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The analysis of glyphosate is essential to agricultural production, environment

protection and public health. Herein, we proposed a fast and convenient “on-

off-on” fluorescence platform for sensitive detection of glyphosate via Cu2+

modulated g-C3N4 nanosheets. The fluorescence of the system was quenched

by Cu2+. With the presence of glyphosate, the fluorescence could be restored

due to the formation of Cu2+- glyphosate complex. The proposed method was

cost-effective with label-free and enzyme-free. Moreover, it exhibits high

sensitivity with a low detection limit of 0.01 μg/ml. Furthermore, the

proposed method has been successfully monitored glyphosate in real samples.
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1 Highlights

• A fast and convenient “on-off-on” fluorescence platform based on Cu2+ modulated

g-C3N4 nanosheets for sensitive detection of glyphosate was developed.

• This method is cost-effective and does not need any labeling, enzyme or other

complex processes.

• The proposed method exhibits high sensitivity and has a good analysis performance

in complex samples.

2 Introduction

The use of pesticides is highly merited to improve crop yields and products

quality. Among many pesticides, glyphosate has become one of the most widely

applied herbicides because of its high efficiency, broad-spectrum, non-selective, and

low toxicity (Valle et al., 2019). Nevertheless, the misuse of glyphosate can cause its

high residues in soil, water, and food, and then produce some problems regarding

environmental pollution and health hazards. Moreover, glyphosate exposure has

adverse effects on the endocrine system, central nervous system and cell cycle
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(Gasnier et al., 2009; Wozniak et al., 2020). Besides that,

glyphosate has been listed as a potential carcinogen

(Guyton et al., 2015). Therefore, constructing a facile, low-

cost, and high-efficiency method for glyphosate detection is of

great importance for public health and environmental

protection.

Currently, some traditional approaches have been applied

to analyze glyphosate such as capillary electrophoresis

(Muñoz et al., 2019), gas chromatography (Royer et al.,

2000; Ding et al., 2015), high-performance liquid

chromatography (Sun et al., 2017; Surapong and Burakham,

2021), Chromatography-mass spectrometry (Schütze et al.,

2021; Pérez-Mayán et al., 2022), and enzyme-linked

immunosorbent assay (González-Martínez et al., 2005).

However, these methods tend to require sophisticated

instrumentation, tedious pretreatments, long testing times

or tedious operation. To overcome such limitations, several

techniques have been proposed (Xu et al., 2018; Qin et al.,

2020; Ding et al., 2021; Wu et al., 2022; Zhao et al., 2022).

Among them, fluorescence methods have been receiving great

attention owing to their superior analytical performances such

as simplistic, rapid, and sensitive. Especially, fluorescent

probes can be applied to develop label-free fluorescent

platforms for target analysis (Liu et al., 2020; Zhang et al.,

2020; Liu et al., 2021).

As a promising kind of 2D nanomaterials, g-C3N4

nanosheets (CN NNS) have attracted much attention because

of their low cost, easy synthesis, excellent catalytic performance,

metal-free, water solubility and excellent biocompatibility (Dong

et al., 2016). Up to now, CN NNS have emerged in biosensor,

imaging and photocatalysis (Guo et al., 2011; Salehnia et al., 2017;

Zhang et al., 2021; Zheng et al., 2021). Intriguingly, CN NNS not

only have excellent fluorescence properties, but also the

fluorescence can be quenched by some metal ions including

Fe3+, Hg2+, Eu3+, and Cr6+(Rong et al., 2015a; Zhuang et al., 2017;

Ti et al., 2021; Wang et al., 2021). Recently, Chen group reported

a label-free fluorescence sensor for detection of Fe3+ and ascorbic

acid viaCNNNS (Guo et al., 2018). Duan group used CNNNS to

establish a facile fluorescence approach for 6-Thioguanine and

Hg2+ (Duan et al., 2018). This property can be used to develop

novel sensor strategies for metal ion detection or some other

targets detection which were mediated by these metal ions.

In the present work, a facile and effective “on-off-on”

fluorescence sensor based on CN NNS was developed for

glyphosate. The CN NNS were prepared by one-step process.

The fluorescence of the CN NNS could be quenched by Cu2+.

Then, the fluorescence gradually increased with the addition of

glyphosate due to Cu2+ preferentially coordinated with

glyphosate. The quantitation of glyphosate could be achieved

according to the change of fluorescence. Thus, the proposed

approach not only provided a novel sensor platform for

glyphosate but also exhibited a potential application in

environmental safety and biological fields.

3 Materials and methods

3.1 Reagents and materials

Glyphosate, dicyanamide, copper chloride (CuCl2), and

other pesticides (such as carbendazim, carbaryl, parathion,

malathion, chlorpyrifos, diazinon, omethoate) were gained

from Aladdin Reagent Co., Ltd. (Shanghai, China). Tris was

purchased from Solarbio Science and Technology Co., Ltd.

(Beijing, China). Ultrapure water was gained from a Milli-Q

Integral 15 system (Millipore) and used throughout the work.

Water samples were obtained from Yongjiang river in

Nanning City and the lake water of Guangxi Medical

University campus.

3.2 Preparation of CN NNS nanosheets

The CN NNS were synthesized according to the previously

reported literature (Rong et al., 2015b). Briefly, the alumina

crucible containing 10 g of ground dicyandiamide was placed

in a muffle furnace, heated to 550°C at a heating rate of 3°C/min,

reacted for 2 h, and then cooled to 25°C at the same rate. As a

result, the bulk CN NNS was acquired. After that, 1 g of bulk CN

NNS was put into 100 mL10 M HNO3 and refluxed for 16 h at

25°C. Then, the refluxed product was collected through

centrifugation at 10000 rpm and washed to neutrality with

water. The obtained precipitate was dispersed in 50 ml water

for 6 h through a 2D nanomaterial stripper. Finally, the CN NNS

solution was stored at 4°C.

3.3 Analysis of glyphosate

First, the stock solution of glyphosate was diluted with

water to different concentrations. Then, 2 μL of 0.2 mM Cu2+,

10 μL of different concentrations of glyphosate, 5 μL CN NNS

and 183 μL 20 mM Tris-HCl buffer (pH 6.0) reacted at room

temperature for 10 min with a total volume of 200 μL.

Subsequently, the fluorescence spectra of the samples were

collected using an FL-8500 fluorescence spectrometer

(PerkinElmer, United States) with the excitation wavelength

at 308 nm.

3.4 Determination of glyphosate in real
samples

First, the samples of river water and lake water were filtered

with 0.22 μmmembrane to remove solid impurities, respectively.

After that, the analysis of glyphosate in the real water samples

were carried out as described above processing procedure

(2.3 Analysis of glyphosate).
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FIGURE 1
The Characterization of CN NNS (A) TEM image; (B) XRD image; (C) FT-IR spectrum.

FIGURE 2
(A) UV-Vis spectra of CN NNS; (B) The fluorescence excitation and emission spectra of CN NNS; (C) The photos of the dispersion under room
light (A) and 365 nm UV light (B); (D)The fluorescence photostability of the dispersion.
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4 Results and discussion

4.1 Characterization

The morphology of the obtained CN NNS was

characterized through transmission electron microscopy

(TEM). Figure 1A exhibited a lamellar structure and a well-

dispersed state by TEM image. The XRD image displayed a

broad diffraction peak (002) at 27.6° in Figure 1B, which was

consistent with previous reports (Sun et al., 2020). As shown

in Figure 1C, FT-IR spectrum of the obtained CN NNS was

analyzed. The broad bands peaked at 3,000 to 3,500 cm−1 were

ascribed to N-H stretching. The bands peaked at 1,000 to

1750 cm−1 were attributed to C=N stretching and C=O

stretching. A characteristic peak of appeared at 804 cm−1,

which was due to the vibration of the triazine ring. The

FT-IR results indicated the presence of carboxyl, amino

and hydroxy groups.

4.2 Optical properties of CN NNS
nanosheets

In this work, the UV-Vis absorption spectroscopy and

fluorescence spectra are used to reveal the optical properties

of CN NNS. The UV-Vis absorption possessed a characteristic

absorption peak at 308 nm in Figure 2A. In addition, Figure 2B

shows the solution emitted a strong fluorescence emission at

426 nm with the excitation wavelength at 308 nm. Compared

with daylight, brilliant blue fluorescence of the solution was

clearly observed under the irradiation of 365 nm UV light

(Figure 2C). Meanwhile, the fluorescence stability of the CN

NNS dispersion was also researched. As displayed in Figure 2D,

there is no obvious change in the intensity after the solution was

stored for more than 2 months, implying outstanding stability of

the dispersion.

4.3 Principle of the proposed sensor

The principle of this novel enzyme-free fluorescence sensor

for glyphosate assay based on CN NNS is illustrated in Figure 3.

Firstly, the blue CN NNS were prepared by simple synthesis

using dicyanamide. In the absence of glyphosate, the fluorescence

of system was greatly quenched by Cu2+, lending to a low

fluorescence signal. In contrast, upon the addition of

glyphosate, Cu2+ preferentially coordinated with glyphosate to

form glyphosate-Cu2+complex due to the stronger interaction

than CN NNS-Cu2+. As a result, a high fluorescence signal was

obtained. Thus, the concentrations of glyphosate could be

detected by the fluorescence change.

4.4 Feasibility of the sensor

In order to verify the feasibility of this sensor strategy, the

fluorescence emission spectra of the reaction solutions were

detected. Figure 4 showed that the CN NNS had very high

current fluorescence (curve a). After the introduction of

glyphosate, no obvious change in fluorescence intensity at

426 nm was observed in curve a and curve b, manifesting that

glyphosate had no effect on CN NNS. However, when Cu2+

was added to the system, the fluorescence intensity decreased

significantly (curve c) due to the formation of the Cu2+-CN

NNS complex. After glyphosate and Cu2+ were added, we

FIGURE 3
Schematic illustration of fluorescence sensor for glyphosate
detection via CN NNS.

FIGURE 4
Fluorescence emission spectra of different sample solutions.
Sample a: CNNNS; Sample b: CNNNS+ glyphosate; Sample c: CN
NNS + Cu2+; Sample d: CN NNS +Cu2++ glyphosate. The
concentrations ofCNNNS,Cu2+ andglyphosatewere5μg/mL,
2 μM and 5 μg/mL, respectively.
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observed that the fluorescence intensity of system increased

significantly (curve d) because glyphosate exhibits a stronger

combination ability with Cu2+. Above results illustrated that

the fluorescence method using CN NNS and Cu2+ was feasible

for glyphosate detection.

4.5 Optimization of assay conditions

For achieving the best assay performances, several main

factors including the concentration of Cu2+, pH of reaction

system, and the reaction time were optimized.

The concentration of Cu2+ was first investigated. As seen in

Figure 5A, the value of F/F0 increases with Cu2+ concentration

from 0.5 μM to 2 μM. The maximum F/F0 value was obtained at

2 μM. Afterwards, the value of F/F0 decreased gradually. Thus,

2 μM was the optimal concentrations of Cu2+. In addition, the

pH of reaction system was also optimized. The value of F/F0
increased on increasing pH from 4.0 to 6.0, and the F/F0 value

reached a maximum when the pH was 6.0. However, after the

pH exceeds 6.0, the F/F0 value gradually decreases as the pH value

increases (Figure 5B). Thus, 6.0 was used as the optimum pH of

the reaction system. Finally, effect of incubation time was also

examined. The value of F/F0 increased with the increase reaction

time and sustained a stable value at 10 min (Figure 5C). So, the

optimal incubation time was 10 min.

4.6 Fluorescence assay for glyphosate

Based on the optimal conditions, various concentrations of

glyphosate were analyzed. As illustrated in Figure 6A,

the fluorescence intensity at 426 nm increases as the

concentration of glyphosate increased from 0 to 8.0 μg/ml.

FIGURE 5
Optimization of assay conditions. The effect of Cu2+ concentration (A), pH value (B), and incubation time (C).

FIGURE 6
(A) The response of fluorescence emission spectra with
different concentrations of glyphosate. The concentrations of
glyphosate from a to l were 0, 0.02, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 7 and
8 μg/ml, respectively. (B) The relationship between the
fluorescence intensity and glyphosate concentrations. Inset: linear
curve for glyphosate (0.02–6 μg/ml).
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The fluorescence intensity and the glyphosate concentration in the

ranged from 0.02 μg/ml to 6.0 μg/ml shows a good linear

relationship (inset of Figure 6B). The linear equation was F =

8,814.14C + 13143.35 (C: the concentration of glyphosate, F: the

fluorescence intensity at 426 nm, R2 = 09968). The limit of detection

is 0.01 μg/ml, which is substantially lower than the maximum

residue of 0.7 μg/ml in drinking water by the US EPA and

GB5749-2022 (Drinking Water Standards and Health Advisories.,

2018; Standardization Administration of China., 2022). The

sensitivity is comparable to or better than most other methods

for glyphosate assay (Chang et al., 2016; Hou et al., 2020; Tai et al.,

2022).

4.7 Selectivity study

The selectivity of this sensor was verified by detecting other

pesticides including carbendazim, carbaryl, parathion,

malathion, chlorpyrifos, diazinon and omethoate. As displayed

in Figure 7, compared to other pesticides, only glyphosate could

induce a remarkable fluorescence enhancement. These results

indicated that the present assay has good selectivity for

glyphosate detection.

4.8 Analysis of real samples

To evaluate the applicability of the present method in real

samples, the recovery experiments were estimated in river

water and lake water samples. The samples were spiked with

different concentrations of glyphosate and detected. As can be

seen in Table 1, The recoveries ranged from 96.5 to 104.4%.

These results indicated the proposed method had great

potential for glyphosate detection in complicated real

samples.

5 Conclusion

In summary, we constructed a novel “on-off-on” sensor for

sensitive detection of glyphosate via CN NNS as fluorescence

probe. The fluorescence change of system can be obtained by the

combination between copper ions and nanosheets or glyphosate,

achieving the detection of glyphosate. The developed method was

convenient, low-cost and rapid without tedious procedures. It

exhibits a high sensitivity with a detection limit of 0.01 μg/ml.

Besides that, a satisfactory performance in actual samples was

also obtained. Therefore, the developed approach is expected to

possess potential ;application in environmental safety and

biological fields.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material, further

inquiries can be directed to the corresponding author.

TABLE 1 Detection of glyphosate in river water and lake water samples.

Samples Added (μg/mL) Found (μg/mL) Recovery (%) RSD (%, n = 3)

river water

1 0.200 0.205 102.7 2.1

2 1.000 0.972 97.2 3.5

3 5.000 5.218 104.4 2.9

lake water

1 0.200 0.193 96.5 2.6

2 1.000 1.026 102.6 2.2

3 5.000 5.162 103.2 3.3

FIGURE 7
Selectivity of the present method for glyphosate. The
concentration was 5 μg/ml for glyphosate, and the concentrations
were 100 μg/ml for other pesticides.
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