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Abstract: Triple-negative breast cancers (HER2−, ER−, PR−) continue to present a unique treatment
challenge and carry unfavorable prognoses. The elucidation of novel therapeutic targets has neces-
sitated the re-evaluation of stratification approaches to best predict prognosis, treatment response
and theranostic and prognostic markers. Androgen receptor expression and function have important
implications on proliferation, tumor progression, immunity and molecular signaling in breast cancer.
Accordingly, there has been increasing support for classification of androgen receptor-negative triple-
negative breast cancer or quadruple-negative breast cancer (QNBC). QNBC has unique molecular,
signaling and expression regulation profiles, particularly those affected by microRNA regulatory
networks. microRNAs are now known to regulate AR-related targets and pathways that are dysregu-
lated in QNBC, including immune checkpoint inhibitors (ICIs), SKP2, EN1, ACSL4 and EGFR. In
this review, we explore and define the QNBC tumor subtype, its molecular and clinical distinctions
from other subtypes, miRNA dysregulation and function in QNBC, and knowledge gaps in the field.
Potential insights into clinical and translational implications of these dysregulated networks in QNBC
are discussed.

Keywords: quadruple-negative breast cancer (QNBC); TNBC; androgen receptor; microRNA

1. Introduction

Breast cancers lacking epidermal growth factor receptor 2 (HER2), estrogen receptor
and progesterone receptor, are termed triple-negative breast cancers (TNBC) and are
distinguished because of a lack of response to therapies targeting these receptors. TNBC is
heterogeneous at genomic, transcriptomic levels, showing varying clinical and pathological
presentation genetic susceptibility factors and sensitivities for chemotherapeutics [1]. As
such, the use of biomarkers and subtype classification of TNBC lacks standardization.
Partly because of this heterogeneity and lack of focus on targetable molecules or pathways,
there is a lack of effective targeted approaches to this disease [2]. However, in recent years,
androgen receptor (AR) has emerged as a target in TNBC [3–5]. While AR is expressed in
the majority of breast cancers (70–90%), expression is less prevalent in TNBC (10–50%) [5].
AR regulates multiple molecular pathways that are related to tumorigenesis and tumor
progression by both transcriptional and non-transcriptional mechanisms [5]. Receptor
hormone complexes enter the nucleus, enter a complex with co-activators and activate target
genes. Activated AR binding to estrogen responsive elements may competitively inhibit
estrogen-responsive gene expression. Alternatively, AR can interact with cytoplasmic
phosphoinositide 3-kinase (PI3K), Ras or Src proteins to promote proliferative and survival
signaling. These activities result in distinct molecular and phenotypic profiles in AR-
positive TNBC (AR+TNBC) compared with AR-negative TNBC or quadruple-negative
breast cancer (QNBC). Examples include increased PI3K signaling and mutation, epithelial
to mesenchymal transition (EMT), cell-cycle deregulation, cytotoxic T-cell recruitment
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and aberrant DNA repair [5]. These distinct profiles provide unique opportunities for
targeted therapeutic use and development for QNBC. In addition, AR itself may be targeted
therapeutically. Possibly owing to the estrogen response antagonism mentioned above,
there is in vitro and preclinical evidence for both agonism and antagonism of AR having
therapeutic effects in breast cancer [4].

Differential expression profiles and pathway regulation in breast cancer and TNBC
in particular are integrated with the expression and regulation of transcriptional profiles
by microRNAs (miRNA) [6]. Importantly in the context of AR-positive breast cancers
and QNBC, recent efforts have identified androgen-responsive miRNAs, the expression of
specific miRNAs and miRNA expression profiles that are associated with AR expression in
breast cancer [7–9]. Further, evidence suggests that androgen regulation of miRNAs may
be required for proliferative signaling mediated by androgens in breast cancer [8]. While
these discoveries have important implications on the targeting of signaling pathways,
molecular targets and miRNAs themselves in breast cancer and QNBC, evidence for
strong associations of specific miRNAs and downstream pathways are newly emergent and
require focused investigation to delineate new targets and treatment options for AR-positive
versus AR-negative disease. Herein, we review the QNBC tumor subtype, molecular and
clinical distinction from other subtypes, miRNA dysregulation and function in QNBC and
knowledge gaps in the field.

2. Definition and Clinical Distinctions of QNBC Compared with TNBC and Other
Subtypes of Breast Cancer

TNBC has classically been divided into basal-like subtypes (BL1 and BL2), mesenchy-
mal (M) and luminal androgen receptor (LAR) subtypes, and in some systems, according to
immunosuppressive versus immune active phenotypes [5,10–13]. TNBC comprises 15–20%
of breast cancers and carries the lowest survival rate of all breast cancer subtypes and an in-
creased risk of distant recurrence [3,12]. TNBC carries increased metastasis, an increased
relapse rate and a younger age of onset [12]. TNBC is difficult to treat because of poor
differentiation, molecular heterogeneity and metastasis, and receptor negativity eliminates
response to hormone or anti-Her2 therapies [12,14]. Studies have reported decreased AR
expression in TNBC compared with other types, with between 10 and 50% of TNBC tu-
mors lacking AR expression [5]. There has been increased attention given to the utility
of reclassifying TNBC tumors lacking AR expression as QNBC [3,5,15,16]. AR positivity
in TNBC has been found to be positively associated with both overall and disease-free
survival (OS and DFS, respectively) [3,17–20]. Meta-analysis showed that AR-positive
TNBC patients had more metastasis to lymph nodes and lower tumor grade [21]. This
and other meta-studies showed significantly better DFS with AR expression, some also
demonstrating significantly increased OS [9,20] and others being non-significant for this
outcome in TNBC [21]. In a study of the clinicopathologic features of TNBC related to
AR and EGFR positivity by Astvatsaturyan et al., AR+, EGFR− disease, representing the
LAR subtype, carried the best prognosis, and AR−, EGFR+ disease, representing the basal
subtype, carried the worst prognosis with regard to DFS [22]. EGFR expression (≥15%)
in this study been found to be present in 30% of TNBC overall, and in 35% of AR- TNBC.
This is in agreement with another study showing EGFR overexpressed in 30% of TNBC
tumors [23]. Potentially related to disease outcomes, AR expression in TNBC was found to
be inversely correlated with proliferative marker Ki-67 expression and lympho-vascular
invasion [18]. When included as a classification, QNBC has been described as having the
worst prognosis among breast cancer subtypes [16]. These findings suggest that QNBC
is a more formidable clinical challenge than TNBC with poor prognosis and increased
potential for an invasive phenotype.

Regardless of some controversy regarding the prognostic significance of AR expression
in TNBC [15], the primary benefit of classifying QNBC separately from TNBC is that TNBC
with AR expression may be effectively treated using AR-targeted therapies [3,15]. Aside
from AR-targeted therapies, there have been no effective targeted therapies for TNBC.
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Anti-androgen therapy has been found to be effective in inhibiting proliferation in TNBC
cells and to benefit patients with LAR-subtype TNBC [24–26]. To this point, Gucalp et al.
demonstrated a 19% response rate to the AR inhibitor bicalutamide in AR-positive hormone
receptor-negative breast cancer patients [26]. QNBC, however, lacks all known receptor
targets that have been exploited for cancer therapy. Regarding non-targeted therapy,
AR expression has also been found to be positively associated with and predictive of
response to neoadjuvant chemotherapy in breast cancer [27,28]. Therefore, in addition to
carrying a relatively less favorable prognosis than AR-positive TNBC, QNBC presents an
outstanding challenge in finding and implementing targeted therapies.

3. Significance of Androgen Receptor Expression and Function in Breast Cancer

AR is a 110 kDa protein residing in the cytoplasm with zinc finger DNA-binding,
transcriptional regulation and ligand-binding capabilities [29]. Within the cytoplasm, AR
is chaperoned by heat shock proteins HSP10 and HSP90. Androgen steroids serve as
ligands for AR, altering the conformation of AR and releasing chaperone proteins upon
binding. This conformational change allows entry into the nucleus, dimerization and
binding to androgen-response elements within genomic DNA. Binding of AR complexed
with co-activator proteins to these elements drives transcription of target genes. Through
this classical pathway of AR action and other mechanisms discussed in Section 4, AR
in TNBC functions to alter proliferation, cell-cycle, epithelial-to-mesenchymal transition,
angiogenesis and immunity [5].

Proliferation of tumor cells is generally thought to be increased by AR with evidence
of cell-cycle regulation downstream of various androgen-responsive transcriptional ac-
tivities [30]. AR-ligand dihydrotestosterone (DHT) increased proliferation and decreased
apoptosis in mesenchymal TNBC, which was reversed by anti-androgen receptor treatment
with bicalutamide [31].

AR expression in TNBC may also affect epithelial-to-mesenchymal transition (EMT)
leading to altered invasion and metastasis. To this point, nuclear AR was found to be
inversely associated with E-cadherin expression and positively associated with increased
tumor grade, mesenchymal morphology, metastasis, recurrence and with poor DFS and OS
in TNBC [32,33]. Liu et al. demonstrated an AR-binding site in the E-cadherin gene, the
expression of which characterizes an epithelial phenotype, suggesting a direct regulation
of EMT through E-cadherin repression [33].

While evidence for angiogenic activity of AR in breast cancer is sparse, regulation of
angiogenesis by AR in prostate cancer is implicated through interactions with epigenetic
and transcriptional co-activation factors to regulate VEGF, and synergy between anti-
androgenic and anti-VEGF therapies [34].

Immune killing of TNBC can also be increased through androgen deprivation ther-
apy using enzalutamide or abiraterone, although this effect was shown to be partially
independent of detection of AR expression [35].

Androgen receptor signaling has the potential to regulate DNA repair in QNBC as
anti-androgen therapy has been shown to downregulate DNA repair genes that are direct
transcriptional targets of AR [36]. In addition, androgen enhanced DNA repair following
ionizing radiation has been shown. This enhancement was ablated by anti-androgen
treatment, which also resulted in decreased non-homologous end-joining.

Given that many of the phenotypic effects of AR are pro-tumorigenic and pro-tumor
progression, much remains to be discovered regarding mechanisms by which AR negative
TNBCs or QNBCs generally have poorer prognoses than AR-positive TNBCs.

4. Molecular Pathways Dysregulated Specifically in QNBC

Subtypes of TNBC, including basal-like, mesenchymal, LAR, and immunomodulatory,
are characterized by distinct molecular pathways and profiles [37] as outlined in Table 1.
Androgen receptor activity is known to antagonize estrogen receptor activity with a high
AR:ER ratio being directly correlated with poorer prognosis in ER-positive breast cancer [38]
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and increased expression of proliferative markers [39]. However, this ratio is not relevant
to TNBC, which lacks ER expression. The distinction between TNBC and QNBC is weighed
more heavily on other molecular mechanisms of AR action, including those affecting cell-
cycle regulation, apoptosis and proliferative signaling. Activated AR in complex with
FOXA1 can drive transcription of Myc, Wnt7B and Her3, representing pathways directing
tumor survival, stemness and proliferation [38]. Multiple molecular mechanisms of AR
activity on proliferation and cell-cycle regulation have been elucidated. Cell cycle regulators
Cyclin D1 and p21 are direct targets of repression and activation by AR, respectively [38].
Balance between these two opposing AR targets may dictate promotion versus inhibition
of proliferation by the presence of AR signaling. AR expression has been found to decrease
proliferation of TNBC cells, decrease expression of cell-cycle regulator Cyclin D1 and
increase that of p73 and p21, while AR-ligand DHT increased their expression [31]. AR-
mediated downregulation of G-protein coupled estrogen receptor (GPCR) expression was
also found to promote proliferation in TNBC cells [30]. Androgen receptor transcriptional
activation of PTEN and KILLIN (KLLN), which feeds into p53 and p73 activity, represents
apoptotic signaling pathways regulation that may contribute to tumor suppression [5,38].
Lack of AR regulation of these pathways in QNBC and the global regulatory networks
surrounding those pathways may represent therapeutic targeting opportunities.

Table 1. Lehmann classification 2011 and 2016. Pathways and molecular targets in TNBC subtypes.
Classical molecular and cellular TNBC subtype classifications are listed, along with their distinctive
dysregulated signaling pathways and potential molecular targets. Potential targeted therapies associ-
ated with classifications and mutations are listed in parentheses. BL, basal-like; IM, immunomodula-
tory; M, mesenchymal, MSL, mesenchymal stem-like; LAR, luminal androgen receptor.

Expression-Based Molecular Classification

BL1 (17.9%) BL2 (11.1%) IM (21.1%) M (20.8%) MSL (6.5%) LAR (9.2%) Unstable (13.5%)

Molecular Targets

PARP1,CHEK1,
RAD51, PLK1,

TTK, AURKA/B

EGFR, mTOR,
MET,EPHA2

JAK1/2, STAT,BTK,
NFκB,LYN,IRF1

PI3K,IGF1R mTOR,
SRC, FGFR PDGFR

PI3K, mTOR,
MEK1/2, SRC,
IGF1R, FGFR,
PDGFR, NFkB

AR, HSP90,
PI3K, FGFR4

PARP1, RAD51,
PLK1, AURKA/
BTTK,CHEK1

Treatment

Antimitotic agents
(platinum, PARPi)

TKI,mTORi,
eribulin mesylate Anti-androgen

Genetic Mutation-Based Profiling

BRCA1/2, PARPi PIK3CA
(PI3Ki)

PD-L1
(Immunotherapy)

CDK4/6
(CDK4/6i) TP53 PTEN EGFR

Expression-Based Cellular Classification

Basal-like Claudin-high Claudin-low LAR

Androgen Receptor (IHC)-Based Profiling

Androgen receptor-positive
(Androgen antagonists, e.g., bicalutamide, anzalutamide)

Androgen receptor-negative
(Restricted to chemotherapy)

Molecular Targets in QNBC

Cell metabolism acyl-CoA synthetase4 (ASCL4)

Tumor immune microenvironment
Tumor-infiltrating lymphocytes (TIL), Tumor necrosis factor

superfamily member 10 (TNFSF10), Programmed death
ligand 1 (PD-L1)

Cell growth and proliferation EGFR,HER4, CK5/6,CDK6,PTEN,ki-67

In addition to direct activity through androgen-response elements, non-DNA-binding
mechanisms of AR function exist [40,41], including activation of second messengers, in-
cluding Akt and the downstream MAPK pathway, mTOR and FOXO1, and transrepression
of other transcriptional regulators, such as activator protein 1 (AP1) [40–42]. Luminal
androgen receptor-expressing (LAR) TNBC patient-derived xenografts were found to be
enriched for AKT1 and PIK3CA mutations and FGFR1 amplifications compared with other
TNBC subtypes [43]. There is a direct interaction of activated AR with PI3K that promotes
generation of PIP3 and activation of AKT, and AKT substrate FOXO3a in turn promotes
expression of AR [44]. Meanwhile, PTEN, a negative regulator of PIP3 signaling, is tran-
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scriptionally activated by AR in breast cancer [45]. Such cross-talk between AR, growth
factor receptors and the AKT signaling axis presents a potentially targetable signaling
network. Figure 1 provides an illustration of AR signaling pathways related to TNBC
and miRNAs regulating relevant pathways as identified in the literature and by network
analysis, described in detail in Sections 6 and 7.

Figure 1. TNBC-relevant androgen receptor signaling and miRNA regulation. Cytoplasmic androgen
receptors (AR), chaperoned by heat-shock proteins (HSPs), are activated to dimerize and cross the
nuclear membrane upon engagement with androgen ligand. Thereafter, activated AR dimers complex
with co-regulators to regulate androgen response elements within target genes, including EGFR and
Cyclin D1. Growth factor signaling, particularly that involving the AKT signaling axis, promotes
crosstalk and feedback with AR signaling as described in further detail in the text.

In contrast to findings associated with increased EMT with AR expression in TNBC [32],
expression levels of EMT-associated genes (SNAI2, TCF7L2, ACTA2, VIM, and CAV1) have
been found to be decreased in LAR TNBC relative to other TNBCs using patient-derived
xenografts [43]. Caveats to this finding include possible alterations in xenografted mod-
els and limitation to the LAR subtype, which is exclusive of mesenchymal types. The
LAR subtype is characterized by both AR expression and activation of hormone signaling
pathways, such as steroid synthesis, androgen and estrogen metabolism and porphyrin
metabolism [24]. QNBC predominantly exhibits a basal-like expression profile [46,47].

5. Molecular Profiles Observed in QNBC

QNBC tumors display distinct molecular profiles including that of transcriptional
expression as shown by a study on African American women showing enriched classical
basal-like and immune subtype signatures in QNBC [48]. In this cohort, expression levels of
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E2F1, NFKBIL2, CCL2, TGFB3, CEBPB, PDK1, IL12RB2, IL2RA and SOS1 were associated
with AR expression within the broader classification of TNBC. The magnitude of these
differences was somewhat dependent on race for some of these genes. The differential
molecular profile of QNBC presents some potential therapeutic targets, such as S-phase
kinase-associated protein 2 (SKP2), EGFR, Engrailed 1 (EN1) and acyl-CoA synthase 4
(ACSL4) [16,46]. EGFR is a well-known targetable pro-tumorigenic growth factor that is
commonly expressed in TNBC and especially QNBC [46,49]. SKP2 is an ubiquitin ligase
component that contributes to the degradation of tumor suppressors p21, p27 and p57
and is expressed during S-phase to promote DNA replication. ACSL4 catalyzes long chain
fatty acid activation for the support of metabolic processes, and its expression in breast
cancer is inversely correlated with the expression of AR in addition to that of ER, PR and
HER2 [46,50,51]. While normally expressed in neural tissues as a transcription factor, among
breast cancers, EN1 is only overexpressed in basal-like tumors [16,52]. EN1 expression is
associated with brain metastasis and low overall survival within TNBCs [16,53]. Targeted
therapies, including nanoparticles with EN1-inhibiting peptides, have been developed and
have shown significant TNBC growth inhibition in vitro and in vivo without toxicity [54].

Broad regulation of transcriptional, and subsequently, molecular pathways by miRNAs
is known to be important to the understanding of breast cancer pathobiology and markers
of the disease. As such, we continue with a detailed review of miRNA regulators of
the above pathways, known miRNA dysregulation in QNBC, clinical and translational
implications of miRNA regulation in QNBC and unknowns in the field.

6. Dysregulated miRNAs Related to QNBC and Their Molecular Functions

Since little is known regarding QNBC-specific miRNA regulatory networks, much
of the data driving hypotheses for miRNA regulation affecting QNBC pathobiology are
extrapolated from the study of TNBC, AR function in breast cancer, and from other cancers.
Integration of this existing knowledge, as in this review, provides a jumping-off point for
the study of miRNA dysregulation in QNBC. Among the potentially targetable molecular
pathways that are known to be altered in QNBC as described above in Section 4, ACSL4 has
been found to be regulated by dysregulated miRNAs in cancer. MiR-211-5p was found to act
as a tumor suppressor in hepatocellular carcinoma through direct targeting of ACSL4 [55].
This miRNA was identified by screening using Gene Expression Omnibus datasets (GEO)
and evaluated for prognostic association by Kaplan–Meier analysis (KM), revealing that
decreased miR-211-5p was associated with poor overall survival (OS). Restoration of miR-
211-5p expression in vitro suppressed migration, invasion and proliferation. Suppression
of the malignant phenotype by miR-211-5p was found to be through inhibition of ACSL4
expression, and re-expression of ACSL4 restored a malignant phenotype. MiR-133a has
been found to be down-regulated in receptor negative breast cancer cells and tissue and
to directly target the 3’ UTR of EGFR [56]. Exogenous re-expression of miR-133a in these
cells reduced EGFR expression, AKT phosphorylation and nuclear translocation of phos-
phorylated AKT. Therefore, miR-133a may act as a tumor suppressor through inhibition
of the EGFR-AKT axis in breast cancers with EGFR expression, which is a hallmark of
QNBC. Similarly, miR-361-5p was recently found to inhibit migration and invasion in TNBC
through the EGFR-AKT pathway by direct targeting of Required for Cell Differentiation 1
(RQCD1), which facilitates AKT activation by EGFR [57]. RQCD1 is frequently upregulated
and miR-361-5p frequently downregulated in breast cancer, which was confirmed in TNBC
in this study, although this study stopped short of establishing a direct mechanistic link
between RQCD1 regulation by miR-361-5p and EGFR-AKT axis regulation.

Other miRNAs that are specifically dysregulated in QNBC have been recently dis-
covered. QNBC was found to exhibit increased expression of miR-135b, which correlated
with AR-negativity among TNBCs [58]. Differentially expressed miRNAs were screened by
array analysis and confirmed by RT-qPCR in tumors of both basal-like and non-basal-like
(QNBC) TNBC subtypes. MiR-135b was suggested to promote QNBC pathogenesis and to
be associated with the targeting of TGF-β, WNT and ERBB signaling pathways. MiR-135b
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expression was strongly and positively correlated with a high proliferative index. A recent
study of African American women with QNBC by Angajala et al. identified differentially
expressed miRNAs associated with the disease [59]. This study compared TCGA miRNA
sequencing results from women with QNBC, AR+ TNBC, luminal and Her2+ breast cancers.
Hsa-mir-500a, hsa-mir-181a-2, hsa-let-7d, hsa-mir-92a-2, hsa-mir-150, hsa-mir-17, hsa-mir-
92a-1, hsa-mir-30a, hsa-mir-210, hsa-mir-455, hsa-mir-130a and hsa-mir-20a were found
to be differentially expressed in QNBC with hsa-mir-135b, hsa-mir-18a and hsa-mir-577
being both differentially regulated and correlated with AR expression in QNBC. Our net-
work analysis of these miRNAs reveals common regulatory nodes representing targetable
molecules and pathways, including the Myc oncogene and TP53 and PTEN tumor sup-
pressors (Figure 2). All three are regulated by miR-20a-5p, miR17-5p and miR92a-3p at the
center of the network. Such miRNAs and their targets and similar analyses may provide
novel targetable miRNA networks for the treatment of AR-positive TNBC and QNBC.

Figure 2. Network analysis of miRNAs found to be upregulated in QNBC in African American
women by Angajala et al. using miRNet 2.0 with minimum network filtering. The miRNAs identified
by this study and the genes they are known to regulate were analyzed for relatedness and common
nodes, revealing prevalent regulation networks and regulated genes in this population.

Recently, Bhattari et al. identified increased copy number alterations (CNA), genomic
instability and miRNA dysregulation in QNBC compared with AR+ TNBC [60]. They
identified 184 miRNAs that were differentially expressed between these subtypes, with
15 in chromosomal regions with CNA. Expression of eight of these (miR-23c, miR-1267,
miR-548ai, miR-613, miR-943, miR-1265, miR-567 and miR-1204) corresponded to the al-
terations in copy number. This panel was able to discern QNBC from TNBC with a high
degree of discrimination. Pathway analysis revealed associations of the 8-miRNA panel
with genomic instability, cellular response to DNA damage and cell cycle regulation. Five
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of these miRNAs were found to be associated with distant metastasis (miR-567, miR548ai,
miR-1267 and miR-1265 positively, and miR-23c negatively). Network analysis of the
8-miRNA panel as above demonstrates common nodes involving cell cycle and G2 check-
point genes CDKN1B and WEE1 (WEE1 G2 checkpoint kinase) (Figure 3). Interestingly, the
cyclin-dependent kinase inhibitor gene CDKN1a appeared as a node in network analysis
of miRNAs from Angajala et al. above. In addition, notably, the gene encoding Superoxide
Dimutase 2, Sod2, appears as a node in networks generated from miRNA panels discovered
in both Bhattari et al. and Angajala et al. The SOD2 protein neutralizes reactive oxygen
species resulting in anti-apoptotic properties in the context of oxidative stress, inflammation
and ionizing radiation [61]. SOD2 is a potential marker of metastatic progression of breast
cancer [61]. MAPKs, EGF, Rac, Src signaling pathways are thought to be potentially related
to SOD2-associated breast cancer progression [61]. A review also showed an association
between reactive oxygen species (ROS), radiation and breast cancer development [62].

Figure 3. Network analysis of miRNAs found to be upregulated in QNBC by Bhattari et al. using
miRNet 2.0 with minimum network filtering. The miRNAs identified by this study and the genes
they are known to regulate were analyzed for relatedness and common nodes, revealing prevalent
regulation networks and regulated genes in this population.

7. Translational and Clinical Implications of Known Dysregulated miRNAs and
Downstream Pathways in QNBC

Research into such miRNA regulatory networks may provide novel targets and allow
the selection of targeted therapies based on the prediction of response of AR-positive TNBC
versus QNBC to novel and existing therapeutics. Insights provided by this review and
the literature cited herein may provide a foundation for the discovery of miRNA and
regulated genes and pathways that may be targeted differentially in QNBC and AR+ TNBC,
further justifying the stratification of TNBC according to AR expression. One example
may be the tumor promoting miR-135b. Since this miRNA is associated with increased
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proliferation and TGF-β, Wnt and ErbB signaling in basal-like TNBC [58], miR-135b and
these pathways may present targetable factors in QNBC. Conversely, introduction of miR-
361-5p may be an approach to treating either QNBC or AR+ TNBC in conjunction with
AR antagonism. This is a theoretically valid approach given the miR-361-5p inhibition
of the EGFR/PI3K/Akt pathway [57], which is relevant in each of these contexts. This
approach is supported by evidence of growth and viability inhibition by dual targeting
of AR and PI3K in TNBC [63]. Inhibition of this signaling axis may be better suited for
AR+TNBC since PIK3CA mutations are ten-fold more prevalent in this subtype than in
QNBC [63], although alternate mechanisms of suppression of this pathway, such as through
regulation by miRNAs including miR-361-5p may be more prevalent in QNBC. In analysis
of the few published studies that identify differentially regulated miRNAs in QNBC versus
AR+TNBC, regulation of PI3K/PTEN and Myc signaling, superoxide dismutase and cell-
cycle checkpoint come into view as potential pathobiologically meaningful pathways that
may be dysregulated by disease-specific miRNAs. The analysis of TNBC subtypes in
African American women by Angajala et al. identified differentially regulated miRNAs
that regulate Myc, TP53 and PTEN [59]. The use or targeting of these miRNAs and
targets may have promise as therapeutic approaches, and PI3K/Akt/mTOR and cell cycle
regulators have been previously considered to be prospective therapies for QNBC [15]. In
fact, the recent study by Bhattari et al. that identified Copy Number Alteration (CAN)-
associated and dysregulated miRNAs in QNBC identified several miRNAs that regulate
cell-cycle checkpoint and cyclin dependent kinase regulators, namely miR-23c, miR-548ai,
miR-613, miR1267 and miR1265 [60]. Cyclin-dependent kinase inhibitors (CDKIs) can
be effective in the treatment of breast cancer, particularly in those with dysregulated
PI3K signaling [64]. Both of these pathways may be aberrantly regulated to miRNAs in
QNBC. A potential common thread between the few studies may suggest a role for miRNA
regulation of SOD2 in QNBC. Although superoxide dismutases are known to promote
breast tumor progression and metastasis [61], no direct inhibition of these enzymes has
emerged as therapy. Indirect regulation of superoxide dismutases using miRNAs may be
achievable while simultaneously targeting other relevant pathways as suggested by our
network analysis.

Neoadjuvant therapy is central to therapy for TNBC given increased response rates
compared with other breast cancer types [65]. In the context of neoadjuvant therapy
for early stage TNBC, anthracycline, taxane and cyclophosphamide are standard, while
platinum-based chemotherapy and targeted therapies, including PARP inhibition have
been proposed [66,67]. Given the molecular pathways and miRNA-regulated molecules
related to AR signaling described above, other targeted therapies should be explored in
this setting. These may include mTOR/PI3K inhibition, cell cycle inhibition and androgen
blockade for the LAR subtype, and EGFR and PARP inhibition for other TNBC subtypes.
While addition of mTOR inhibitors to neoadjuvant chemotherapy did not seem to affect
outcomes in a general TNBC population, [12,68] mTOR inhibition did improve objective
response rates in mesenchymal TNBC patients with PI3K aberrations [69]. Addition of
PARP inhibitor and carboplatin to standard neoadjuvant chemotherapy increased the
complete response rate in TNBC [65]. The question of whether regulatory networks specific
to TNBC and QNBC can be leveraged to maximize the efficacy of neoadjuvant therapy is
compelling. Broad regulation using the histone deacetylase inhibitor valproic acid has in
fact been found to synergize with neoadjuvant chemotherapy, CDK inhibitors and PARP
inhibitors (PARPi) [70]. The direct use of miRNAs or their targeting to affect such pathways
may hold promise in the neoadjuvant setting, but requires further understanding of these
regulatory networks.

8. Direction of miRNA Research in QNBC

The field of study specific to QNBC is young, leaving much to be discovered about
unique pathobiology, regulatory networks, exploitable therapeutic targets and prognostic
or theranostic markers. However, there is some understanding of the unique molecular
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profiles in QNBC. This knowledge can be built on to extrapolate hypotheses regarding the
roles of these pathways, their regulation and their targetability with therapeutic interven-
tions. Investigation of miRNA profiles, regulatory networks and pathway analysis of these
networks in QNBC compared with AR+ TNBC and other breast cancer subtypes has been
sparse so far. Studies using large cohorts comparing these subtypes and additional mecha-
nistic studies of transcript regulation by differentially expressed miRNAs and downstream
phenotypic changes relevant to tumorigenesis and progression in QNBC vs AR+ TNBC are
needed. Such studies will be required to appreciate the role and potential targeting of these
regulators and their regulatory networks in these diseases.

9. Conclusions

There is increasing evidence of unique molecular profiles and targetable pathways
other than AR signaling in QNBC versus TNBC and other breast cancer subtypes. These
differentiators continue to strengthen the justification for AR expression evaluation of TNBC
and classification accordingly. While mutational dysregulation of targetable signaling
pathways such as PI3K are more readily identified in other subtypes, these pathways may
also be dysregulated in QNBC via transcript modulation by miRNAs. Recent studies
have identified consistently and differentially dysregulated miRNAs targeting multiple
factors that are relevant to breast cancer pathobiology, including Myc, PI3K, TP53, SOD2
and cell cycle checkpoint factors. Further research into QNBC-specific dysregulation of
miRNAs, transcripts and molecular and functional networks can enable the exploitation
of these unique factors for the targeted treatment in the face of an otherwise intractable
therapeutic challenge.
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a Transcriptional Dependency in Triple-Negative Breast Cancer Associated with Brain Metastasis. Cancer Res. 2019, 79, 4173–4183.
[CrossRef] [PubMed]

54. Sorolla, A.; Wang, E.; Clemons, T.D.; Evans, C.W.; Plani-Lam, J.H.; Golden, E.; Dessauvagie, B.; Redfern, A.D.; Swaminathan-Iyer, K.;
Blancafort, P. Triple-hit therapeutic approach for triple negative breast cancers using docetaxel nanoparticles, EN1-iPeps and
RGD peptides. Nanomed. Nanotechnol. Biol. Med. 2019, 20, 102003. [CrossRef] [PubMed]

55. Qin, X.; Zhang, J.; Lin, Y.; Sun, X.; Zhang, J.; Cheng, Z. Identification of MiR-211-5p as a tumor suppressor by targeting ACSL4 in
Hepatocellular Carcinoma. J. Transl. Med. 2020, 18, 326. [CrossRef]

56. Cui, W.; Zhang, S.; Shan, C.; Zhou, L.; Zhou, Z. microRNA-133a regulates the cell cycle and proliferation of breast cancer cells by
targeting epidermal growth factor receptor through the EGFR/Akt signaling pathway. FEBS J. 2013, 280, 3962–3974. [CrossRef]

57. Han, J.; Yu, J.; Dai, Y.; Li, J.; Guo, M.; Song, J.; Zhou, X. Overexpression of miR-361-5p in triple-negative breast cancer (TNBC)
inhibits migration and invasion by targeting RQCD1 and inhibiting the EGFR/PI3K/Akt pathway. Bosn. J. Basic Med. Sci. 2019,
19, 52–59. [CrossRef]

58. Uva, P.; Cossu-Rocca, P.; Loi, F.; Pira, G.; Murgia, L.; Orrù, S.; Floris, M.; Muroni, M.R.; Sanges, F.; Carru, C. miRNA-135b
Contributes to Triple Negative Breast Cancer Molecular Heterogeneity: Different Expression Profile in Basal-like Versus non-
Basal-like Phenotypes. Int. J. Med. Sci. 2018, 15, 536–548. [CrossRef]

http://doi.org/10.18632/oncotarget.8274
http://www.ncbi.nlm.nih.gov/pubmed/27015557
http://doi.org/10.1158/2159-8290.CD-13-0172
http://www.ncbi.nlm.nih.gov/pubmed/24027196
http://doi.org/10.3390/biomedicines9080876
http://www.ncbi.nlm.nih.gov/pubmed/34440080
http://doi.org/10.1530/ERC-14-0243
http://www.ncbi.nlm.nih.gov/pubmed/24951107
http://doi.org/10.3390/cells9041064
http://doi.org/10.1016/j.mce.2011.08.017
http://www.ncbi.nlm.nih.gov/pubmed/27057074
http://doi.org/10.7150/thno.36182
http://www.ncbi.nlm.nih.gov/pubmed/32042320
http://doi.org/10.3389/fendo.2017.00002
http://www.ncbi.nlm.nih.gov/pubmed/28144231
http://doi.org/10.1093/hmg/ddr491
http://www.ncbi.nlm.nih.gov/pubmed/27725895
http://doi.org/10.1200/JGO.19.00366
http://www.ncbi.nlm.nih.gov/pubmed/32073910
http://doi.org/10.1371/journal.pone.0196909
http://doi.org/10.1016/j.tranon.2018.11.008
http://www.ncbi.nlm.nih.gov/pubmed/30594038
http://doi.org/10.1371/journal.pone.0077060
http://www.ncbi.nlm.nih.gov/pubmed/24155918
http://doi.org/10.1593/tlo.09202
http://doi.org/10.1038/onc.2013.422
http://www.ncbi.nlm.nih.gov/pubmed/24141779
http://doi.org/10.1158/0008-5472.CAN-18-3264
http://www.ncbi.nlm.nih.gov/pubmed/31239270
http://doi.org/10.1016/j.nano.2019.04.006
http://www.ncbi.nlm.nih.gov/pubmed/31055077
http://doi.org/10.1186/s12967-020-02494-7
http://doi.org/10.1111/febs.12398
http://doi.org/10.17305/bjbms.2018.3399
http://doi.org/10.7150/ijms.23402


Biomedicines 2022, 10, 366 13 of 13

59. Angajala, A.; Hughley, R.; DeanColomb, W.; Tripathi, S.; Tan, M.; Yates, C. Abstract 4769: Identification of differentially expressed
microRNAs in African American women with quadruple-negative breast cancer. Cancer Res. 2018, 78 (Suppl. 13), 4769.

60. Bhattarai, S.; Sugita, B.M.; Bortoletto, S.M.; Fonseca, A.S.; Cavalli, L.R.; Aneja, R. QNBC Is Associated with High Genomic
Instability Characterized by Copy Number Alterations and miRNA Deregulation. Int. J. Mol. Sci. 2021, 22, 11548. [CrossRef]

61. Becuwe, P.; Ennen, M.; Klotz, R.; Barbieux, C.; Grandemange, S. Manganese superoxide dismutase in breast cancer: From
molecular mechanisms of gene regulation to biological and clinical significance. Free Radic. Biol. Med. 2014, 77, 139–151.
[CrossRef]

62. Chen, K.; Lu, P.; Beeraka, N.M.; Sukocheva, O.A.; Madhunapantula, S.V.; Liu, J.; Sinelnikov, M.Y.; Nikolenko, V.N.; Bulygin, K.V.;
Mikhaleva, L.M. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in
breast cancers. In Seminars in Cancer Biology; Academic Press: Cambridge, MA, USA, 2020.

63. Lehmann, B.D.; Bauer, J.A.; Schafer, J.M.; Pendleton, C.S.; Tang, L.; Johnson, K.C.; Chen, X.; Balko, J.M.; Gómez, H.; Arteaga, C.L.
PIK3CA mutations in androgen receptor-positive triple negative breast cancer confer sensitivity to the combination of PI3K and
androgen receptor inhibitors. Breast Cancer Res. 2014, 16, 406. [CrossRef] [PubMed]

64. Vora, S.R.; Juric, D.; Kim, N.; Mino-Kenudson, M.; Huynh, T.; Costa, C.; Lockerman, E.L.; Pollack, S.F.; Liu, M.; Li, X. CDK 4/6
Inhibitors Sensitize PIK3CA Mutant Breast Cancer to PI3K Inhibitors. Cancer Cell 2014, 26, 136–149. [CrossRef] [PubMed]

65. Denkert, C.; Liedtke, C.; Tutt, A.; von Minckwitz, G. Molecular alterations in triple-negative breast cancer-the road to new
treatment strategies. Lancet 2017, 389, 2430–2442. [CrossRef]

66. Omarini, C.; Guaitoli, G.; Pipitone, S.; Moscetti, L.; Cortesi, L.; Cascinu, S.; Piacentini, F. Neoadjuvant treatments in triple-negative
breast cancer patients: Where we are now and where we are going. Cancer Manag. Res. 2018, 10, 91–103. [CrossRef] [PubMed]

67. Burguin, A.; Diorio, C.; Durocher, F. Breast Cancer Treatments: Updates and New Challenges. J. Pers. Med. 2021, 11, 808.
[CrossRef] [PubMed]

68. Gonzalez-Angulo, A.M.; Akcakanat, A.; Liu, S.; Green, M.C.; Murray, J.L.; Chen, H.; Palla, S.L.; Koenig, K.B.; Brewster, A.M.;
Valero, V. Open-label randomized clinical trial of standard neoadjuvant chemotherapy with paclitaxel followed by FEC versus the
combination of paclitaxel and everolimus followed by FEC in women with triple receptor-negative breast cancer†. Ann. Oncol.
2014, 25, 1122–1127. [CrossRef] [PubMed]

69. Basho, R.K.; Gilcrease, M.; Murthy, R.K.; Helgason, T.; Karp, D.D.; Meric-Bernstam, F.; Hess, K.R.; Herbrich, S.M.; Valero, V.;
Albarracin, C. Targeting the PI3K/AKT/mTOR Pathway for the Treatment of Mesenchymal Triple-Negative Breast Cancer:
Evidence from a Phase 1 Trial of mTOR Inhibition in Combination With Liposomal Doxorubicin and Bevacizumab. JAMA Oncol.
2017, 3, 509–515. [CrossRef]

70. Wawruszak, A.; Halasa, M.; Okon, E.; Kukula-Koch, W.; Stepulak, A. Valproic Acid and Breast Cancer: State of the Art in 2021.
Cancers 2021, 13, 3409. [CrossRef]

http://doi.org/10.3390/ijms222111548
http://doi.org/10.1016/j.freeradbiomed.2014.08.026
http://doi.org/10.1186/s13058-014-0406-x
http://www.ncbi.nlm.nih.gov/pubmed/25103565
http://doi.org/10.1016/j.ccr.2014.05.020
http://www.ncbi.nlm.nih.gov/pubmed/25002028
http://doi.org/10.1016/S0140-6736(16)32454-0
http://doi.org/10.2147/CMAR.S146658
http://www.ncbi.nlm.nih.gov/pubmed/29391830
http://doi.org/10.3390/jpm11080808
http://www.ncbi.nlm.nih.gov/pubmed/34442452
http://doi.org/10.1093/annonc/mdu124
http://www.ncbi.nlm.nih.gov/pubmed/24669015
http://doi.org/10.1001/jamaoncol.2016.5281
http://doi.org/10.3390/cancers13143409

	Introduction 
	Definition and Clinical Distinctions of QNBC Compared with TNBC and Other Subtypes of Breast Cancer 
	Significance of Androgen Receptor Expression and Function in Breast Cancer 
	Molecular Pathways Dysregulated Specifically in QNBC 
	Molecular Profiles Observed in QNBC 
	Dysregulated miRNAs Related to QNBC and Their Molecular Functions 
	Translational and Clinical Implications of Known Dysregulated miRNAs and Downstream Pathways in QNBC 
	Direction of miRNA Research in QNBC 
	Conclusions 
	References

