameters (11,636,096) among models (Fig. 4-b). In
addition, the validation loss graph showed that validation
loss reached zero level at around epoch 16 (Fig. 4c).

Discussion
This study suggests that machine learning techniques
can be combined with fundus photography as an

effective approach to distinguish between PPE and ele-
vated optic disc related with optic neuropathies.
We have used 3 state-of-the-art convolutional neural

networks, including GoogleNet Inception V3, VGG, and
ResNet. In addition, we used pre-trained weights from
ImageNet Large-Scale Visual Recognition Challenge as
the initial parameter to train our model instead of ran-
dom weights; this is a popular method since these initial
parameters are already optimized for detecting natural
images such as edges and curves [20], thus solving the
issue of overfitting when not many data are available.
We have also trained our own model from scratch using
Bayesian optimization as the hyper-parameter tuning
process. As depicted in Table 2, transferred models out-
performed our model based on test accuracy but, the
difference, based on AUROC, was small. Between our
model and the best performing ResNet transferred
model, our model used far less parameters, which is
computationally effective.
Overfitting, which refers to models performing well on

the trained data but not well on unseen data is a com-
mon issue when a small dataset is used to train the
model [21]. Since our dataset consisted of only 1369 im-
ages, there might have been a possibility of overfitting.
However, we addressed this issue by incorporating
regularization techniques such as adding dropout layers
and data augmentation. Dropout randomly corrupts hid-
den nodes between layers which changes the detail of
the model every training iteration [22]. Thus, this
process leads to a more generalized model when a suffi-
cient number of training iterations are given. Data aug-
mentation allows the machine to learn an image from
different views. This technique can also help overcome

Table 2 Evaluation of our model and transferred model
Our Model Inception V3 ResNet VGG

Ensemble Accuracy AUROC Ensemble Accuracy AUROC Ensemble Accuracy AUROC Ensemble Accuracy AUROC

Training Data 100% 1.0 100% 1.0 100% 1.0 100% 1.0

Validation Data 96.35% 0.989 98.18% 0.993 98.18% 0.996 97.81% 0.996

Test Data 95.89% 0.992 96.35% 0.997 98.63% 0.999 96.80% 0.999

Fig. 4 a. Receiver operating characteristic curve. b. Number of parameter comparison between models. c. Loss graph for our model. Y-axis
indicates loss for validation data and X-axis indicates number of epoch
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the issue of small training dataset by generating many
augmented images. The validation loss graph for our
model indicates that our model reached minimum,
which is an indication of an optimal model [10].
Even though we have generated our own model and

used well-known, state-of-the-art convolutional neural
networks, getting an insight into how a machine classi-
fies a fundus photo as normal or disease status can be a
challenging task. Therefore, further study is needed into
visualizing the convolution layers and filters to get an
idea of how machines classify images. Further, larger
scale datasets may help validate our findings.

Conclusions
Machine learning techniques can be combined with fun-
dus photography as an effective approach to distinguish
between PPE and elevated optic disc associated with
optic neuropathies.
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