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A B S T R A C T

The aim of this study was to investigate the associations of accelerometer-assessed sedentary time and breaks in
sedentary time with 24-h events and duration of hypoglycaemia (< 3.9mmol/l), euglycaemia (3.9–7.8mmol/l),
hyperglycaemia (> 7.8mmol/l) and above target glucose (> 9mmol/l). Thirty-seven participants with type 2
diabetes (age, 62.8 ± 10.5 years; body mass index, 29.6 ± 6.8 kg/m2) in Glasgow, United Kingdom were en-
rolled between February 2016 and February 2017. Participants wore an activity monitor (activPAL3) recording
the time and pattern of sedentary behaviour and a continuous glucose monitoring (CGM, Abbott FreeStyle Libre)
for up to 14 days. Linear regression analyses were used to investigate the associations. Participants spent 3.7%,
64.7%, 32.1% and 19.2% of recording h/day in hypoglycaemia, euglycaemia, hyperglycaemia and above target,
respectively. There was a negative association between sedentary time and time in euglycaemia (β=−0.44,
95% CI −0.86; −0.03, p=0.04). There was a trend towards a positive association between sedentary time and
time in hyperglycaemia (β=0.36, 95% CI −0.05; 0.78, p=0.08). Breaks in sedentary time was associated with
higher time in euglycaemia (β=0.38, 95% CI 0.00; 0.75, p=0.04). To conclude, in individuals with type 2
diabetes, more time spent in unbroken and continuous sedentary behaviour was associated with poorer glucose
control. Conversely, interrupting sedentary time with frequent breaks appears to improve glycaemic control.
Therefore, this should be considered as a simple adjunct therapy to improve clinical outcomes in type 2 diabetes.

1. Introduction

Type 2 diabetes is a chronic non-communicable disease af-
fecting> 90% of the global diabetes population (415 million)
(International Diabetes Federation, 2015). The principal therapeutic
goal of diabetes management is to achieve good glucose control in order
to prevent diabetes-related complications (Bonora et al., 2001; Reid,
2010; Tancredi et al., 2015). However, daily glucose fluctuates widely
outside the recommended range in people with type 2 diabetes even
with diet management and oral anti-diabetes agents (Bonakdaran and
Rajabian, 2009; Hay et al., 2003; Paing et al., 2017). This could be due
to the heterogeneous and progressive nature of type 2 diabetes. Factors
such as age, sex, body mass index (BMI), duration of diabetes and
lifestyle all impact on glucose control (Franks et al., 2013; Hartz et al.,
2006). It is therefore important to identify and target the modifiable

lifestyle factors, in addition to oral anti-diabetes agents, to improve
glucose control in type 2 diabetes.

Among lifestyle factors, sedentary time (time spent sitting or re-
clining) shows a consistent association with the risk of type 2 diabetes
(Wilmot et al., 2012). Additionally, prolonged sedentary time is re-
ported as a risk factor for high 2-h postprandial glucose and insulin
resistance (Healy et al., 2007; Helmerhorst et al., 2009; Sardinha et al.,
2017). In contrast, there is an emerging experimental evidence that
breaks in sedentary time improve glucose metabolism through muscle
contraction and insulin dependent and independent glucose uptakes
(Bergouignan et al., 2016). A break in sedentary time is generally de-
fined as a period of non-sedentary activity (e.g. standing or walking) in
between two sedentary conditions (e.g. sitting or reclining posture)
(Tremblay et al., 2017). In well-controlled laboratory settings and
quasi-free-living settings, experimental studies showed that

https://doi.org/10.1016/j.pmedr.2018.09.002
Received 3 April 2018; Received in revised form 29 August 2018; Accepted 4 September 2018

Abbreviations: CGM, Continuous glucose monitoring; GLUT4, Glucose transporter 4; MET, Metabolic equivalent task; IL, Interleukin; TNF, Tumour necrosis factor
⁎ Corresponding author at: Room-257, Govan Mbeki Building, School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens Road, G4 0BA

Glasgow, UK.
E-mail address: AyeChan.Paing@gcu.ac.uk (A.C. Paing).

Preventive Medicine Reports 12 (2018) 94–100

Available online 05 September 2018
2211-3355/ © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/BY-NC-ND/4.0/).

http://www.sciencedirect.com/science/journal/22113355
https://www.elsevier.com/locate/pmedr
https://doi.org/10.1016/j.pmedr.2018.09.002
https://doi.org/10.1016/j.pmedr.2018.09.002
mailto:AyeChan.Paing@gcu.ac.uk
https://doi.org/10.1016/j.pmedr.2018.09.002


interrupting sedentary time with short frequent breaks reduces post-
prandial glucose, daily glucose and insulin resistance (Chastin et al.,
2015; Dempsey et al., 2016; Duvivier et al., 2017). However, limited
evidence is available that this is the case in actual free-living settings
and that more frequent interruption of sedentary time in normal daily
living is associated with better glucose control. Therefore, the present
study aimed to explore the associations of sedentary time and breaks in
sedentary time with glycaemic control measured as events and time in
hypoglycaemia, euglycaemia, hyperglycaemia and above target glu-
cose, using concurrent and continuous glucose and activity data in free-
living settings.

2. Methods

The present study was a cross-sectional study and was approved by
the University Ethics Committee (UEC) of University of Strathclyde.
This study was conducted in accordance with the Declaration of
Helsinki. Written informed consent was obtained from all participants.

2.1. Participants

Eligible participants were individuals with type 2 diabetes aged
18 years and over. Exclusion criteria were age < 18 years, pregnancy,
insulin therapy, alcohol and substance abuse, liver and renal diseases
and cancer. Recruitment was achieved through advertising within the
staff of two universities, the Diabetes UK website, Diabetes Balance
magazine and diabetes support groups in the Glasgow area.

2.2. Study protocol

This cross-sectional study was carried out between February 2016
and February 2017 and consisted of two short visits to the University
laboratory or convenient location (e.g. participant's home). At the first
visit, a continuous glucose monitoring (CGM, Abbott FreeStyle Libre)
sensor was inserted into the subcutaneous tissue on the back of upper
arm, and an activPAL3 activity monitor (PAL Technologies, Glasgow,
UK) was attached to the anterior aspect of the right thigh, after the
device was waterproofed. Demographic data were collected by the re-
searcher. Participants were then requested to wear the CGM and
activPAL3 for up to 14 days of normal daily living and to follow habi-
tual diet. The activPAL3 and real-time glucose measurements provided
by the CGM might influence participants' diet and physical activity
patterns. To minimise this, they were reminded to maintain habitual
diet and lifestyle throughout the study. To record diet, medication,
bedtime and waking time; participants were provided with 24-h Dietary
Recall Forms and sleep diary. Participants attended a second visit to
remove the CGM and activPAL3.

2.3. Covariates

Demographic data included age, gender, body mass index (BMI),
anti-diabetes medication, alcohol consumption and smoking status.
Smoking status was classified as non-smoker and smoker, and alcohol
consumption was classified as non-consumer, low consumer (≤14 units
per week) and high consumer (> 14 units per week). For each parti-
cipant, carbohydrate intake in each day was calculated using 24-h
Dietary Recall Form and Carbs & Cals Counter, and carbohydrate intake
in each day was then averaged to estimate carbohydrate intake per day
(Cheyette et al., 2013).

2.4. Glucose monitoring and glucose control measurements

The CGM (Freestyle Libre) used in this study measures interstitial
glucose every 15min for up to 2 weeks, and glucose data are retrieved
wirelessly by the reader every 8 h. This is a well-tolerated consumer
grade device, and the interstitial glucose measurements by this device

are as accurate as capillary blood glucose (Bailey et al., 2015). The
glucose data from the CGM were downloaded to a personal computer
using FreeStyle Libre software (version 1.0). Global guideline for type 2
diabetes by the International Diabetes Federation was used to define
thresholds for glucose control measures: events and time in hypogly-
caemia (glucose < 3.9 mmol/l), euglycaemia (glucose 3.9–7.8mmol/
l), hyperglycaemia (glucose > 7.8 mmol/l) and above target (glu-
cose > 9mmol/l) (International Diabetes Federation Guideline
Development Group, 2014). This is an evidence-based guideline tar-
geting HbA1c < 53mmol/mol (7%) to reduce diabetes-related com-
plications, and 36% of national guidelines were also based on this
guideline (Home et al., 2013). Daily events and time in hypoglycaemia,
euglycaemia, hyperglycaemia and above target were computed using
the glucose data from 00:00 to 00:00 h of two consecutive days. The
first and final days, which do not have full 24-h recording, were ex-
cluded. Average daily events and time in hypoglycaemia, euglycaemia,
hyperglycaemia and above target were then calculated. However, daily
missing glucose data points can influence time in hypoglycaemia, eu-
glycaemia, hyperglycaemia and above target because each missing
glucose data point represents 15min missing data time. Therefore,
normalisation method was applied to deal with missing glucose data
points and to calculate time spent in glucose control measures (e.g.
Time in hypoglycaemia [% of recording h/day]= [Average daily time
in hypoglycaemia / (24 h−Average daily missing data time)]× 100).
Inclusion or exclusion criteria were not considered regarding missing
glucose data points. HbA1c was self-reported by participants and it was
based on their personal records from their last visits to diabetes clinic,
diabetes specialist nurse (DSN) and general practitioner (GP).

2.5. Sedentary time, breaks in sedentary time and physical activity
measurements

The activPAL3 was used to monitor sedentary time, breaks in se-
dentary time and physical activity of each participant. This is a small
(53×35×7mm) validated accelerometer and has been routinely used
in clinical trials and epidemiological studies (Grant et al., 2006; Grant
et al., 2008; Kozey-Keadle et al., 2011). This device records the start
and duration of sitting, lying, standing and stepping for up to two
weeks. The data were downloaded using the activPAL3™ software
(version 7.2.32).

To determine daily sedentary time, time spent in sitting or lying
posture between 00:00 to 00:00 h of two consecutive days was calcu-
lated, after sleeping time was removed using the sleep diary and
activPAL events file (Chastin et al., 2014; Edwardson et al., 2016). The
sleep diary, which still needs to be validated, was developed by our
research group, and the sleep diary was used in conjunction with ac-
tivPAL events file (Edwardson et al., 2016). A break in sedentary time
was considered as a transition from sitting or lying condition to
standing or stepping condition during waking hours. For each partici-
pant, daily sedentary time and number of breaks in sedentary time were
first calculated, and average sedentary time and number of breaks per
day were then computed. Average standing time, walking time and
moderate to vigorous physical activity (MVPA) time per day were also
calculated. A cadence greater or equal to 100 steps/min was considered
as MVPA (Marshall et al., 2009).

2.6. Statistical analysis

Sample size calculations were based on a previous study, which
reported the association between breaks in sedentary time and high 2-h
plasma glucose (R2=0.21) (Healy et al., 2008). Assuming a statistical
power of 85%, an alpha of 0.05 and six predictors, we estimated that 37
participants would be required to detect significant association between
breaks in sedentary time and glucose control measures.

Participants with minimum 3 days of concurrent and continuous
glucose and activity data were included in final analysis. Linear
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regression models were used to investigate the associations of sedentary
time (Model 1) and breaks in sedentary time (Model 2) with events and
time in hypoglycaemia, euglycaemia, hyperglycaemia and above target
glucose. Model 1 was adjusted for age, sex, BMI, carbohydrate intake,
energy expenditure and anti-diabetes medication. Model 2 was adjusted
for age, sex, energy expenditure, anti-diabetes medication and seden-
tary time. To illustrate with a visual presentation, quartiles of sedentary
time and breaks in sedentary time were calculated. Average sedentary
time and number of breaks in sedentary time per day were used to
calculate quartiles. The cut-off points for quartiles of sedentary time
were 8.3, 9.7 and 11.4 h/day and the cut-off points for quartiles of
breaks in sedentary time were 43, 52 and 60 n/day. General linear
model univariate analysis was used to assess differences in glucose
control measures between quartiles of sedentary time and breaks in
sedentary time, and pairwise comparisons were conducted using post
hoc Fisher LSD tests to locate differences. The p value≤ 0.05 was
considered statistically significant. Standardised coefficient (β) with
95% confidence interval (CI), mean/number with standard deviation
(SD) and estimated marginal mean with standard error (SE) are used to
report the results. Data were prepared with Microsoft Excel 2016, and
statistical analyses were conducted using IBM SPSS Statistics software
(version 24.0).

Post hoc power analyses were conducted using GPower 3.1.9.2 to
assess observed statistical power of both significant and non-significant
associations between sedentary time and breaks in sedentary time and
glucose control measures with our current sample.

3. Results

3.1. Participant characteristics

Study procedures and flow of participants are described in Fig. 1. Of
the 46 participants, 37 participants were included in final analyses after
excluding 9 participants for reasons: 1 participant with misdiagnosed
type 2 diabetes and 8 participants with<3 days of glucose and activity
data. Table 1 reports characteristics of the study population. The study
sample has average 10 ± 3.4 days of the CGM and activPAL3 recording
time.

Fig. 1. Flow of participants.

Table 1
Characteristics of the study population.

Characteristics

Number of participants (n) 37
Participants with 3 days data, n (%) 1 (2.7%)
Participants with > 3–<7 days data, n (%) 9 (24.3%)
Participants with ≥7 days data, n (%) 27 (72.9%)

Age (years) 62.8 ± 10.5
Sex, male/female (n) 14/23
BMI (kg/m2) 29.6 ± 6.8
HbA1c (mmol/mol), (n=15 missing) 47.7 ± 10.6
HbA1c (%), (n=15 missing) 6.6 ± 0.9
Diabetes management (n)
No medication/diet modification alone 12
Metformin 18
Metformin+ sulfonylurea 5
Metformin+ gliptin 1
Metformin+ sulfonylurea+ gliptin 1

Alcohol consumption (n)
Non-consumer 18
Low consumer (≤14 units per week) 18
High consumer (> 14 units per week) 1

Smoking status (n)
Non-smoker 34
Smoker 3

Carbohydrate intake (g/day) 125.3 ± 21.1
Energy expenditure (MET×h/day) 33.6 ± 1.3
Sedentary time (h/day) 9.8 ± 1.8
Breaks in sedentary time (n/day) 52 ± 13
Standing time (h/day) 4.0 ± 1.5
Walking time (h/day) 1.6 ± 0.6
MVPA time (min/day) 32.1 ± 22.7
CGM and activPAL3 recording time (days) 10 ± 3.4
CGM recording h/day 22.4 ± 1.8
Time in hypoglycaemia (% of recording h/day) 3.7 ± 6.9
Time in euglycaemia (% of recording h/day) 64.7 ± 25.5
Time in hyperglycaemia (% of recording h/day) 32.1 ± 27.4
Time above target (% of recording h/day) 19.2 ± 20.8
Hypoglycaemic events (n/day) 0.7 ± 1.0
Euglycaemic events (n/day) 3.9 ± 1.1
Hyperglycaemic events (n/day) 2.9 ± 1.3
Events above target (n/day) 2.3 ± 1.4

Data are means ± SD or number (n). BMI, body mass index; MET, metabolic
equivalent task.

A.C. Paing et al. Preventive Medicine Reports 12 (2018) 94–100

96



3.2. Habitual sedentary time, breaks in sedentary time and glucose

Average daily sedentary time and number of breaks in sedentary
time of participants were 9.8 ± 1.8 h/day and 52 ± 13 n/day. On
average, the study population spent 3.7 ± 6.9% of recording h/day in
hypoglycaemia, 64.7 ± 25.5% in euglycaemia, 32.1 ± 27.4% in hy-
perglycaemia and 19.2 ± 20.8% in above target; with 0.7 ± 1.0 hy-
poglycaemic events, 3.9 ± 1.1 euglycaemic events, 2.9 ± 1.3 hy-
perglycaemic events and 2.3 ± 1.4 above target events per day.

3.3. Association of sedentary time and breaks in sedentary time with glucose
control measures

Table 2 shows standardised regression coefficients of sedentary time
against glucose control measures. After adjustment for age, sex, BMI,
carbohydrate intake, energy expenditure and anti-diabetes medication
(Model 1), sedentary time was significantly associated with less time in
euglycaemia (β=−0.44, 95% CI −0.86; −0.03, p=0.04). There was
a borderline statistically significant association of sedentary time with
more time in hyperglycaemia (β=0.36, 95% CI −0.05; 0.78,
p=0.08). But sedentary time showed no significant association with
time in hypoglycaemia, time above target, and number of daily events
in hypoglycaemic, euglycaemic, hyperglycaemic and above target.

Standardised regression coefficients of breaks in sedentary time
with glucose measures are shown in Table 3. After adjustment for age,
sex, energy expenditure, anti-diabetes medication and sedentary time
(Model 2), there was a significant association of breaks in sedentary
time with more time in euglycaemia (β=0.38, 95% CI 0.00; 0.75,
p=0.04), but not with other glucose control measures. The association
between breaks in sedentary time and time in euglycaemia was no
longer significant (data not shown) when the model was additionally
adjusted for BMI and carbohydrate intake.

To describe the effect size pictorially, estimated marginal means for
the associations of sedentary time and breaks in sedentary time with
time in hypoglycaemia, euglycaemia, hyperglycaemia and above target
are respectively shown in Figs. 2 and 3. Compared with participants in
the first and second quartiles of sedentary time, time in euglycaemia
was 43.3% and 42.1% lower in those in the highest quartile
(p < 0.03). Time in hypoglycaemia was 72.2%, 67.8% and 95.6%

lower in participants in the first, second and third quartiles of sedentary
time relative to those in the fourth quartile. However, significant dif-
ference was only observed between the fourth quartile and third
quartile (p < 0.03). Time in euglycaemia was 36.2% and 34.8% higher
in those in the third and fourth quartiles of breaks in sedentary time
compared to those in the second quartile (p < 0.05).

Post hoc power analyses showed that the sample size (n=37) in
this study provided 97% power to detect significant association be-
tween sedentary time and reduced time in euglycaemia and 88% power
to detect significant association between breaks in sedentary time and
increased time in euglycaemia, while adopting an alpha of 0.05 and six
predictors. However, limited statistical power was observed for non-
significant associations between sedentary time and hypoglycaemic
events (69%) and non-significant associations between breaks in se-
dentary time and time in hyperglycaemia (75%), time above target
(68%), hypoglycaemic events (56%) and euglycaemic events (45%).
The recommended statistical power (≥80%) was observed for non-
significant associations between sedentary time and breaks in sedentary
and the remaining glucose control measures.

4. Discussion

In this study, the CGM revealed that people with type 2 diabetes
considered well-controlled by diet modification and oral anti-diabetes
agents according to HbA1c criteria can experience poor daily glucose
control. This has also been suggested by other studies using CGM
(Bonakdaran and Rajabian, 2009; Hay et al., 2003; Paing et al., 2017).
In this study, 1/3 of the day was spent in hyperglycaemia and 1/5 of the
day was spent above target range. Moreover, a short period of daily
hypoglycaemia (3.7% of recording h/day) was observed in participants.
We found that sedentary time was associated with this poor glucose
control, reflected in reduced time in euglycaemia and a potential trend
towards increased time in hyperglycaemia. On the other hand, breaks in
sedentary time showed beneficial association with time in euglycaemia.
The results suggest that reduction of sedentary time and increased
breaks in sedentary time could improve daily glucose control.

The negative effect of sedentary time on increased time in hy-
perglycaemia in this study was in agreement with a previous cross-
sectional study (Fritschi et al., 2016). The findings from our study

Table 2
Standardised regression of sedentary time with glucose control measures (Model 1).

Glucose control measures β (95% CI) p value Adjusted R2

Time in hypoglycaemia (% of recording h/day) 0.09 (−0.31, 0.47) 0.68 0.03
Time in euglycaemia (% of recording h/day) −0.44 (−0.86, −0.03) 0.04 0.14
Time in hyperglycaemia (% of recording h/day) 0.36 (−0.05, 0.78) 0.08 0.14
Time above target (% of recording h/day) 0.33 (−0.08, 0.75) 0.11 0.15
Hypoglycaemic events (n/day) −0.05 (−0.51, 0.40) 0.81 −0.05
Euglycaemic events (n/day) −0.07 (−0.51, 0.36) 0.72 0.05
Hyperglycaemic events (n/day) 0.08 (−0.74, 0.51) 0.72 0.05
Events above target (n/day) 0.29 (−0.12, 0.71) 0.17 0.12

Data was adjusted for age, sex, BMI, carbohydrate intake, energy expenditure and anti-diabetes medication. β, standardised coefficient; CI, confidence interval.

Table 3
Standardised regression of breaks in sedentary time with glucose control measures (Model 2).

Glucose control measures β (95% CI) p value Adjusted R2

Time in hypoglycaemia (% of recording h/day) −0.15 (−0.45, 0.15) 0.39 0.02
Time in euglycaemia (% of recording h/day) 0.38 (0.00, 0.75) 0.04 0.07
Time in hyperglycaemia (% of recording h/day) −0.30 (−0.70, 0.05) 0.11 −0.001
Time above target (% of recording h/day) −0.30 (−6.62, 0.06) 0.11 −0.03
Hypoglycaemic events (n/day) −0.16 (−0.56, 0.22) 0.39 −0.06
Euglycaemic events (n/day) −0.12 (−0.49, 0.26) 0.52 −0.09
Hyperglycaemic events (n/day) −0.15 (−0.49, 0.20) 0.39 0.07
Events above target (n/day) −0.25 (−0.61, 0.11) 0.16 0.09

Data was adjusted for age, sex, energy expenditure, anti-diabetes medication and sedentary time. β, standardised coefficient; CI, confidence interval.
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extends the observation of this previous cross-sectional study by de-
monstrating the association of sedentary time with reduced time in
euglycaemia. The present study showed that excessive sedentary
time > 11.4 h/day (the fourth quartile) could be associated with

increased time in hypoglycaemia. However, six out of nine participants
in the fourth quartile of sedentary time were taking sulfonylurea
whereas participants in the first, second and third quartiles were taking
metformin ± gliptin (data not shown). There is evidence that

Fig. 2. Quartiles of sedentary time with glucose control measures: (a) time in hypoglycaemia, (b) time in euglycaemia, (c) time in hyperglycaemia and (d) time above
target. Estimated marginal means (SE) were adjusted for age, sex, BMI, carbohydrate intake, energy expenditure and anti-diabetes medication. Cut-off points for
quartiles of sedentary time were 8.3, 9.7 and 11.4 h/day. *p < 0.03 compared to quartile 4.

Fig. 3. Quartiles of breaks in sedentary time with glucose control measures: (a) time in hypoglycaemia, (b) time in euglycaemia, (c) time in hyperglycaemia and (d)
time above target. Estimated marginal means (SE) were adjusted for age, sex, energy expenditure and sedentary time. Cut-off points for quartiles of breaks in
sedentary time were 43, 52 and 60 n/day. †p < 0.05 compared to quartile 2.
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hypoglycaemia is very common in people with type 2 diabetes taking
sulfonylurea compared with those taking metformin (Van Dalem et al.,
2016). We therefore suggest that increased time in hypoglycaemia in
participants in the fourth quartile of sedentary time could be due to
sulfonylurea. In addition, cause-effect relationship could not be con-
firmed by cross-sectional nature of this study. We suggest future studies
to investigate cause-effect relationship and temporal relationship of
sedentary time and breaks in sedentary time with glucose control
measures, including glycaemic variability, postprandial glucose excur-
sions and nocturnal glucose, in participants taking the same anti-dia-
betes medication in free-living settings.

Our results reiterate the importance of breaking sedentary beha-
viour, and it seems that the effect observed in the laboratory settings
can be seen in free-living settings. The beneficial associations between
breaks in sedentary time and fasting glucose and 2-h postprandial
glucose after a test meal was observed in previous cross-sectional stu-
dies (Healy et al., 2008; Sardinha et al., 2017). The present study also
extends the observation of these studies by showing that breaks in se-
dentary time is beneficially associated with increased time in eu-
glycaemia in people with type 2 diabetes with habitual diet and phy-
sical activity patterns. The association between breaks in sedentary
time and glucose control measures observed in this study might be in-
fluenced by the nature of breaks in free-living settings, such as standing
breaks and walking breaks (Pulsford et al., 2017), and this should be
investigated in future studies.

Breaking sedentary behaviour could be used as an adjunct therapy
to oral anti-diabetes agents to improve glucose control in people with
type 2 diabetes. The feasibility of short frequent habitual activity breaks
in sedentary time in overweight and obese adults was previously re-
ported (Bond et al., 2014; Graham Thomas and Bond, 2015). In addi-
tion, breaks in sedentary time intervention in free-living settings have
been shown in subjects without type 2 diabetes to improve triglycerides
and fasting glucose (Mailey et al., 2016). However, how often breaks in
sedentary time should be performed during waking hours in order to
achieve good glucose control in type 2 diabetes remains unknown.
Dose-response of frequency of breaks in sedentary time and duration of
sedentary bouts on glucose control measures needs to be investigated in
type 2 diabetes.

The underlying mechanisms and effects of sedentary time and
breaks in sedentary time could be explained by changes in muscle
physiology. Skeletal muscle is one of the major sites for glucose meta-
bolism (Sinacore and Gulve, 1993; DeFronzo and Tripathy, 2009;
Dunstan et al., 2007). Reduced skeletal muscle contraction during
prolonged sedentary time may contribute to poor glucose uptake per-
ipherally (Bergouignan et al., 2016; Tremblay et al., 2010). It is sug-
gested that even minimal contraction of skeletal muscle during breaks
in sedentary time could increase blood flow and concentration of glu-
cose transporter 4 (GLUT4) at muscle cell surface (Bergouignan et al.,
2016; Tremblay et al., 2010; Richter and Hargreaves, 2013). As a result,
habitual activity breaks in sedentary time could improve glucose me-
tabolism and glucose control with or without the help of insulin. In
addition, even minimal standing activity breaks in sedentary time have
been shown experimentally to increase daily energy expenditure
(Hawari et al., 2016), and this may also reflect improved glucose me-
tabolism and glucose control in free-living settings (Assah et al., 2009).

Exposure to hyperglycaemia and hypoglycaemia diminish potent
intracellular anti-oxidant, glutathione (GSH) but trigger oxidative stress
and inflammatory biomarkers such as IL-1β (Interleukin), IL-8 and TNF-
α (Tumour necrosis factor), which can induce endothelial dysfunction
and vascular complications (Butkowski and Jelinek, 2016; Giacco and
Brownlee, 2010; Gonzalez et al., 2012; Uberos Fernández et al., 2009;
Razavi Nematollahi et al., 2009). In contrast, good glucose control
closer to euglycaemic state has been shown to reduce diabetes-related
complications and mortality in type 2 diabetes (Turner, 1998). The
findings from this study suggest that reducing prolonged sedentary time
and promoting breaks in sedentary time could be effective in achieving

euglycaemia and reducing diabetes-related complications.

4.1. Study strengths and limitations

The main strength of the present study is the use of CGM and
activPAL3. With the use of the activPAL3, accurate habitual sedentary
time was assessed instead of self-reported sedentary time, and it was
previously described that habitual sedentary time could be under-
reported with self-reported measures (Godfrey et al., 2007; Kozey-
Keadle et al., 2011; Healy et al., 2011). With the use of the CGM (Ab-
bott FreeStyle Libre), we assessed glucose throughout the study rather
than periodic plasma glucose levels, therefore providing real-time ac-
curate glucose control measures for up to 14 days (Bailey et al., 2015).

However, the present study has some limitations. First, cross-sec-
tional design used in this study does not confirm causal inference.
Nonetheless, the present study applied multiple linear regression ana-
lyses, which allow to adjust for possible causative factors such as age,
sex and energy expenditure (Hartz et al., 2006; Assah et al., 2009).
Second, the sample size was relatively small, which is often the case in
CGM studies due to cost and burden. This means that we might be
underpowered to detect some of the associations. For example, a sample
size of n=49 would be needed to detect association between breaks in
sedentary time and time above target to reach a statistical power of
80% and an alpha of 0.05. Despite the small sample size, sedentary
behaviour of our participants is similar to sedentary behaviour of par-
ticipants in much larger study (van der Berg et al., 2016). Third, it is
suggested that minimum 7 days of the activPAL data should be de-
ployed to assess free-living sedentary and physical activity patterns
(Edwardson et al., 2016), but ten participants with 3–6 days of glucose
and activity data were included in this study. Nevertheless, the majority
of participants (72.9%) reported ≥7 days of glucose and activity data.
Fourth, analyses were not adjusted for types of food (glycaemic index)
and meal timing, which could influence the relationship of sedentary
time and breaks in sedentary time with glucose control measures
(Morgan et al., 2012).

5. Conclusions

Less sedentary time and more frequent interruption in sedentary
behaviour are associated with better glucose control in type 2 diabetes
cross-sectionally in free-living settings. This suggests that reducing and
breaking sedentary time could be a simple adjunct therapy to improve
glycaemic control and reduce diabetes-related complications.
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