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Information regarding the function ofMelilotus officinalis (L.) Pall. in skeletal muscles is still unknown. In this study, we explored the
possible regulatory targets of M. (L.) Pall. that affects the repair patterns in chronic muscle injury. We analyzed the potential target
genes and chemical composition of M. (L.) Pall. and constructed a “drug-component-disease target genes” network analysis. Five
active ingredients and 87 corresponding targets were obtained. Muscle-tendon junction (MTJ) cells were used to perform receptor-
ligand marker analysis using the CellphoneDB algorithm. Targets of M. (L.) Pall. were screened further for the cellular ligand-
receptor protein action on MTJs. Enrichment analysis suggests that those protein-associated ligand receptors may be associated
with a range of intercellular signaling pathways. Molecular docking validation was then performed. Five proteins (CCL2, VEGFA,
MMP2, MET, and EGFR) may be regulated by the active ingredient luteolin and scoparone. Finally, molecular dynamics
simulations revealed that luteolin can stably target binding to MMP2. M. (L.) Pall. influences skeletal muscle repair patterns by
affecting the fibroblast interactions in the muscle-tendon junctions through the active ingredients luteolin and scoparone.

1. Introduction

Melilotus officinalis (L.) Pall. (M. (L.) Pall.) is a traditional
Chinese medicine that is widely distributed and has broad
prospects for development and utilization [1]. M. (L.) Pall.
has antiedema, antioxidant, and hepatoprotective properties

[1–3]. In ancient China, M. (L.) Pall. was used to treat a vari-
ety of chronic diseases [4]. M. (L.) Pall. is often used to
reduce postoperative edema and promote early recovery
after clinical orthopedic and sports medicine procedures.
However, the function of M. (L.) Pall. in chronic skeletal
muscle injury is unproven.
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Skeletal muscle injuries are one of the most common
sports injuries, accounting for approximately 40% of
sports-related injuries in older people [5]. Muscles can be
damaged by external forces, biological factors, and chemical
factors [6, 7]. Excessive chronic injuries will lead to scar for-
mation and fat infiltration [8, 9]. Therefore, understanding
the factors influencing muscle repair can help promote skel-
etal muscle repair [10, 11]. Recent topical studies have
explored the spatial-positional interactions of skeletal mus-
cle regeneration and their underlying mechanisms to find
new ways to improve the repair potential of skeletal muscles
[12, 13]. Recent studies have found that the positional infor-
mation driving limb muscle patterns are contained in the
fibroblasts of the connective tissues [14]. Our previous stud-
ies have annotated and functionally analyzed these cells [15].
These cells have extensive intercellular interactions via the
ligand-receptor pathway.

Liu et al. isolated 29 compounds from M. (L.) Pall. alco-
holic extracts. They have good antioxidant activity and play
an important role in anti-inflammatory and antioxidant func-
tions [16]. Recent studies have also found that M. (L.) Pall.
promotes wound repair [17]. This study provides a new way
to explore these effects of M. (L.) Pall. in skeletal muscles by
targeting the ligand-receptor pathway, which is important
for drug function [18, 19]. Studying the effects of M. (L.) Pall.
in the skeletal muscle fibroblasts allows us to explore its poten-
tial mechanisms in muscle repair patterns.

In this study, network pharmacology and molecular
docking approaches have been used to predict the possible
regulatory targets of M. (L.) Pall. in muscle repair patterns,
to reveal the potential molecular mechanisms of this com-
pound in regulating muscle repair patterns and provide
new ideas for the treatment of skeletal muscle injury.

2. Materials and Methods

2.1. Screening for Active Ingredients and Targets of M. (L.)
Pall. The active ingredients of M. (L.) Pall. were obtained from
previous research results [16]. The active ingredients of M. (L.)
Pall. were screened from the Traditional Chinese Medicine
Systems Pharmacology Database and Analysis Platform
(TCMSP) [20] database using the following conditions: oral
bioavailability ðOBÞ ≥ 30% and drug − likeness ðDLÞ ≥ 0:1820
. Potential target genes of M. (L.) Pall. were obtained by con-
verting the screened active ingredients into corresponding tar-
gets through the UniProt database (http://www.uniprot.org/).

2.2. “Drug-Component-Target” Network Construction. A
“drug-component-target” network structure was con-
structed with the active ingredient and corresponding target
genes of M. (L.) Pall. using the Cytoscape (version 3.7.2)
software [21]. Each node and edge in the network was ana-
lyzed to determine the relationship between the diseases
and drug actions.
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Figure 1: Research flow chart.

Table 1: Six active ingredients of M. (L.) Pall. were screened.

Molecule name Molecule ID OD Drug-likeness

Scoparone MOL001999 74.75 0.09

Ferulic acid MOL000360 39.56 0.06

Soyasapogenol E MOL003651 37.64 0.75

Beta-sitosterol MOL000358 36.91 0.75

Luteolin MOL000006 36.16 0.25

Salicylic acid MOL001801 32.13 0.03
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2.3. Single-Cell Dataset-Based Receptor-Ligand Marker
Analysis. Seurat results from our previous study of single-
cell data analysis were used to perform ligand-receptor
maker analysis [15]. Muscle-tendon junction (MTJ) cells
were obtained from the GEO dataset of GSE168153 [14].
GSE168153 is a single-cell dataset describing fibroblasts in
muscle tendon junctions. Receptor-ligand marker analysis
of the MTJ cells was performed using the CellphoneDB algo-
rithm (v2.1.2), to analyze the cellular interactions in MTJ
regions [22]. After filtering with P < 0:05, key intercellular
interactions were identified. The results were visualized
using the dot_plot function in the CellphoneDB and the R
software.

2.4. Screening and Molecular Docking Validation for the M.
(L.) Pall. Cellular Action Targets in MTJs. R language and
VennDiagram packages were used to obtain the M. (L.) Pall.
targets on the MTJ cells [23]. The active ingredients of the
drug were pretreated as shown in the following: screening
of key targets and active ingredients in “drug-component-

target,” downloading 3D structures of active ingredients
(mol2 format) from PubChem database, hydrogenation,
charge addition, root detection of ligands, search and defini-
tion of rotatable bonds, etc. [24]. The 3D structure of the tar-
get protein was downloaded from the Protein Data Bank, all
hydrogen atoms were added, Gasteiger charges were calcu-
lated, and nonpolar hydrogens were combined and saved
in the pdbqt format using the AutoDock software [25].
The parameter exhaustiveness was set to 20, and other
parameters were set to default values. AutoDock Vina 1.1.2
was used for molecular docking, and PyMOL was used for
plotting [26].

2.5. Molecular Dynamics Simulation. To perform molecular
dynamics simulations (MD), the force field parameters of
luteolin were generated in this study using ACPYPE Server,
an online tool [25, 27, 28]. Protein force fields are described
by CHARMM [29]. TIP3P is for water modeling. The simu-
lation was performed after a slow increase in system temper-
ature from 0K to 307K. MD simulations were performed
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Figure 2: Potential role of M. (L.) Pall. (a) “drug-component-disease target genes” network; (b) drug target-MTJ ligand-receptor Venn
diagram; (c) correlation analysis of five receptor-ligand-related genes (CCL2, EGFR, MMP2, MET, and VEGFA) demonstrated by the
chord diagram.
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using the GROMACS software under constant temperature
and pressure conditions as shown in previous studies. Visu-
alization of the results of molecular dynamics simulations
was done using PyMOL [26, 29, 30].

2.6. Gene Ontology (GO) Functional Enrichment Analysis
and Kyoto Encyclopedia of Genes and Genomes (KEGG)
Pathway Enrichment Analysis. The study species was homo
sapiens, and molecular function (MF), biological process
(BP), and cellular component (CC) were used for GO
enrichment analysis as previous researches [31–33]. The sig-
nificance of the KEGG pathway was set at P < 0:05 to search
for the major functional and in vivo pathways significantly
enriched by the active ingredient targets. Bar graphs of the
pathways in the GO and KEGG pathway enrichment analy-
sis were plotted using the clusterProfiler toolkit in R and
ggplot [19, 34].

2.7. Statistical Analysis. Statistical analyses were performed
using the R software (version 3.6.3), and differences were
significant at P < 0:05. Spearman’s method was used for cor-
relation analysis, and the results of the analysis were pre-
sented as chord plots using the circlize package of the R
software (version 0.4.12) [35].

3. Results

3.1. Screening for Potentially Active Compounds in M. (L.)
Pall. Figure 1 depicts the research flow of this study. The
active ingredients of M. (L.) Pall. are based on previous
research results [16]. Six active ingredients were screened
according to the following conditions: OB ≥ 30% and DL ≥
0:18 (Table 1).

3.2. Potential M. (L.) Pall. Targets of on the MTJ Cells. Five of
the six active ingredients had 87 corresponding targets (after
excluding duplicates). The “herbal-active-component-dis-
ease target gene” regulatory network was constructed
(Figure 2(a)). The red oval in the diagram represents the
gene corresponding to the target protein. The green triangle
represents the active ingredient. MTJ cells from the
GSE168153 dataset were used for ligand-receptor analysis.
All 246 potential ligand-receptor key genes were extracted.
Cross-talk analysis revealed that M. (L.) Pall. might regulate
the proteins of five genes (Figure 2(b)). Correlation analysis
revealed that the expressions of CCL2, VEGFA, MET,
MMP2, and EGFR were positively correlated with each other
(Figure 2(c)).

3.3. Potential Effects of M. (L.) Pall. on MTJ Cells. As previ-
ously described, the data and cellular annotations for
ligand-receptor maker analysis were obtained from
GSE168153 database and our previous study, respectively.
The receptor-ligand marker analysis of the MTJ cells was
performed using the CellphoneDB algorithm (v2.1.2)
(Figure 3(a)). The intersection analyses between the target
enrichment pathways of M. (L.) Pall. and ligand receptor-
related pathways of MTJs are shown in Figure 3(b). These
target genes were found to be enriched in 28 KEGG path-
ways (EGFR tyrosine kinase inhibitor resistance, cancer-
related pathway, epithelial cell signaling in Helicobacter
pylori infection, rheumatoid arthritis, endocrine resistance;
ErbB, MAPK, PI3K−Akt, Rap1, HIF−1, relaxin, estrogen,
GnRH, and AGE−RAGE signaling pathways in diabetic
complications; and so on). This suggests that M. (L.) Pall.
may target some intercellular signaling pathways, such as
neuropeptide-related, tumor-related, and stress direction-
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Figure 3: Ligand receptor analysis of MTJs targeted by M. (L.) Pall. (a) The key intercellular ligand-receptor interactions in MTJs, the
vertical coordinate is the type of receptor-ligand linkage, and the horizontal coordinate is the corresponding cell-cell interaction; (b)
“drug-component-disease target genes” network-MTJ ligand receptor-related pathway intersection analysis, “ALL” represents targets that
M. (L.) Pall. may target, and “targeted” represents ligand-receptor-associated genes in (a); (c) enriched KEGG pathways.
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related pathways (Figures 2(b) and 2(c)). These genes were
also enriched in metabolic functions (MF), including trans-
membrane receptor protein tyrosine kinase, receptor-ligand,
and growth factor activities. Moreover, these genes were
found to be enriched in cellular functions (CC), including
coated vesicle, clathrin-coated vesicle membrane, and coated
vesicle membrane. In biological processes (BP), these genes
are enriched in the positive regulation of protein kinase B
signaling, peptidyl-tyrosine modification, and peptidyl-
tyrosine phosphorylation (Figures 4(a) and 4(b)).

3.4. Regulatory Relationship and Molecular Docking Analysis
of Active Ingredient-Target Proteins of M. (L.) Pall. Pharma-
cological database analysis suggests that scoparone, the
active ingredient of M. (L.) Pall. targets CCL2 and luteolin
targets VEGFA, MMP2, MET, and EGFR (Figure 5(a)).
CCL2, VEGFA, MMP2, MET, and EGFR were molecularly
docked to the two key pharmacodynamic components (sco-
parone, luteolin) of M. (L.) Pall. The lowest docking binding
energy is shown in Figure 5(b). These molecular dockings
are visualized in Figures 6(a)–6(e). The hydrogen bonds
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Figure 4: Enrichment analysis of core target proteins of M. (L.) Pall. (a) GO and KEGG enrichment analyses of core target proteins. (b)
Distribution of the proteins in (a) from the GO and KEGG pathways.
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are indicated using dashed lines, and the distances between
the hydrogen bonds and the compounds are also marked.
The scoparone target binding CCL2 protein has a free
energy of -6.5 kJ/mol. The free energies of luteolin target
binding energy for VEGFA, MMP2, MET, and EGFR pro-
teins are -8.9, -10.8, -7.7, and -6.9 kJ/mol, respectively. The
minimum binding energies of these two key components
to CCL2, VEGFA, MMP2, MET, and EGFR were less than
-5.0 kJ/mol suggesting that M. (L.) Pall. exerts its effects
mainly by targeting these components through scoparone
and luteolin.

3.5. Molecular Dynamics Simulations of MMP2 and Luteolin.
In the above molecular docking analysis, MMP2 and luteolin
had the minimum binding free energy. The free energy of
luteolin target binding energy for MMP2 is -10.8 kJ/mol.
To further assess the binding efficacy of MMP2 and luteolin,
MD simulations were performed (Figure 7(a)). Due to the
interaction between MMP2 and luteolin, the root mean
square displacement (RMSD) was found to increase at first
and then stabilise (Figure 7(b)). The radius of gyration
(Rg) of the MMP2-lutelin complex was also found to stabi-
lise with the time passing (Figure 7(c)). In addition, the
number of hydrogen bonds formed by MMP2 with luteolin
remained in a relatively stable range (Figure 7(d)). The over-
all free energy in the system was also found to be stable
(Figure 7(e)). Finally, MD simulations revealed that luteolin
can stably target binding to MMP2.

4. Discussion

To the best of our knowledge, this study is the first to assess the
impact of M. (L.) Pall. on the musculotendinous junction.
According to the TCMSP database, M. (L.) Pall. has five active
ingredients (OB ≥ 30% and DL ≥ 0:18) potentially acting on
87 targets. Therefore, the “herb-active ingredient-disease tar-
get gene” network was constructed. We found that M. (L.)
Pall. influences the interaction of fibroblasts in muscle-
tendon junctions and affects muscle repair patterns through
the modulation of five ligand receptor-related proteins
(CCL2, VEGFA, MMP2, MET, and EGFR) using the active
ingredients luteolin and scoparone. And MD simulations
revealed that luteolin can stably target binding to MMP2.

Scoparone is a naturally occurring coumarin found in
green plants. It is purified from a lipid-lowering herb that
reduces the proliferation of human peripheral blood mononu-
clear cells, scavenges reactive oxygen species, inhibits tyrosine
kinase, and enhances the production of prostaglandins [36].
Recent studies have confirmed that scoparone has various bio-
logical activities such as antifibrosis, antioxidant, and fat dif-
ferentiation inhibition [37–39]. Scoparone was also found to
inhibit high-glucose-induced activation of the ERK1/2 signal-
ing pathway in thylakoid cells and played an active role in
inhibiting the accumulation of extracellular matrix in the
high-glucose microenvironment [40]. In this study, scoparone
was found to target CCL2. CCL2 is a ligand for CCR2. Inhibi-
tion of CCR2 after injury promotes skeletal muscle

(a) (b)

(c) (d)

(e)

Figure 6: Schematic representation of molecular docking of target proteins with the active ingredients of M. (L.) Pall. (a) Interaction of
scoparone with target CCL2 protein. (b) Interaction of luteolin with the target VEGFA protein. (c) Interaction of luteolin with the target
MMP2 protein. (d) Interaction of luteolin with the target MET protein. (e) Interaction of luteolin with target EGFR protein. The dashed
line indicates the hydrogen bond and marks the distance between the hydrogen bond and the compound.
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regeneration and function recovery [41, 42]. Our study sug-
gests that scoparone may inhibit the function of CCR2 by
binding to CCL2, and this may be a potential mechanism for
M. (L.) Pall. to promote skeletal muscle regeneration.

Recent studies have found that luteolin protects skeletal
muscles from attrition caused by inflammation and downre-
gulates the expression of proteins associated with muscle
catabolism [43]. Luteolin increased muscle strength in
fatigued subjects and improved skeletal muscle contraction
during ischemia and reperfusion [44]. In this study, luteolin
targeted VEGFA, MMP2, MET, and EGFR. Luteolin inhibits
VEGFA and affects microvascular networks formed during

neovascularization in mice [45]. In tumors, luteolin inhibits
MMP2 and MET [46–48]. Luteolin also inhibits down-
stream signaling molecules activated by EGFR, especially
the Akt and MAPK signaling pathways [49].

Luteolin was found to target MMP2 in MD simulations.
Elevated levels of MMP2 expression are associated with insu-
lin resistance due to extracellular matrix (ECM) remodelling
in skeletal muscle [50]. This suggests that luteolin targeting
ofMMP2may have the potential to improve insulin resistance
due to ECM. MMP2 has been found to be widespread in skel-
etal muscle, and therefore, the study of its function is impor-
tant for exploring the repair of skeletal muscle after injury
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[51]. For example, both exogenous hydrogen sulphide and
electroacupuncture treatments can improve skeletal muscle
injury and reduce skeletal muscle fibrosis by downregulating
MMP2 and related pathways [5, 52]. In the present study,
luteolin was found to target MMP2, which may contribute to
skeletal muscle injury repair.

This study provides new data supporting the treatment of
sports injuries using M. (L.) Pall. and provides a theoretical
basis for clinical application. All the core components of M.
(L.) Pall. were screened and docked successfully with their
key targets. The core components of M. (L.) Pall. have good
binding activities to their key targets, suggesting that they
can effectively treat skeletal muscles. However, more Chinese
medicine databases need to be used, and target prediction
databases need to be improved. This study did not directly
examine the chronic muscle injury dataset, but rather by
examining the MTJ fibroblastic dataset, which may be biased.
Furthermore, more in vivo and ex vivo clinical studies are also
needed to validate the mechanisms of action M. (L.) Pall. in
the treatment of chronic skeletal muscle injury.

5. Conclusion

In summary, this study demonstrates that M. (L.) Pall. can
skeletal muscle injury by acting on CCL2, VEGFA, MMP2,
MET, and EGFR, through luteolin and scoparone. They are
the key active ingredients of M. (L.) Pall. and affect intercellu-
lar signaling, such as neuropeptide-related, tumor-related, and
stress-related pathways. M. (L.) Pall. may influence the inter-
action of fibroblasts in muscle tendon junctions to affect mus-
cle repair patterns. Molecular docking analysis validated some
of the network pharmacology results and confirmed the mul-
ticomponent, multitarget, and multipathway characteristics of
M. (L.) Pall. in the treatment of skeletal muscle injury.
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