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Abstract The human transcriptome is highly dynamic, with
each cell type, tissue, and organ system expressing an ensem-
ble of transcript isoforms that give rise to considerable diver-
sity. Apart from alternative splicing affecting the “body” of the
transcripts, extensive transcriptome diversification occurs at
the 3’ end. Transcripts differing at the 3’ end can have pro-
found physiological effects by encoding proteins with distinct
functions or regulatory properties or by affecting the mRNA
fate via the inclusion or exclusion of regulatory elements (such
as miRNA or protein binding sites). Importantly, the dynamic
regulation at the 3’ end is associated with various (patho)
physiological processes, including the immune regulation
but also tumorigenesis. Here, we recapitulate the mechanisms
of constitutive mRNA 3’ end processing and review the cur-
rent understanding of the dynamically regulated diversity at
the transcriptome 3" end. We illustrate the medical importance
by presenting examples that are associated with perturbations
of this process and indicate resulting implications for molec-
ular diagnostics as well as potentially arising novel therapeutic
strategies.
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Introduction

The mRNA and protein isoforms produced by alternative pro-
cessing of primary RNA transcripts differ in structure, func-
tion, localization, or other properties [13, 120, 183].
Alternative splicing affects more than half of all human genes
and represents a primary driver of the evolution of phenotypic
complexity in mammals [15, 80, 95]. Across individuals,
changes in normal isoform structure can have phenotypic con-
sequences and have been associated with disease [52]. With
the advent of next-generation RNA sequencing technologies,
it became apparent that not only the “body” of transcripts but
also the mRNA 3’ end is affected by enormous diversity. Up to
70 % of the transcriptome undergoes alternative mRNA 3’ end
processing [92]. This for example affects numerous genes
during the stress response [187] or after T and B cell activation
[152]. The medical significance is highlighted by complex
disorders that are associated with alternative cleavage and
polyadenylation (APA), i.e., in the susceptibility to systemic
lupus erythematosus [62] or more globally in tumorigenesis
[119, 121]. Yet, up to now, the functional role of widespread
APA in disease processes is still enigmatic.

In the following, we will briefly present the mechanistic
key features of 3’ end formation since several reviews cover
the basics of 3’ end formation in greater detail [28, 43, 60, 88,
143, 180, 185, 198]. We will illustrate the medical perspective
of 3" end processing and show how disease can be caused by
perturbations of canonical mRNA processing in cis and trans.
We will then present how alternative 3" end processing con-
tributes to the complexity of the transcriptome and thereby
affects important cellular functions in physiological as well
as pathophysiological conditions. Finally and most intriguing-
ly, we will discuss to what extent alternative cleavage and
polyadenylation represent the driver or passenger in the path-
ogenesis of human disorders.
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General principles of canonical 3’ end
processing—the eukaryotic mRNA 3’ end cleavage
and polyadenylation machinery

All eukaryotic mRNAs, except some replication dependent
histone mRNAs, as well as several non-coding transcripts
including miRNAs, possess poly(A)-tails at their 3’ end,
which are produced by a relatively simple two-step reaction
involving endonucleolytic cleavage and subsequent non-
templated poly(A) tail addition (Fig. 1; reviewed [127, 142,
156, 192]). The executing molecular machinery however is
complex. It involves more than 50 proteins [160], which are
loaded onto more or less highly conserved sequence motifs to
catalyze this step of pre-mRNA maturation. The specificity
and efficiency of this process are determined by the binding
of two core multi-protein complexes (CPSF and CSTF, for
“cleavage and polyadenylation specificity factor” and “cleav-
age stimulation factor”) to sequences surrounding the poly(A)
site as soon as the nascent pre-mRNA transcript emerges from
the elongating RNA polymerase II (POL2). After assembling
the 3’ end processing apparatus, the cleavage reaction is cata-
lyzed by CPSF-73 [45, 112, 149] and the cleaved mRNA is
polyadenylated by the nuclear poly(A)-polymerase (PAP)
adding ~50-100 A-nucleotides to the 3" end [24]. The length
of the poly(A) tail is similar in different mRNAs and is deter-
mined by an interaction between the nuclear poly(A) binding
protein (PABPN1), CPSF, and PAP [91]. Upon nuclear export,
PABPNI is replaced by the cytosolic poly(A) binding protein
(PABPC), which establishes contact with the translation initi-
ation factor elF4G, stimulating translation and regulating
mRNA stability [82, 91, 150]. Thus, 3’ end polyadenylation
is vital for various steps of gene regulation; it is required for
nuclear export and stability of mature transcripts and for effi-
cient translation of mRNAs [151]. Interestingly, although key
aspects of mRNA 3’ end maturation have been identified de-
cades ago, recent studies have significantly reshaped current
models for the protein-RNA interactions involved in the
poly(A) site (PAS) recognition [161]. This, includes the rec-
ognition of the highly conserved AAUAAA hexanucleotide
motif (and less commonly AUUAAA) defining the site of 3’
end processing of almost all polyadenylated mRNAs [23, 154]
(see below).

mRNA 3’ end processing is tightly connected
to transcription and splicing to ensure proper mRNA
maturation and to maintain genome integrity

Messenger RNA 3’ end processing is well-orchestrated and

interconnected with transcription, splicing, and translation
[70, 114, 143] (Fig. 1b): As the pre-mRNA transcript emerges
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from POL2, extensive constitutive and alternative splicing
events occur co-transcriptionally giving rise to a perplexingly
high transcriptome diversity. Eventually, transcription termi-
nation pauses the elongating polymerase triggered by recog-
nition of poly(A) signals in the nascent transcript [143, 148],
and both CPSF and CSTF are transferred by the carboxy-
terminal domain (CTD) of POL2 to their specific pre-
mRNA binding sites to produce the mRNA 3’ end. The phos-
phorylation of serine and threonine residues within the CTD
regulates gene expression [1]; it coordinates the recruitment of
RNA processing factors (including the 5’ capping complex,
the spliceosome, and 3’ processing machinery) and regulates
chromatin organization by histone methylation [68].

The extensive crosstalk between the different pre-mRNA
processing activities (capping, splicing, and polyadenylation)
is crucial for gene expression and, importantly, genome integ-
rity (Fig. 1c): Proteins binding to the cap structure of pre-
mRNAs interact with splicing factors and promote recognition
of the cap-proximal splice site. Conversely, splicing factors
associating with the 3’ terminal intron interact with down-
stream polyadenylation factors to mutually promote 3’ end
cleavage/polyadenylation and terminal intron splicing [5, 36,
65, 93, 100, 109, 122, 125, 126, 134, 175, 184]. These inter-
actions ensure the recognition of the correct splice sites and
the timely, accurate, and efficient 3’ end processing.
Moreover, the extensive integration between the different
co-transcriptional mechanisms protects chromosomes from
potentially deleterious effects, which could arise from interac-
tion between the nascent RNA and template DNA during
transcription [101]. Finally, functional polyadenylation sites
and polyadenylation factors are required for efficient tran-
scription termination [20, 85, 143, 148] and release of the
polyadenylated mRNAs for export from the nucleus [145].
The efficiency of polyadenylation can thus have significant
quantitative effects on gene expression in general, and defects
of mRNA 3’ end formation can profoundly affect cell viability,
growth, and development.

The medical relevance of errors of 3’ end processing is
exemplified by different inherited and acquired human dis-
orders. A continuously growing number of reports docu-
ment the increasing awareness of the mRNA 3’ end becom-
ing a critical constituent for a variety of disorders (for re-
view [34]).

In the following paragraphs, we highlight the most charac-
teristic hallmarks of constitutive 3’ end processing and—
based on a few selected examples—illustrate how alterations
of sequence elements or the executing 3’ end processing ma-
chinery can result in human pathology. In the second part, we
shift to regulated and alternative 3’ end formation and demon-
strate its importance in various physiologically and
pathophysiologically relevant processes.
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Fig. 1 Sequence elements and protein components involved in the
formation of poly(A) tails. a The specificity and efficiency of cleavage
and polyadenylation are determined by the binding of multi-protein
complexes to specific elements at the 3’ end of the pre-mRNA. Most
pre-mRNAs contain two core elements. The canonical polyadenylation
signal AAUAAA (or less frequently AUUAAA) upstream of the
cleavage site is recognized by the multimeric cleavage and
polyadenylation specificity factor (CPSF) consisting of at least six
subunits (CPSF 160, CPSF 100, CPSF 73, CPSF 30, hFipl, and
WDR33). This RNA-protein interaction determines the site of cleavage
10-30 nt downstream, preferentially immediately 3’ of a CA dinucleotide.
The second canonical sequence element is characterized by a high density
of G/U or U residues which is located up to 30 nt downstream of the
cleavage site. This downstream sequence element (DSE) is bound by the
64-kDa subunit of the hetero-trimeric cleavage stimulating factor (CSTF)
that promotes the efficiency of 3’ end processing. Furthermore, multimers
of a UGUA motif are localized at variable distances upstream of the
cleavage site to recruit the heterodimeric cleavage factor CFIm [19,
176]. Finally, accessory sequences can function as upstream sequence
elements (USE) [17, 32, 36, 66, 67, 75, 98, 128, 129, 132, 193] to
facilitate 3’ end processing by recruiting canonical 3’ end factors
directly [128, 129] or by serving as an additional anchor for the
(canonical) 3 end processing machinery [36, 66]. After assembly of the
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basal 3’ end processing machinery, the endonucleolytic cleavage reaction
is catalyzed by CPSF-73, and the cleaved mRNA is polyadenylated by
nuclear poly(A)-polymerase (PAP). The binding of PABPNI to the
poly(A) tail is unstable, and upon nuclear export, PABPN1 is replaced
by the cytosolic poly(A) binding protein (P4BPC), which interacts with
the translation initiation factor eIF4G, stimulating translation and
regulating mRNA stability. Of note, in addition to histone 3’ end
processing that follows a different pathway [118, 185], other “non-
canonical” mechanisms of 3’ end processing exist [189]. b
Transcription initiation, elongation, and termination (circular arrow) are
tightly coupled to mRNA processing steps such as capping, splicing, and
3’ end processing (inner circle). Appropriate 3’ end processing is
functionally interconnected with transcription and mRNA capping and
splicing and impacts on post-transcriptional mechanisms (mRNA release,
export, abundance, and translation). Loss- or gain-of-function of 3’ end
processing thus critically interferes with other gene expression steps
(modified after [34]). ¢ Co-transcriptional mRNA processing promotes
packaging of the nascent RNA transcript (formation of an “inert” RNP
particle) and thus to prevent the accumulation of co-transcriptional R-
loops (lower panel), which can lead to DNA-double-strand breaks and
chromosomal rearrangements. Disruption of co-transcriptional RNA-
processing can thus lead to genomic instability (modified after [34])
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When processing gets awry
The polyadenylation signal matters

Numerous mutations affecting cis-regulatory sequence ele-
ments required for mRNA 3’ end processing evidence their
detrimental role in a variety of human disorders [34].
Intriguingly, a significant factor in deciphering the underlying
mechanistic principles of mRNA 3’ end processing was the
presence of mutations, which were initially identified in thal-
assemia patients. Among those patients, different mutations
affecting the AAUAAA hexanucleotide of the poly(A) signal
were found in the «- [69] and (3-globin genes [136] (and
references therein) and shown to invariably inactivate or se-
verely inhibit gene expression. Similar mutations were ob-
served in, e.g., the Foxp3 gene causing IPEX syndrome
[10], a rare fatal disorder characterized by immune dysregula-
tion, polyendocrinopathy, enteropathy, and X-linked inheri-
tance. Recently, a germline variant in the TP53
polyadenylation signal has been identified in a large
genome-wide association study to confer cancer susceptibility.
In this gene, a mutation that changes the AATAAA into
AATACA results in impaired 3’ end processing of the TP53
mRNA predisposing to prostate cancer, gliomas, and colorec-
tal adenomas [168].

These and other examples [34] illustrate the functional im-
portance of the highly conserved poly(A) signal and reveal the
devastating consequences of some of these mutations. Although
there is some sequence flexibility [9, 173] and even alternative 3
UTR architectures for effective processing [135], these findings
indicate that the hexanucleotide required for recruitment of the
CPSF complex represents the “Achilles heel” for disease caus-
ing loss-of-function mutations altering 3" end processing. This is
further corroborated by numerous mutations altering
polyadenylation in a variety of other disorders (for review [34]).

How about other sequence elements?

3" end processing depends on various canonical and non-ca-
nonical (auxiliary) sequence elements (Fig. 1a). With the ex-
ception of the poly(A) hexanucleotide, they are less well con-
served and consequently tolerate (“silent”) nucleotide ex-
changes with greater likelihood.

Nevertheless, examples, which illustrate the function of
these elements, exist. This has been first demonstrated for a
clinically relevant gain of function mutation of the cleavage
site stimulating 3" end processing [59]: In most cases, endo-
nucleolytic cleavage and polyadenylation of pre-mRNAs oc-
curs predominantly 3’ of a CA dinucleotide. However, in the
prothrombin (F2) gene encoding a key blood coagulation fac-
tor, the cleavage site is composed of a CG dinucleotide, which
is less efficient in promoting the cleavage reaction [26]. As a
consequence, a common mutation (F2 20210*A) affecting the
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most 3’ nucleotide of the F2 mRNA converts the physiologi-
cally inefficient cleavage site into the mechanistically most
efficient CA dinucleotide [32, 59]. This increases the cleavage
site recognition resulting in an approximately twofold en-
hancement of F2 mRNA and protein expression. This finally
causes raised F2 plasma concentrations, which disturb the
finely tuned balance between pro- and anti-coagulatory activ-
ities and thereby predisposes to thrombosis [141].

Mutations affecting 3’ end processing were also identified
at other positions in the F2 gene [6, 155, 165]. They increase
the efficiency of 3’ end processing [33] either when located at
the penultimate position of the F2 3'UTR (F2 20209*T) or
further downstream 3’ of the cleavage site in the putative
CSTF binding site (F2 20221*T). However, these effects are
presumably gene-specific since the putative CSTF binding
site in the F2 gene displays an unusually low density of uri-
dine residues when compared to efficiently 3’ end processed
mRNAs. Consequently, the introduction of (an) additional
uridine-residue(s) into that region enhances 3’ end processing,
supposedly by facilitating the interaction of CSTF with the
pre-mRNA [32]. This illustrates a typical feature of most
PASs that typically harbor a U-/GU-rich stretch up to 30 nu-
cleotides downstream of the cleavage site to recruit the CSTF
complex for efficient 3’ end cleavage and polyadenylation
(Fig. 1a).

Yet deleterious effects arising from mutations have been
documented, which neither directly affect the poly(A) signal
or the cleavage site nor the downstream sequence elements.
This, for instance, is shown for a 20 base pair duplication in
MSHS6, one of the four mismatch repair genes causing the
LYNCH syndrome (HNPCC or hereditary nonpolyposis co-
lorectal cancer), an autosomal-dominant genetic cancer syn-
drome with a high risk of colon cancer (among others) [41].
This duplication downregulates processing at an adjacent
PAS, although the underlying mechanism remained unclear.
Another intriguing example highlighting the mechanistic
complexity of mRNA 3’ end processing is found for a com-
plex immunodeficiency syndrome, which can be caused by a
3'UTR mutation in the p14 gene. In this case, the mutation
creates a splicing defective 5’ splice site resulting in a Ul
snRNP-mediated suppression of an adjacent PAS [96].
Interestingly, this principle already points to a mechanistic
aspect that will be relevant in the regulation of alternative
cleavage and polyadenylation and the therapeutic manipula-
tion of 3’ end processing (see below).

These examples suggest that aberrations in regions not di-
rectly affecting the poly(A) signal deserve special attention.
Although there clearly is more sequence flexibility up- and
downstream of the poly(A) signal, mutations in such regions
can have devastating consequences. This aspect points to an-
other mechanistic peculiarity of 3’ end processing that the
majority of RNAs likely do not have “optimal” upstream
and downstream core elements. Instead, auxiliary elements
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situated in this regions aid polyadenylation (for review, [37]).
However, their composition and mode of action are often
gene-specific thereby accommodating the needs for specifici-
ty of regulation at the mRNA 3’ end (further detailed below).

Role of frans-acting factors

As indicated before, the processing apparatus is a complex
machinery involving more than 50 proteins [160]. Examples
illustrating the medical relevance of mutations affecting 3" end
processing factors are highlighted by occulopharyngeal mus-
cular dystrophy (OPMD) or the hypereosinophilic syndrome
(HES).

OPMD is an adult-onset disease with slowly progressing
muscle weakness primarily affecting the eyelids resulting in
ptosis and the pharyngeal muscles resulting in dysphagia. It is
caused by short trinucleotide repeat [(GCG)g_;3] expansions
in the coding region of the nuclear poly(A)binding protein 1
(PABPNI, see above) [18]. Normally, the polyalanine stretch
encoded by this trinucleotide comprises 10 alanines, which is
expanded to 12—17 alanines in autosomal-dominant OPMD.
This expansion results in an increase of self-association,
misfolding, and filamentous nuclear aggregation of the
PABPNI protein in skeletal muscle. In vitro, the mutant pro-
tein is fully active and OPMD cells do not display a severe
polyadenylation defect [21, 91]. Thus, the phenotype might be
best explained by either a quantitatively minor disturbance of
the protein’s function in polyadenylation (which may be dif-
ficult to detect in vitro or in transfected cells) and/or by co-
sequestration of other potentially interacting proteins. Finally,
PABPNI also plays an important role in the transcription of
muscle-specific genes, which could explain why other tissues
are unaffected [89].

In contrast, HES represents a severe hematologic disorder
with sustained overproduction of eosinophils in the bone mar-
row, eosinophilia, tissue infiltration, and organ damage. In this
case, a DNA rearrangement involving a chromosomal dele-
tion of 800 kb and fusion of the hFipl and PDGFR« genes is
the underlying cause of this syndrome [29]. The correspond-
ing chimeric protein, hFip1-PDGFR«, contains the N-
terminus of hFipl, an integral subunit of the CPSF complex
stimulating 3" end processing [86], and the C-terminal kinase
domain of PDGFR«. The expression of the hFipl-PDGFR«x
fusion protein in hematopoietic cells constitutively activates
the PDGFR« kinase and transforms cells. As for OPMD, the
resulting phenotype might further be aggravated by an inter-
ference with canonical 3’ end processing, although this has not
been explored in immediate detail. Surprisingly, these exam-
ples are currently the only two reported genomic perturba-
tions, which affect processing factors and leading to an overt
phenotype. This either reflects a negative selective pressure,
an unexpectedly high structural and/or functional flexibility,
or the redundancy of some of those factors.

Regulated cleavage and polyadenylation

The complexity of the macromolecular processing machinery
in general and different co-factor requirements in particular
offer various opportunities for a dynamic regulation of cleav-
age and polyadenylation ([34] and references therein).
Presumably, this plays an important role in the context of
physiological adaptation of gene expression but can also result
in profound disease phenotypes. In analogy to the regulation
of splicing, the decision how efficiently a PAS is used requires
RNA sequence elements and protein regulators. Influenza A
virus infections provide an interesting example of how the
disturbance of protein interactions within the polyadenylation
machinery can influence processing: The influenza A NS1
protein is one of the most abundant proteins synthesized in
infected cells [97]. It regulates several posttranscriptional pro-
cessing steps [55, 106] but also interacts with the cellular
30 kDa subunit of CPSF. This sequesters CPSF30 and thereby
inhibits 3’ end cleavage and polyadenylation of the host pre-
mRNAs by preventing the binding of the CPSF complex to
the RNA substrate [133] (Fig. 2a). Interestingly, NS1 also
targets PABPN1, which inhibits the processive synthesis of
long poly(A) tails catalyzed by PAP [25]. As mRNA process-
ing represents a prerequisite for cytoplasmic export [169], the
uncleaved host pre-mRNAs are retained in the nucleus, while
viral RNAs are still exported. Thus, by interfering with the
activity of an essential 3’ end processing factor, influenza has
devised an efficient way to shut off cellular gene expression
and to facilitate viral gene expression. This and other exam-
ples [123, 124, 153] illustrate that cleavage and
polyadenylation can be regulated by relative simple antago-
nistic molecular interactions.

However, an inhibition of 3’ end cleavage and
polyadenylation can also occur as a result of endogenous
cell-intrinsic mechanisms. One prominent example is the
BRCA-associated protein BARD1, which establishes a caus-
al link between mRNA 3’ end processing and tumor suppres-
sion [90]. BARDI senses sites of DNA damage and repair and
physically interacts with CSTF-50 (Fig. 2b). Challenging cells
with DNA-damaging agents transiently inhibit 3’ end forma-
tion by enhanced formation of CSTF/BARD1/BRCA1 com-
plexes. Furthermore, a tumor-associated germline mutation in
BARDI1 (GIn564His) decreases its affinity for CSTF-50 and
renders the protein inactive in polyadenylation inhibition. The
BARD1-mediated inhibition of polyadenylation may thus
prevent inappropriate RNA processing during transcription
of damaged DNA loci.

Competitive protein interactions modulating the efficiency
of cleavage and polyadenylation can be regulated by specific
signaling pathways. This has first been demonstrated for the
prothrombin (F2) pre-mRNA in which processing relies on a
highly conserved upstream sequence element (USE) (Fig. 1a)
[31]. In this example, stress conditions that activate p38
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MAPK signaling up-modulate components of the 3" end pro-
cessing apparatus and phosphorylate the RNA-binding proteins
FBP2 and FBP3 (Fig. 2c red complex). Normally, these pro-
teins bind to the USE and inhibit 3’ end processing. Upon phos-
phorylation, they dissociate from the USE, making it accessible
to proteins that stimulate 3’ end processing [36]. These findings
have important implications: deregulated F2 expression plays a
crucial role in the pathogenesis of thrombophilia but also in
other conditions linking p38 MAPK activation with aberrant
cellular processes such as tumorigenesis [35]. It is worth
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noting that the USE motif constitutes a highly conserved
nonameric sequence element, which can be found in many
genes including MYC (among other key players with a role
in tumorigenesis [36]). Thus, this regulatory principle might
account for a plethora of gene functions. From these findings,
regulated 3’ end processing emerged as a key mechanism of
gene regulation with broad biological and medical implica-
tions. It also provides a first example how the basal 3’ end
processing apparatus is “wired” to signaling pathways
allowing a dynamic adaptation of the 3’ end cleavage and
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Fig. 2 Regulated 3’ end processing in disease. a In influenza A virus-
infected cells, the highly abundant NS1 protein interacts with the cellular
30 kDa subunit of CPSF and PABPN1 (not shown) [25]. This prevents
binding of the CPSF complex to its RNA substrates and selectively
inhibits 3’ end processing and nuclear export of host pre-mRNAs. In
contrast, the 3" terminal poly(A) sequence on viral mRNAs is produced
by the viral transcriptase, which reiteratively copies a stretch of four to
seven uridines in the virion RNA templates. In addition, an endonuclease
intrinsic to the viral polymerase cleaves cellular capped RNAs to generate
capped fragments that serve as primers for the viral mRNA synthesis
(“cap-snatching mechanism” [144]). Thus, by interfering with the
activity of an essential 3’ end processing factor, influenza has devised
an efficient way to shut off cellular gene expression and to facilitate
viral gene expression [133]. b The BRCA-associated protein BARDI
physically interacts with CSTF-50, thereby repressing the
polyadenylation machinery [90]. Both, BARD1 and CSTF-50, also
interact with POL2 (not shown), and BARDI has senses sites of DNA
damage and repair. The BARD1-mediated inhibition of polyadenylation
thus prevents inappropriate RNA processing during transcription at such
compromised sites. Challenging cells with DNA-damaging agents results
in a transient inhibition of 3’ end formation by enhanced formation of a
CSTF/BARD1/BRCA1 complex. A tumor-associated germline mutation
in BARDI decreases its affinity to CSTF-50 and renders the protein
inactive in polyadenylation inhibition. These findings link 3" end RNA
processing with DNA repair, and loss of wild-type BARD1 could
therefore lead to defective control of gene expression as a result of
inappropriate polyadenylation. ¢ In the human prothrombin (F2)
mRNA, the efficiency of 3’ end processing is regulated by engagement
of a highly conserved USE [36]. After induction of p38 MAPK signaling
the USE-RNP architecture changes [31]; inhibitory proteins binding to
this element (red) are phosphorylated and dissociate from the USE
complex while stimulatory 3’ end processing components (green) are
more abundantly loaded onto the USE motif. This together with an
induction of the canonical 3’ end processing machinery promotes 3’ end
formation, resulting in higher level of F2 mRNA and protein. This
process is believed to play an important role in the deregulation of
blood coagulation during septicemia but also in processes such as
tumor invasion. d The poly(A) polymerase (PAP) that catalyzes the
formation of the poly(A) tail can be modified by the poly(ADP-ribose)
polymerase 1 (PARPI). This regulates its activity both in vitro and
in vivo. During heat shock, PARP1 binds to and modifies PAP leading
to inhibition of polyadenylation in a PARP1-dependent manner. The
inhibition reflects a reduced RNA binding affinity of PARylated PAP
and decreased PAP association with non-heat shock protein-encoding
genes [44]. Interestingly, this example also suggests that there must be
gene-specific regulatory mechanisms that allow selective gene expression
even in conditions, in which PAP as a central enzyme is posttranslationally
modified to overcome the initial eliciting event (for further examples
see [72])

polyadenylation efficiency. In analogy to other mechanisms
(i.e., splicing), this also exemplifies how accessory sequence
elements confer specificity to this type of gene regulation.
Finally, another important example establishing the role of
posttranslational modifications as a critical element for regu-
lation of 3’ end processing is shown for the poly(A) polymer-
ase [44]. This enzyme catalyzing the formation of the poly(A)
tail can be posttranslationally modified by the poly(ADP-ri-
bose) polymerase 1 (PARP1) leading to a poly(ADP-
ribosyl)ation, which inhibits the PAP activity (Fig. 2d). The
physiological importance of this mechanism is shown in the
context of heat shock during which PARP1 inhibits

polyadenylation of non-heat shock protein-encoding genes,
while polyadenylation of Zsp transcripts remains unaltered.
Thus, a PARP1-mediated modification of PAP has evolved
as an effective mechanism for a differential regulation of
polyadenylation during thermal stress. Although not fully elu-
cidated, this example also suggests that there must be gene-
specific regulatory mechanisms which allow selective gene
expression even in conditions, where PAP as a central enzyme
is posttranslationally modified [44].

These and other examples illustrate that complex molecular
mechanisms have evolved to control and regulate mRNA 3’
end processing at (a) defined PAS(s) to eventually execute
specific cellular programs. Although not yet explored in fur-
ther detail, analogous mechanisms might also come into play
for the dynamic regulation at alternative (“competing”) PASs
(next section).

Variations at the transcriptome 3’ end—when
processing gets alternative

With the emergence of RNA sequencing (RNA-Seq) technol-
ogies, it became clear that the transcriptome is enormously
diversified at the 3’ end [39]. Approximately up to 70 % of
the transcriptome is affected by a mechanism widely referred
to as “alternative 3' end cleavage and polyadenylation” (APA)
[92]. As highlighted above, it regulates numerous genes dur-
ing the stress response or after T and B cell activation, during
differentiation and dedifferentiation, and in various processes
linked to tumor progression (detailed below). These findings
are in line with earlier observations that alternative PAS selec-
tion represents an important and evolutionary conserved reg-
ulatory mechanism for spatial (tissue specificity [53, 67, 105,
107]) and temporal control of gene expression (i.e., immuno-
globulin class-switch [3, 30, 47, 48, 147, 170, 171]).

The current understanding of how APA is mechanistically
controlled is subject of several recent review articles [51, 63,
74,108, 110, 159, 161, 174]. Although great steps towards a
better understanding of APA have been taken, many facets are
still enigmatic. Following from above, and possibly despite
the fact that APA is widespread, the existence of a unique (and
universal?) APA-regulating mechanism is unlikely: In brief,
APA can be regulated on the level of mRNA 3’ end processing
(“direct/true APA”) by various cis- and trans-acting determi-
nants among which (1) the intrinsic strength of sequence ele-
ments, (2) the concentration or activity of polyadenylation
factors, and/or (3) tissue- or stage-specific regulatory factors
are the most important key players [7] (Fig. 3). Yet a signifi-
cant proportion of APA events is coupled to alternative splic-
ing; PASs located in intronic or alternatively spliced exonic
regions can be activated and thus the modulation of splicing
can directly influence PAS choice (“splicing coupled APA”;
see below). Further, as can be inferred from the coupling of
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Fig.3 Mechanisms involved in the regulation of the transcriptome 3’ end
diversity. Alternative 3’ end cleavage and polyadenylation (APA; two
transcript isoforms shown) can be regulated (1) on the level of mRNA
3" end processing (“direct/true APA”), through (2) alternative splicing via
the in- or exclusion of PASs upon intron retention or exon skipping
(“splicing coupled APA”) [183], by (3) transcriptional activities
(transcription initiation, elongation, or termination; “kinetic coupling”),
or (4) as a result of epigenetic regulation (i.e., through histone or DNA
modifications; “epigenetic APA”). Ultimately, changing APA profiles can

cleavage and polyadenylation with transcription (Fig. 1), tran-
scription initiation, the kinetics of transcription itself as well as
transcription termination can control PAS choice (“kinetic
coupling”; see below). In addition, epigenetic regulation
(i.e., through histone or DNA modifications) as well as
RNA modifications can determine where and to what extent
individual pre-mRNAs are eventually cleaved and
polyadenylated (“epigenetic APA”) [57, 87, 102, 167, 182,
190]. Ultimately, it needs to be noted that changing APA phe-
notypes can also be caused by regulated RNA decay of indi-
vidual mRNA isoforms, which have been constitutively
cleaved and polyadenyated at alternative PAS (“faux/indirect
APA”). Thus, dissecting the underlying mechanisms of regu-
lated transcriptome 3’ end diversity is complex and has to take
into account various variables that importantly can at the same
time be cause and consequence of APA (Figs. 3 and 4).

Before moving on to a more universal role of APA in health
and disease, we will briefly illustrate a few important physio-
logical aspects, which deserve special attention.

APA in differentiation and development

Recent studies based on high throughput analyses have re-
vealed that APA is highly regulated during development ([8,
54, 76, 79, 152, 158] and references therein). Interestingly
there is a correlation between the proliferation status and the
global APA patterns (Fig. 4a). Proliferating cells tend to use
upstream (“proximal”) PASs and produce mRNAs with
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also be caused by (5) differential RNA turnover of individual mRNA
isoforms, which have been cleaved and polyadenylated at alternative
PAS (“faux/indirect APA”). Of note, another interesting mechanistic
combination of both splicing regulation and concomitant transcriptional
activities is executed via a Ul snRNP-mediated mechanism termed
“telescripting” that protects pre-mRNAs from drastic premature
termination by cleavage and polyadenylation [11, 83] (4P4 = alterative
cleavage and polyadenylation; CTD = C-terminal domain; POL2 = RNA
polymerase II)

shorter 3'UTRs, while quiescent/differentiated cells favor
downstream (“distal”’) PASs and produce mRNAs with longer
3'UTRs [152]. Similar observations have been made for
mouse development and the differentiation of ECSs into neu-
rons and other functions [16, 78, 158]. In contrast, during
somatic reprogramming [79] or tumorigenesis, proximal
PASs are favored leading to shorter 3'UTRs [121]. In some
of those cases, mRNAs with shorter 3'UTRs tend to be more
stable [71, 162] or globally elevated [40] eventually leading to
higher protein output [121, 152]. Breaking it down to individ-
ual transcripts, the consequences of APA however can be
complex: APA transcript isoforms of the same gene can en-
code different proteins and/or change the 3'UTR properties,
leading to the inclusion or exclusion of mRNA stabilizing or
destabilizing elements, miRNA target sites, or result in differ-
ent translation efficiencies or subcellular localization (Fig. 4a,
detailed below). Thus, although APA is widespread in pro-
cesses such as differentiation, dedifferentiation, and develop-
ment, global equations of how the overall trend of APA direc-
tionality affects the fate of the respective transcript isoforms
are difficult. This is supported by studies, which failed to
detect a straightforward correlation between APA and
mRNA stability or protein output [50, 58, 64, 130, 152,
166]. Accordingly, deciphering the downstream functional
consequences of APA in the context of cellular programs
and to understand whether APA is the cause or consequence
of complex biological programs represents a major challenge.
Possibly APA coordinately regulates post-transcriptional
regulons (“RNA operons”) driving specific cellular programs.
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Fig. 4 Alternative 3’ end processing modulates the temporal and spatial
diversity of gene expression. a About half of the human pre-mRNAs
contain (multiple) alternative poly(A) signals (PAS), which are mostly
located as tandem arrays within the 3'-UTRs [173, 194]. A smaller set
of pre-mRNAs bears alternative PAS within intronic or exonic regions. In
both cases, endogenous and exogenous factors can modulate pre-mRNA
PAS selection by interfering with constitutive and/or auxiliary 3’ end
processing factors/subunits. This results in various polyadenylated
mRNA isoforms that either code for identical (tandem terminal PASs)
or C-terminally modified (internal PASs) proteins. Furthermore,
alternatively 3’ end processed mRNAs can display different 3'UTR
properties. This can affect various aspects of mRNA and/or protein
fates (export, abundance, stability, localization, transport, and
translation), i.e., via the in- or exclusion of regulatory elements such as
microRNA target sites or binding sites for RNA binding proteins with
important roles in Mendelian disease [22]. Very commonly, cellular states

For example, hFip1 (an integral part of the CPSF complex) has
recently been shown to control embryonic stem cell-specific
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associated with enhanced proliferation, dedifferentiation, or cell
transformation tend to produce shorter mRNA variants (cleavage and
polyadenylation occurring at the proximal PAS), while differentiation
shifts cleavage and polyadenylation towards production of longer
mRNA variants (processed at the distal PAS). b During B cell
differentiation, alternative PAS selection effects a switch of the IgM
heavy chain expression from a membrane bound form (pum) to the
secreted form (ps). In this example, CSTF-64 binding to the PAS of the
RNA giving rise to secreted IgM (us) is favored either by high CSTF-64
concentrations [171] or under conditions of low hnRNP F and/or low
UI1A concentrations [139, 177] in plasma cells (lower lane). In contrast,
the high affinity site of the membrane bound form (um) is used in B cells
(upper lane) where the CSTF-64 concentration is low or when high
concentrations of UTA and/or hnRNP F inhibit CSTF-64 binding to the
secretory us-specific PAS (boxes indicate exons, simplified
representation)

APA profiles to ensure the optimal expression of a specific set
of genes, including critical self-renewal factors, in the cell fate
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specification [94]. Yet, we have just begun to decipher the
resulting consequences, and further studies are needed to ex-
pand our understanding of the resulting consequences. In con-
trast, the impact of APA on the expression and function of
individual genes is far better understood.

Role of APA for individual genes

The historically eldest and perhaps the most thoroughly stud-
ied example illustrating the importance of APA and also shed-
ding light on the underlying regulatory principles is the regu-
lation of IgM heavy chain expression during B cell differen-
tiation (Fig. 4b; [3, 47, 147]). In this mRNA, alternative PAS
selection is regulated by a modulated recruitment of the CSTF
64-kDa subunit to one of two competing PASs. Upon B cell
activation, this switches the I[gM heavy chain expression from
a membrane bound form (um) to the secreted form (us) by
activation of an alternative upstream ps-specific PAS in plas-
ma cells [171]. Several mechanisms are possibly contributing
including additional modulators (U1A) tightly controlling and
ensuring appropriate PAS selection [138, 139]. Although the
underlying regulation is further complicated by being coupled
to alternative splicing (“splicing coupled APA”), it establishes
an important direct functional link between dynamically reg-
ulated APA and a physiological process.

A similar mechanism underlies the regulated expression of
the transcription factor NF-ATc during T cell differentiation
[27]. Two longer isoforms of NF-ATc mRNA are synthesized
in naive T cells, whereas a shorter isoform is expressed in
effector cells. The switch is mediated by activation of a prox-
imal PAS by up-regulation of CSTF 64 kDa subunit, which
occurs upon T cell stimulation (“direct APA”). In this context,
it is interesting to note that LPS stimulation increases CSTF 64
expression in macrophages, which in turn regulates APA of
several mMRNAs [157]. These examples illustrate that the mod-
ulated expression of individual 3’ end processing factors can
directly—or in concert with auxiliary (inhibitory or stimulato-
ry) factors—change the production of APA isoforms and
thereby drive important cellular functions.

Inferring from the tight coupling of transcription with pro-
cessing [115, 131], the kinetics of POL2 play an important
role in PAS choice (“kinetic coupling”). In Drosophila, polo
is a cell cycle gene, which uses two PAS in the 3" UTR to
produce alternative messenger RNAs that differ in their 3’
UTR length. By using a mutant Drosophila strain with a lower
transcriptional elongation rate, it was shown that transcription
kinetics can determine alternative PAS selection. Although
only one gene is affected, the physiological consequences of
incorrect polo PAS choice are detrimental; transgenic flies
lacking the distal poly(A) signal cannot produce the longer
transcript and die at the pupa stage due to a failure in the
proliferation of the precursor cells of the abdomen [140].

@ Springer

Along these lines also, transcription elongation factors can
direct alternative RNA processing and thereby control impor-
tant cellular functions such as the immunoglobulin secretion
in plasma cells [117].

Another interesting example is the brain-derived neuro-
trophic factor (BDNF), which is encoded by two transcripts
with either short or long 3" UTRs. The physiological signifi-
cance of the two mRNA isoforms encoding the same protein
has been unknown until it could be demonstrated that the short
and long 3" UTR BDNF mRNAs are involved in different
cellular functions. The short 3 UTR mRNAs are restricted
to somata, whereas the long 3' UTR mRNAs are also localized
in dendrites. In a mouse mutant where the long 3" UTR is
truncated, dendritic targeting of BDNF mRNAs is impaired,
resulting in low level BDNF in hippocampal dendrites, a se-
lective impairment in long-term potentiation in dendrites,
while somata of hippocampal neurons remained normal.
These results provide insights into local and dendritic actions
of BDNF and reveal APA for a differential regulation of sub-
cellular functions of proteins [4] with important medical im-
plications [103].

Further examples documenting the biological conse-
quences of APA are represented by the regulated expression
of a truncated form of glutamyl-prolyl tRNA synthetase
(EPRS), which as a “gamma-interferon-activated inhibitor of
translation” (GAIT) constituent controls the translation of
GAIT target transcripts such as the VEGF-A [195].
Furthermore, recent studies demonstrated APA’s potential to
differentially regulate the localization of membrane proteins
by a trafficking mechanism involving the CD47 3'UTR as a
scaffold [12]. Altogether, these and other examples illustrate
the physiological importance of regulated mRNA 3’ end pro-
cessing as a mechanism controlling a wide spectrum of cellu-
lar functions.

APA in human disease

Aberrant APA profiles are associated with a variety of human
disorders ([8, 40, 119, 121, 130] and references therein). Most
importantly, the strong prevalence of APA regulation in phys-
iological processes such as differentiation and development
(see above) is also reflected in situations where these process-
es are typically dysregulated. The most prototypical example
for this is uncontrolled cellular proliferation in the course of
cancer development. Accordingly, a widespread increase in
the use of proximal PASs has been observed in various cancer
cells [121]. In this context, the shorter mRNA isoforms
showed an increased stability and typically produced more
protein, in part through the loss of microRNA-mediated re-
pression. Interestingly, switching to shorter 3'UTRs also
allowed proto-oncogenes to escape from inhibition by
miRNAs, thereby resulting in oncogene activation in the
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absence of genetic alterations. Global induction of proximal
PAS usage has consistently been observed in several studies
ever since ([2, 58, 104, 119, 130, 162, 191] and references
therein). This phenotype however does not apply to all tumor
types [58], and occasionally the correlation between cancer
progression and 3'UTR shortening appears to be more com-
plex [49, 58, 130]. Interestingly, the determination of
(selected) APA profiles has recently proven to be of prognos-
tic significance [99, 119, 186, 191]. Yet, also other disorders
such as endocrine [146] or cardiovascular disease [164] are
associated with a widespread regulation of APA.

Previously, PABPNI1 has been identified to represent a po-
tent modulator of APA by inhibiting processing at respective
PASs [77]. In the context of OPMD (see above), these data
may also imply that OPMD is associated with misregulated
APA, which results in unbalanced formation of alternative
mRNA 3’ ends. They also predict that OPMD symptoms in
humans may be to a certain degree a result of aberrant gene
expression due to a change in 3’ end formation. Yet, so far, this
has not been tested directly.

Interestingly, also pathological changes occurring in the
context of myotonic dystrophy may be attributable to specific
alterations in 3'UTR structures and subsequent changes in
RNA localization and/or protein isoforms and levels [8].
Although primarily demonstrated in mice, complementary
analysis of samples of human origin strongly suggests APA
to represent a (additional) molecular mechanism underlying
muscular dystrophy.

Given the high prevalence of APA as a pervasive gene
regulatory mechanism in various physiologically relevant pro-
cesses, it is likely that its misregulation will be discovered in
the context of various other pathological conditions [172]. Yet
the extent to which the vast majority of all reported global
alterations at the mRNA 3’ end represent driver or passengers
of human disorders remains an open question. Furthermore, it
is, for example, conceivable that the observed APA pattern
changes could equally reflect compensatory activities
reestablishing the cellular homeostasis in response to
disease-triggering events.

Potentially interesting evidence for a causal relationship
between APA and a resulting disorder is represented by a
polymorphism in the interferon regulatory factor (IRF) 5 gene
predisposing to systemic lupus erythematosus (SLE) [61, 62].
This newly identified polymorphism creates a functional
polyadenylation site resulting in an increased expression of a
transcript variant containing a shorter 3'UTR. Interestingly,
the expression levels of transcript variants with the shorter or
longer 3'UTRs appeared to be inversely correlated. Thereby, it
contributes to a misregulation of interferon signaling, a critical
constituent in the pathogenesis or progression of SLE. Yet,
this is obviously one of the “simpler” examples in which
APA (of one gene) is altered in cis. Accordingly, the nature
and functional consequences of global APA regulation in the

context of human pathologies remain subject to future
investigations.

APA in molecular diagnostics

The advent of high-throughput sequencing technologies has
significantly promoted the elucidation of disease mechanisms
and equipped us with novel diagnostic opportunities. As for
alternative splicing, identifying APA patterns can likely have
wide diagnostic implications [38, 84, 181]. With the evolution
of numerous protocols that rely on 3’ end sequencing technol-
ogies [42, 56, 58, 73, 76, 77, 104, 113, 116, 137, 158, 183,
188, 196], the determination of APA isoforms can meanwhile
be carried out in a reliable and straightforward manner
(Fig. 5). Unlike gene expression profiling based on arrays or
full RNA-Seq, which can be dramatically confounded by the
way of normalization, the relative proportion of APA isoforms
is normally internally controlled thus resulting in relatively
robust results. While contamination of the analyzed specimen
by other cell populations is another inevitable and very com-
mon confounder in gene expression analysis (i.e., when re-
vealing the signature of a tumor which is infiltrated by im-
mune cells), APA patterns are likely to be more tissue specific
[42] and were found to differ according to tissue type, devel-
opmental stage, genotype, or cancer subtype [78, 79, 92, 111,
152,162, 183, 197]. Cataloging these (tissue) specific patterns
might therefore allow us to subtract “contaminating” APA
signatures from APA signatures of specific disordered tissues
of interest. Thus, the determination of APA patterns may open
up novel diagnostic avenues which up to this point have
turned out to represent challenging aspects of “conventional”
gene expression profiling. Finally, characterizing tissue-
specific APA signatures per se may be of immediate diagnos-
tic value, i.e., for tracing back and identifying the origin of a
given disease lesion (for instance in cases of cancer of un-
known primary, CUPs).

With the advent of high-throughput analyses, the
bioinformatical workload has increased dramatically. In con-
trast to total RNA-Seq, the sequencing restricted to the tran-
scriptome 3’ end directly uncovers the variability and pertur-
bation occurring at the mRNA 3’ end (Fig. 5). This has several
advantages. Firstly, it drastically reduces the bioinformatical
workload. Furthermore, these data are typically not confound-
ed by other variables that complicate the bioinformatical pro-
cessing of the data (such as alternative splicing). Finally,
restricting the sequencing to the last (approximately) 30 nu-
cleotides of the transcriptome opens up interesting (and first
and foremost cost-effective) opportunities for multiplexing—
while still keeping a high coverage for a reliable analysis. In
depth APA profile studies have recently revealed “aberrant”
APA signatures to be associated with more aggressive tumor
phenotypes in cancer patients and thereby provided the proof-
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of-concept that such a determination can reveal prognostic
signatures [119, 191]. Yet, applying novel bioinformatical
analysis (DaPars), APA patterns can also be extracted from
preexisting transcriptome wide sequencing data [191].
Although this takes advantage of the fact that RNA-Seq data
is already available for numerous tissue specimens, this tech-
nique has the limitation that it is primarily suited to detect
alternative 3'UTR events, while APA events, which are locat-
ed within the coding region, or alternatively spliced introns
(internal APA) rather remain obscure. Compared to 3’ end
sequencing technologies, this algorithm requires complex
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transcriptome 3’ end (three selected examples) by polyA-Seq compared
to RNA-Seq and definition of the mRNA 3’ end by DaPars on the basis of
RNA-Seq data [191]. Shown are differential changes of the mRNA 3’ end
signature comparing two conditions (“condition A” and “control,” each in
biological replicates (Danckwardt lab, unpublished)). The lower panel
illustrates the respective RefSeq 3'UTR and the annotation of the
polyA-Seq data in comparison with a differential use of PAS in DaPars

bioinformatical calculations and typically allows a less “intu-
itive” identification of the mRNA 3’ end (Fig. 5c, compare
polyA-Seq with DaPars).

It remains to be observed in which disease conditions and
to what extent the analysis of APA signatures could further
improve diagnostic strategies and possibly allow detecting
biological aberrations with higher sensitivity and specificity.
Interestingly, selected APA events can confer strong prognos-
tic power beyond common clinical and molecular variables,
suggesting their potential as novel prognostic biomarkers
[191]. Thus, it will be interesting to see how the determination
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of APA patterns may evolve as a potentially new biomarker in
the future. This could advance diagnostic strategies for a more
thorough understanding of underlying disease mechanisms as
well as for a reliable prognostic and possibly therapeutic
stratification.

Ultimately, ongoing genome sequencing activities will
most likely grant us further insights into genomic variations
resulting in gene-specific perturbation of APA isoforms with
possible detrimental functional consequences. Unlike global
aberration in trans (i.e., as a result of a change of the abun-
dance of one processing factor or regulatory protein), the
cause-consequence relationship in this kind of setting is sub-
stantively clearer. Further such changes may be directly acces-
sible for specific, targeted therapeutic approaches.

Targeting mRNA 3’ end formation as a novel therapy

We have seen that the determination of global APA patterns
can have important diagnostic and even prognostic implica-
tions. The therapeutic significance of APA will depend on it
being cause, consequence, or simply a coincidental epiphe-
nomenon of the underlying disease.

However, even the latter two conditions do not necessarily
preclude the possibility of regulating APA as a therapeutically
meaningful approach. Various disorders are associated with
drastic APA changes (see above), and it is difficult to imagine
that all observed APA patterns are biologically “silent” and
consequently do not affect a potential phenotype.

Although still on an experimental level, in principle, strat-
egies to interfere with 3’ end processing are available. This
encompasses both unspecific as well as target-specific strate-
gies. For example, as shown for the regulation of splicing,
antisense oligonucleotides (ASO) inhibiting Ul binding can
be used to specifically promote intronic alternative
polyadenylation [179]. Although the experience concerning
therapeutic targeting of splicing is far more advanced, the
general proof-of-concept of targeting specific polyadenylation
sites for redirection of processing based on analogous ap-
proaches has been made. This includes the use of ASOs
[179] and siRNAs [178] as well as modified U1 snRNP, which
interacts with a target gene upstream of its PAS to regulate
gene expression [14].

Yet, also other strategies might come into play as well. We
have seen that APA is influenced by various other cellular
processes controlling gene expression (Figs. 1 and 3) includ-
ing the velocity/kinetics of POL2 [140]. Although presumably
unspecific, the interference with POL2 processivity at various
stages of transcription [81] may potentially regulate APA [46].
In fact, numerous anticancer drugs regulate in the one or the
other way the processivity of POL2 (such as doxorubicin or
camptothecin). Apart from this, the C-terminal domain of
POL2 is subject to extensive posttranslational phosphorylation,

which influences co-transcriptional events including splicing,
transcription termination, and 3’ end processing [68].
Interestingly, although Ser 2 and Ser 5 phosphorylations of
the CTD are by far the most studied posttranslational modifi-
cations, the way in which the phosphorylation pattern itself or
potentially even other posttranslational modifications might af-
fect the loading and delivery of processing factors to their ulti-
mate destination is yet to be elucidated.

Furthermore, 3’ end processing is tightly bound to splicing,
and a significant proportion of APA events per se occur con-
currently with alternative splicing. Therefore, virtually all
therapeutical approaches currently tested for manipulating
splicing [163] may—in the one or the other instance—help
reverting “disordered” APA phenotypes as well. Ultimately,
we have obtained first evidence how extracellular signals in-
fluence the basal 3’ end processing machinery [31]. Generally,
this and other examples connecting posttranslational modifi-
cations with the regulation of 3’ end processing as shown for
PAP [44] or the modifications of POL2 CTD (see above) may
lead new ways towards targeting signaling components for
regulation of the transcriptome 3’ end diversity. Finally, by
means of the ongoing research elucidating how epigenetic
modifications can control APA switches ([102, 182, 190]
and references therein), it is tempting to speculate that the
manipulation of these pathways may eventually be translated
into the clinical context.

Conclusions and perspectives

The 3'UTR has emerged as a hotspot for posttranscriptional
gene regulation, controlling important cellular functions such
as morphogenesis, cell differentiation, metabolism, cell prolif-
eration, and other processes by controlling mRNA translation,
stability, localization, as well as 3’ end processing. More re-
cently, APA has been found to represent an important layer of
posttranscriptional gene regulation, which in turn can influ-
ence the RNA fate and/or regulate the protein output quanti-
tatively or qualitatively, and thereby steer important cellular
programs. Interestingly, we have seen distorted APA signa-
tures being associated with a variety of disorders.
Presumably, more of these patterns will be discovered in the
context of various other pathological conditions in the near
future.

From a medical perspective, the most intriguing question
relates to the extent to which APA represents a driver or pas-
senger of human disorders. For individual genes harboring
mutations that perturb alternative cleavage and polyadenylation
of their own transcripts, the cause-consequence relationship is
relatively simple. However, the causal contribution of a wide-
spread APA (de)regulation in the context of human pathologies
is still unclear. The broad biological importance of APA renders
the possibility of global changes of the transcriptome 3" end
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(associated with human pathologies) to have any phenotypic
consequences unlikely. Even without being disease eliciting
directly, these changes may aggravate underlying pathologies.
Yet, they could equally represent compensatory activities for
reestablishing the cellular homeostasis in response to disease-
triggering events.

Thus, further studies are required to decipher the functional
contribution of regulated APA in the context of human pathol-
ogies in order to determine whether APA can serve as a mean-
ingful therapeutic target. Defining key components directing
APA and dissecting their functional hierarchy thus represent
critical aspects that influence the conceptual tractability—
apart from all practical possibilities/opportunities. Uncoupled
from these challenging aspects, exiting first steps towards APA
serving as a potentially novel biomarker are taken. It will be
interesting to see how these encouraging findings will further
translate into a clinical setting and whether they will become
part of “routine” molecular diagnostics allowing prognostic
and/or therapeutic stratifications in the (near) future.
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