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Background and objectives: Glaucoma is one of the leading irreversible

causes of blindness worldwide, and previous studies have shown that there is

abnormal functional connectivity (FC) in the visual cortex of glaucoma patients.

The thalamus is a relay nucleus for visual signals; however, it is not yet clear

how the FC of the thalamus is altered in glaucoma. This study investigated

the alterations in thalamic FC in patients with primary angle-closure glaucoma

(PACG) by using resting-state functional MRI (rs-fMRI). We hypothesized that

PACG patients have abnormal FC between the thalamus and visual as well as

extravisual brain regions.

Methods: Clinically confirmed PACG patients and age- and gender-matched

healthy controls (HCs) were evaluated by T1 anatomical and functional MRI

on a 3T scanner. Thirty-four PACG patients and 33 HCs were included in

the rs-fMRI analysis. All PACG patients underwent complete ophthalmological

examinations; included retinal nerve fiber layer thickness (RNFLT), intraocular

pressure (IOP), average cup-to-disc ratio (A-C/D), and vertical cup-to-disc

ratio (V-C/D). After the MRI data were preprocessed, the bilateral thalamus

was chosen as the seed point; and the di�erences in resting-state FC between

groups were evaluated. The brain regions that significantly di�ered between

PACG patients and HCs were identified, and the correlations were then

evaluated between the FC coe�cients of these regions and clinical variables.

Results: Compared with the HCs, the PACG patients showed decreased

FC between the bilateral thalamus and right transverse temporal gyrus,

between the bilateral thalamus and left anterior cingulate cortex, and

between the left thalamus and left insula. Concurrently, increased FC

was found between the bilateral thalamus and left superior frontal

gyrus in PACG patients. The FC between the bilateral thalamus and

left superior frontal gyrus was positively correlated with RNFLT and

negatively correlated with the A-C/D and V-C/D. The FC between

the left thalamus and left insula was negatively correlated with IOP.
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Conclusion: Extensive abnormal resting-state functional connections

between the thalamus and visual and extravisual brain areas were found in

PACG patients, and there were certain correlations with clinical variables,

suggesting that abnormal thalamic FC plays an important role in the

progression of PACG.

KEYWORDS

primary angle-closure glaucoma, thalamus, resting-state functional MRI, functional

connectivity, visual impairment

Introduction

Glaucoma, a group of blinding eye diseases characterized

by optic atrophy and visual field defects, is one of the major

irreversible causes of blindness worldwide. Currently, there are

∼76 million glaucoma patients in our country, and the number

is expected to increase to 1.12 billion by 2040 (1). Primary

glaucoma can be divided into primary angle-closure glaucoma

(PACG) and primary open-angle glaucoma (POAG). Increased

intraocular pressure (IOP) is the most important risk factor

for glaucoma, and damage to retinal ganglion cells (RGCs) by

elevated IOP is considered to a key factor in the pathogenesis

of glaucoma (2, 3). However, RGCs are extensions of the central

nervous system developmentally and anatomically. And many

studies have shown that glaucoma is not only an eye disease but

also a degenerative disease of the central nervous system (4–9).

Previous MRI studies mostly focused on POAG, which has

a high incidence in Western countries, and found spontaneous

functional connectivity changes in the primary visual cortex

(V1) of POAG patients (10, 11). By contrast, in China and

throughout Asia, the most common type of glaucoma is PACG

(12), and glaucoma patients there suffer a higher prevalence

of blindness than those in Western countries (13). Recently,

resting-state functional MRI (rs-fMRI) has been increasingly

used to explore intrinsic brain activity in glaucoma patients and

has provided critical information in the search for pathological

mechanisms (14, 15). Several recent studies have shown that

PACG patients exhibit abnormalities in regional homogeneity

(ReHo) (16, 17) and amplitude of low-frequency fluctuation

(ALFF) (18, 19) in multiple brain regions. And Tong et al.

(20) found that there is disturbed interhemispheric resting-

state functional connectivity in the vision-related brain areas

of individuals with PACG. In additional, our group also found

that PACG patients showed brain dysfunction in visual and

other regions and presented different spatial distributions of

short-range and long-range functional connectivity density

(FCD) (21).

As the largest mixed nucleus of gray and white matter in

the deep part of the brain, the thalamus is involved in multiple

functions, such as visual information transmission, cognition,

emotion, sensation, and movement. The alternation of thalamus

in the visual conduction pathway are the main impairment

of central nervous system in glaucoma (22–24). Karlen et al.

(25) demonstrated that early blindness showed alterations of

thalamocortical connections. Reislev et al. (26) found that

blind individuals showed thalamocortical connectivity and

microstructural changes. And a recent animal experiment (27)

suggested that changes in the thalamus may predate damage to

RGCs. However, the literature on thalamic function in PACG

patients remains scarce.

In this study, we searched for evidence of abnormal

functional connectivity in the thalamus of PACG patients by

examining resting-state functional connectivity (rs-FC), which

focuses on statistical correlations between signals in the whole

brain or within brain regions (28), showing great potential as

a method to explore synchronous activity in the brain. The

main purposes of this study were to explore the FC relationship

between the thalamus and the whole brain of PACG patients,

and relate the alterations in FC to clinical data by analyzing

the correlation between clinical parameters and the significantly

changed regions.

Materials and methods

Subjects

Forty right-handed PACG patients were recruited from the

Ophthalmology Department of the First Affiliated Hospital

of Nanchang University. The inclusion criteria for the PACG

patients were as follows: (1) narrow anterior chamber angles

in both eyes, confirmed clinically by gonioscopy and slit-

lamp examination; (2) visual field defects associated with

glaucoma, such as tubular vision and nasal hemianopia; (3)

an optic nerve cup-to-disc ratio > 0.6, as determined by

funduscopic examination; and (4) didn’t received medical or

surgical treatment for glaucoma. The exclusion criteria for the

PACG patients were as follows: (1) the diagnosis of another

type of glaucoma, such as POAG or secondary glaucoma; (2)

the diagnosis of another ocular disease or an organic disorder

affecting the visual pathway; (3) a history of brain trauma;

(4) a history of underlying disease, such as hypertension or
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TABLE 1 General clinical information for PACG patients and HCs.

Condition PACG HC P-value

Age (years) 53.12± 11.75 52.85± 10.61 0.922

Gender (male/female) 16/18 16/17 0.907

Duration of PACG (days) (range) 2–3,650 - N/A

IOP (mmHg) 27.34± 9.24 - N/A

RNFLT (µm) 87.77± 24.96 - N/A

A-C/D 0.67± 0.15 - N/A

V-C/D 0.64± 0.18 - N/A

Mean VA (range) 0.53± 0.31 - N/A

Head motion 0.064 (0.048, 0.089) 0.072 (0.055, 0.098) 0.243

PACG, primary angle-closure glaucoma; HCs, healthy controls; IOP, RNFLT, A-C/D, V-C/D, and VA are presented as the binocular mean values. IOP, intraocular pressure; RNFLT, retinal

nerve fiber layer thickness; A-C/D, average cup-to-disc ratio; V-C/D, vertical cup-to-disc ratio; VA, visual acuity; N/A, not applicable.

TABLE 2 Brain areas showing functional connectivity di�erences with the thalamus between PACG patients and HCs.

Brain area Voxel MNI coordinates of peak voxel t-value ES

Seed-ROIs L/R X Y Z

Left thalamus

R TTG 102 45 −21 9 −4.2158 −1.07

L ACC 45 −12 36 15 −3.2792 −0.94

L INS 42 −45 −18 18 −4.0631 −0.96

L SFG 51 −27 60 −9 3.669 0.92

Right thalamus

R TTG 101 45 −21 9 −4.0337 −1.06

L ACC 50 −3 30 9 −3.3854 −0.94

L SFG 64 −24 66 12 3.8375 1.01

Voxel level P < 0.05, AlphaSim corrected. PACG, primary angle-closure glaucoma; HCs, healthy controls; TTG, transverse temporal gyrus; ACC, anterior cingulate cortex; INS, insula;

SFG, superior frontal gyrus; ES, effect size.

diabetes; (5) a history of surgical treatment for glaucoma; (6)

incomplete data from MRI scans or clinical assessment; and (7)

head movement exceeding 2.5mm maximum displacement in

the x, y, and/or z directions or 2.5◦ of angular rotation about

any axis during the rs-fMRI examination. Ultimately, 34 PACG

patients (16 males and 18 females) were included in this study

(4 had incomplete clinical data, and two had head movement >

2.5mm or > 2.5◦ during the rs-fMRI examination).

We recruited and selected 33 right-handed, age- and gender-

matched healthy subjects to serve as healthy controls (HCs;

16 males and 17 females). The exclusion criteria for the HCs

were as follows: (1) the diagnosis of an ocular disorder or other

systemic disease; (2) severe nearsightedness or farsightedness;

(3) contraindications for MRI, such as metal implants or

claustrophobia; and (4) head movement exceeding 2.5mm

maximum displacement in the x, y, and/or z directions or 2.5◦

of angular rotation about any axis.

This study complied with the Declaration of Helsinki,

and the Human Research Ethics Committee of the First

Affiliated Hospital of Nanchang University approved the study

protocol. Written informed consent was obtained from each

participant prior to the study. Table 1 provides information on

the demographics of the PACG patients and HCs.

Data acquisition

The rs-fMRI data were acquired using a 3T MR scanner

(Siemens, Erlangen, Germany) with an 8-channel phased-

array head coil at the Department of Radiology of the First

Affiliated Hospital, Nanchang University, China. All subjects

were directed to sit for 10min prior to their resting-state scans.

Next, they were instructed to keep their eyes closed but to not

fall asleep. The subjects were further instructed to not engage

in any specific cognitive activity during data acquisition. Head

movements and noise were suppressed using a suitable sponge

mat and earplugs, respectively. Rs-fMRI data acquisition lasted

for 8min, and 240 resting-state volumes were acquired using

the following parameters: repetition time (TR)= 2,000ms; echo

time (TE) = 40ms; flip angle = 90◦; field of view (FOV) =
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FIGURE 1

Brain regions with significant changes in the rs-FC of the bilateral thalamus (voxel-level P < 0.05, AlphaSim corrected), visualized with the DPABI

slice viewer (http://rfmri.org/dpabi). Significant group di�erences in the mean weighted rs-FC in the above regions (P < 0.05). TTG, transverse

temporal gyrus; ACC, anterior cingulate cortex; INS, insula; SFG, superior frontal gyrus.

240mm × 240mm; matrix =64 × 64; and slice thickness =

4mm with a 1mm gap. Each brain volume included 30 axial

slices. High-resolution T1-weighted images for each subject

were acquired using a 3D MRI sequence with the following

parameters: TR = 1,900ms; TE = 2.26ms; flip angle = 9◦;

FOV= 240mm × 240mm; matrix = 256 × 256; number of

sagittal slices= 176; and slice thickness= 1 mm.

Data preprocessing

MRIcro software was used to check the resting-state fMRI

data and discard any data of suboptimal quality. Rs-fMRI

data were preprocessed with the Data Processing & Analysis

for Brain Imaging (DPABI) toolbox (29), which was run in

MATLAB 2018b (MathWorks, Natick, MA, United States). First,

the first 10 time points were removed. Then, the remaining 230

volumes were corrected for slice timing and three-dimensional

head motion. Two PACG patients were excluded because the

maximum displacement in at least one direction (x, y, and/or

z) was more than 2.0mm; the angular rotation about some axis

exceeded 2.0◦; or the framewise displacement (FD), a relative

displacement measure, exceeded 2.5 standard deviations for any

of the 230 volumes during the entire fMRI scanning process.

Then, all the functional data were spatially normalized to the

Montreal Neurological Institute (MNI) template using non-

linear transformation procedures in SPM12 (30), resampled to

3mm × 3mm × 3mm voxels, and smoothed with a 6-mm

full width at half maximum (FWHM) filter. Finally, a temporal

filter (0.01–0.08Hz) was utilized to suppress the effects of

low-frequency drift and high-frequency noise. To further reduce

the influence of confounding factors, a multiple regression

Frontiers inNeurology 04 frontiersin.org

https://doi.org/10.3389/fneur.2022.1015758
http://rfmri.org/dpabi
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org


Wang et al. 10.3389/fneur.2022.1015758

FIGURE 2

Voxelwise comparison of FC between participants in the PACG and HC groups based on the left thalamus seed (voxel-level P < 0.05, AlphaSim

corrected). Color bars indicate t-scores; warm colors indicate areas where the FC value in PACG is greater than that in HCs, while cold colors

indicate the opposite.

method was performed to regress out interference, including

the mean time series of all white matter and cerebrospinal fluid

voxels, global signals and Friston’s 24-parameter model of head

motion (6 head motion parameters, six head motion parameters

from one time point earlier, and the 12 corresponding squared

items) (31–33).

Seed-based functional connectivity
analysis

We selected the bilateral thalamic region marked by

the automated anatomical labeling (AAL) template in

WFU_PickAtlas software as the region of interest (ROI)

for FC analysis and extracted the time series of all voxels in

the ROI as the time series of the ROI; the same was done for

the whole brain. The time series of all voxels were subjected

to Pearson correlation FC analysis to obtain an FC correlation

coefficient map; Fisher’s z transformation was then performed

to align the data more closely with the normal distribution and

facilitate statistical analysis.

Clinical assessment

All patients underwent detailed ophthalmological

examination. The state of the anterior chamber angle was

determined by gonioscopy and slit-lamp examination. IOP

was measured using a tonometer, while retinal nerve fiber

layer thickness (RNFLT), the average cup-to-disc ratio

(A-C/D) and the vertical cup-to-disc ratio (V-C/D) were

evaluated by optical coherence tomography (Cirrus HD-

OCT). In addition, the disease course and visual acuity (VA)

were recorded.
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FIGURE 3

Voxelwise comparison of FC between participants in the PACG and HC groups based on the right thalamus seed (voxel-level P < 0.05, AlphaSim

corrected). Color bars indicate t-scores; warm colors indicate areas where the FC value in PACG is greater than that in HCs, while cold colors

indicate the opposite.

Statistical analysis

The chi-square test was used to compare the categorical

variable of gender between groups, and an independent-samples

t-test was used for measurement variables (age and clinical

ophthalmology parameters); these tests were implemented in the

Statistical Package for the Social Sciences (SPSS) version 24.0

(Chicago, IL, United States).When p< 0.05, the differences were

considered significant.

For the rs-FC between each ROI and the remaining

voxels of the brain, two-sample t-tests were conducted

between the two groups to identify differences in spatial

distribution. Then, analysis of covariance was applied to analyze

intergroup differences, with gender and age as covariates, using

DPABI software in MATLAB 2018b (MathWorks, Natick, MA,

United States). The results were corrected using AlphaSim

implemented in DPABI Viewer with p < 0.05 and were reported

using REST V1.84. The resulting z value maps were overlaid on

the rendered views using BrainNet Viewer, and the locations

of the brain regions with significant FC were reported using

xjView software.

To examine whether there is a relationship between

abnormal FC and clinical variables, we used the statistical

software package SPSS 24.0 to conduct Pearson correlation

analysis between the FC strength of different brain regions

and the results of clinical scales; P < 0.05 was considered

statistically significant.

Results

Demographic and clinical data

As shown in Table 1, the mean age of PACG patients was

53.12 ± 11.75 years, and the disease duration ranged from 2

days to 3,650 days. There were no significant differences between

PACG patients and HCs in age, gender.
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FIGURE 4

Mean weighted FC values of HCs and PACG patients in altered regional brain areas based on the left thalamus seed (A).and right thalamus seed

(B). FC, functional connectivity; PACG, primary angle-closure glaucoma; HCs, healthy controls; TTG, transverse temporal gyrus; ACC, anterior

cingulate cortex; INS, insula; SFG, superior frontal gyrus; ES, e�ect size; L, Left; R, Right.

TABLE 3 Significant associations between thalamic FC and clinical characteristics in PACG patients.

FC between brain regions Clinical characteristic r values P-values

Left thalamus–left SFG RNFLT 0.432 0.011

Right thalamus–left SFG RNFLT 0.377 0.028

Left thalamus–left SFG A-C/D −0.361 0.036

Right thalamus–left SFG A-C/D −0.345 0.045

Left thalamus–left SFG V-C/D −0.389 0.023

Right thalamus–left SFG V-C/D −0.366 0.033

Left thalamus–left INS IOP −0.444 0.008

FC, functional connectivity; PACG, primary angle-closure glaucoma; SFG, superior frontal gyrus; INS, insula; RNFLT, retinal nerve fiber layer thickness; A-C/D, average cup-to-disc ratio;

V-C/D, vertical cup-to-disc ratio; IOP, intraocular pressure.

Di�erences in resting-state functional
connectivity between the two groups

The results of intergroup rs-FC comparisons at the voxel-

based whole-brain level based on bilateral thalamic seeds

are displayed in Table 2. Compared with the HCs, the

PACG patients showed decreased FC between the bilateral

thalamus and right transverse temporal gyrus (TTG), between

the bilateral thalamus and left anterior cingulate cortex

(ACC), and between the left thalamus and left insular (INS).

Concurrently, increased FC was found between the bilateral

thalamus and left superior frontal gyrus (SFG) (Figures 1–

3). Interestingly, either the decreased or increased FC values

of all the above regions were lower or higher than the

FC values of the corresponding brain regions in the HC

groups (Figure 4).

Relationships between clinical DATD FC
of the thalamus in PACG patients

The correlations between the clinical data and FC values of

the PACG patients are summarized in Table 3. The FC of the

bilateral thalamus and left SFG in PACG patients was positively

correlated with RNFLT (left r= 0.432, P= 0.011; right r= 0.377,

P= 0.028) but negatively correlated with A-C/D and V-C/D (left

A-C/D: r = −0.361, P = 0.036; left V-C/D: r = −0.389, P =

0.023; right A-C/D: r = −0.345, P = 0.045; right V-C/D: r =
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−0.366, P = 0.033). The FC between the left thalamus and left

INS was negatively correlated with IOP (r=−0.444, P= 0.008).

Discussion

The main finding of this study is that PACG patients show

extensive abnormalities in FC among multiple brain regions,

including regions involved in vision, hearing, emotion, and

cognition, which is consistent with our hypothesis.

In our current study, we noticed decreased FC of the bilateral

thalamus with the right TTG and the left ACC in PACG patients.

The TTG is located in the primary auditory cortex in the

lateral sulcus of the brain and is the first cortical structure

to receive auditory information, indicating that the auditory

function of PACG patients was impaired. Both the auditory

cortex and the ACC belong to the frontotemporal network

which has been shown to be involved in auditory information

processing for cognitive purposes (34). Many studies (35,

36) have found that glaucoma patients have structural and

functional abnormalities in the projections from the thalamus to

the higher visual cortices, but the connections with the auditory

cortex are rarely studied, likely because glaucoma patients

mainly present with ocular symptoms rather than hearing

impairment. The decreased connectivity between the thalamus

and auditory cortex in patients with major depression may lead

to mismatched processing at the cortical level, contributing to

these patients’ clinical symptoms (37). In addition, the ALFF

value in the ACC is significantly reduced in patients with end-

stage renal disease (ESRD) and is positively correlated with

Montreal Cognitive Assessment (MoCA) scores, suggesting that

the ALFF value in this region may be an imaging indicator

of cognitive dysfunction (38). Thus, we speculated that the

PACGmight lead to the reorganization of auditory and cognitive

function. Similar results that no disruption of measures were

also observed in a previous study regarding glaucoma patients

(39–41), hinting that the efficiency of communication in the

brain network was conserved and the brain was homogeneously

well reorganized.

In addition, the INS cortex is extensively connected to the

frontal, temporal, parietal, occipital, and limbic regions and

participates in multiple processes, such as emotional, cognitive

and motor sensory information processing (42). Many previous

studies (2, 43) found abnormalities in the structure and function

of the INS in glaucoma patients. For example, Chen et al.

(16) found that the ReHo value of the right INS in PACG

patients was elevated, and Chen et al. (21) found that short-

range functional connectivity density (FCD) was increased in

the left INS of PACG patients and negatively correlated with

the A-C/D. In addition, Li et al. (35) found that preoperative

PACG patients had lower FC in the left primary visual cortex

and left INS than controls, which is consistent with the results

of our study. Clinically, many PACG patients present with

anxiety or even depression (44–46). A study (47) showed that

the FC of the INS in patients with schizophrenia was generally

decreased. Therefore, the decreased rs-fMRI FC between the

thalamus and INS in PACG patients may be due to impaired

emotional cognitive regulation pathways. However, from the

results, the individual differences within the PACG group are

relatively large, and a generalizable result may not be drawn.

However, this result is not highly reliable because of the large

individual variability within the group. The current study cannot

explain this result sufficiently, but we will focus on its causes in

future research.

The correlation analysis showed that the FC of the left

thalamus and left INS in PACG patients was negatively

correlated with IOP. Therefore, we speculate that elevated IOP

leads to emotional disturbances in glaucoma patients, which

would, in turn, lead to dysfunction of the INS.

The left SFG is located above the orbit and is mainly involved

in eye movement, visual positioning, advanced cognition and

working memory functions (48, 49). Neuroimaging studies (50)

have identified functional interactions between the thalamus and

the default-mode network (DMN), and the brain regions with

increased FC (the SFG) and decreased FC (the ACC) both belong

to the DMN. Owing to the death of retinal ganglion cells in

PACG patients, the transmission of visual information in PACG

patients is blocked, which results in decreased FC between the

thalamus and DMN nodes (such as the ACC). To compensate

for the decreased FC between the networks, the thalamus and

other regions of the DMN (such as the SFG) have increased

FC. Many diseases damage the brain regions associated with

the DMN, which consumes a great deal of energy in the resting

state and is especially susceptible to oxidative stress and disease.

For example, Wang et al. (51) found that the FC between

the DMN and the visual network was decreased in POAG

patients and was positively correlated with the average visual

field. Additionally, a previous application of the degree centrality

(DC) analysis method to this topic by our group, showed that

the DC value of a DMN brain region (ACC) increased in

PACG patients (52), indicating that glaucoma patients do have

abnormal DMN function.

Furthermore, other factors, such as local neuroplasticity,

may play a compensatory role during the progression of

glaucoma. Neuroplasticity is a selective phenomenon that

functionally and structurally molds synaptic connections of

the nervous system through experience (53). Several research

(54, 55) have found a perceptual boost in the responses of

the deprived eye following short-term monocular deprivation

in amblyopic patients. Similar results were also observed

in glaucoma patients (56). For patients with glaucoma, the

decreasing function of visual cortex, which may compensatory

increase the function of other brain regions.

The FC between the bilateral thalamus and the left SFG

was positively correlated with the RNFLT, and the RNFLT was

associated with the progression of glaucoma. Therefore, we

speculate that the progression of glaucoma may be accompanied

by cognitive impairment. However, the FC between the bilateral
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thalamus and left SFG was negatively correlated with A-C/D and

V-C/D, while A-C/D and V-C/D were positively correlated with

the incidence of glaucoma and impairment of the anterior visual

pathway (57), indicating that the brain’s compensatory action

cannot reverse the development of glaucoma and damage to

the eye.

Limitations

There are several limitations to our study. First, the patients’

emotions were not measured. PACG patients have been reported

to be more sensitive to negative affective states, such as

depression and anxiety, than HCs or even POAG patients.

Detailed psychological scales should be included in any further

research on this topic. Second, longitudinal research is lacking.

The duration glaucoma disease varies greatly, and so the specific

temporal relationship between brain activity alterations and

disease stage is still unclear.

Conclusion

In conclusion, there are extensive abnormalities in resting-

state FC between the thalamus and vision, hearing, emotion,

and cognition related brain regions in PACG patients, and these

differences are correlated with clinical variables, which suggests

that abnormal FC of the thalamus plays an important role in the

progression of PACG.
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