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CCL = CC chemokine ligand; C/EBP = CCAAT/enhancer binding protein; CIA = collagen induced arthritis; CXCL = CXC chemokine ligand; DC =
dendritic cell; IFN = interferon; IL = interleukin; IL-17R = IL-17 receptor; MAPK = mitogen-activated protein kinase; NF-κB = nuclear factor-κB; OPG
= osteoprotegerin; RA = rheumatoid arthritis; RANKL = receptor activator of nuclear factor-κB ligand; TNF = tumor necrosis factor; TRAF = tumor
necrosis factor receptor-associated factor.
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Introduction
The cytokine IL-17, originally termed CTLA-8, was isolated
as a CD4-specific transcript from a rodent cDNA library
[1]. Shortly thereafter, IL-17 was discovered in humans,
and its receptor (IL-17R) was cloned and characterized
[2–4]. The most striking feature of both IL-17 and IL-17R
is that they are distinct in sequence from previously
described cytokine/receptor families. However, they are
highly homologous among mice, rats, and humans. In
addition, an IL-17R homolog in zebrafish (termed SEF
[similar expression of FGF genes]) has been described
that functions in embryonic development [5], and
mammalian homologs of SEF were also recently identified
[6,7]. Consequently, IL-17 and IL-17R are now recognized
to be the founding members of an emerging new family
that, in mammals, contains at least six cytokines and five
receptors (Table 1 [8,9]). This review focuses primarily on
the original IL-17 cytokine (also known as IL-17A),

because its roles in bone physiology and arthritis are most
clearly defined, but the biology of the remaining family
members promises to be a fascinating emerging story
within the field of ‘high numbered’ cytokines.

Interleukin-17 and interleukin-17 receptor
structure
Even though IL-17 and IL-17R have been recognized for
many years, there is still much to learn about their
respective structures and functions. IL-17 is secreted
primarily by CD4+ T cells in a mix of both nonglycosylated
and N-glycosylated forms, which migrate in SDS-PAGE at
28 kDa and 33 kDa, respectively [2]. Secreted IL-17
apparently exists as a homodimer, but the specific contact
points between IL-17 subunits or between IL-17 and
IL-17R have never been defined [2,10]. IL-17B and IL-17F
also exist as dimers [10,11]. While the amino acid
sequence of IL-17 did not permit it to be classified as a
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member of any known cytokine families, X-ray
crystallographic studies of IL-17F – its closest homolog –
have been performed. Interestingly, the three-dimensional
structure of IL-17F takes on a ‘cystine knot fold’, and hence
resembles the neurotrophin family of growth factors, the
canonical member of which is nerve growth factor [10].

The IL-17R is also particularly interesting because of its
unique primary structure. It contains a single trans-
membrane domain and has an unusually large cytoplasmic
tail [4,12]. This receptor is expressed in most cell types.
One exception is in naïve T cells in mice, which do not
bind IL-17 detectably (Dong C, personal communication).
However, several mouse and human T cell lines do contain
detectable mRNA encoding IL-17R, and so this receptor
may be present in at least low levels in T cells (Gaffen SL,
unpublished data) [12]. As a result of its ubiquitous
expression, nearly all cells are potential targets of this
cytokine, but it is still unclear which cells in vivo are the
most physiologically relevant targets. Most studies to date
have been performed in cells of fibroblast/osteoblast or
epithelial origin, because these appear to be particularly
responsive to IL-17. Although there was originally thought
to be a unique cytokine–receptor relationship between IL-
17 and IL-17R, more recent studies indicate that IL-17F
binds, albeit weakly, to IL-17R [10]. Whereas IL-17 is
composed of a homodimer of identical subunits, the
configuration and stoichiometry of the receptor remain
undefined. In this regard, discrepancies between IL-17
binding constants and concentrations needed to elicit
biologic responses have hinted that an additional subunit
might be involved in IL-17 signaling [10,12]. However,
IL-17R is clearly an essential subunit, because cells from
IL-17R–/– mice fail to bind to IL-17.

Sources, regulation, and biologic functions of
interleukin-17
IL-17 is produced almost exclusively by T lymphocytes,
primarily those of the CD4+ memory (CD45RO+)
compartment [2,13,14]. Consequently, IL-17 does not
obviously polarize to either the T-helper-1 or -2 lineages,
although the literature is somewhat inconsistent in this
regard [15–19]. Consistent with its production by memory
cells, several recent studies have shown that IL-23, which
is produced by dendritic cells (DCs) and acts mainly on
memory T cells, is a potent stimulator of IL-17 secretion
[20,21]. However, it should be noted that signaling
through the T-cell receptor alone is sufficient to promote
IL-17 production even in the absence of DCs or IL-23 (Liu
X, Clements J, Gaffen S, unpublished data), and IL-23
deficient mice are still capable of producing IL-17, albeit at
reduced levels [22]. In addition, IL-15 has been shown to
induce IL-17 production [23].

The gene encoding human IL-17 resides on human
chromosome 6, adjacent to the gene encoding IL-17F
[10], whereas other IL-17 family members are located
elsewhere in the genome [24]. We recently showed that a
minimal regulatory promoter element exists about 250
bases upstream of the transcriptional starting point [25].
In this regard, the signaling pathways leading to IL-17
gene regulation by any of these stimuli are poorly defined,
although several studies indicated that the calcineurin/
NFAT (nuclear factor of activated T cells) pathway is
essential [23,25] (Liu X, Clements J, Gaffen S,
unpublished data). Other studies also indicate a role for
the cAMP/protein kinase A pathway, although this signal
may ultimately converge on NFAT signaling [13,14,26].
Like many cytokines, IL-17 gene expression is likely to be

Table 1

The IL-17 superfamily: cellular sources, receptors, and major functions

Cytokine Other names Cellular source Receptor Major functions

IL-17 IL-17A, CTLA-8 T cells (memory) IL-17R Inflammation, neutrophil recruitment, 
(also known as, IL-17AR) cytokine secretion, bone metabolism

IL-17B Multiple organs IL-17BR Cytokine secretion, inflammation
(also known as, IL-17Rh1/Evi27)

IL-17C Unknown Unknown Regulation of Th1 cytokines

IL-17D IL-27 Multiple organs Unknown Cytokine secretion

IL-17E IL-25 Th2 IL-17BR Regulation of Th2 cytokines
(also known as, IL-17Rh1/Evi27)

IL-17F ML-1 CD4+ T cells and IL-17R? Angiogenesis, cytokine secretion, 
monocytes regulation of Th1 cytokines

HVS13 vIL-17 Herpesvirus saimiri IL-17R? Unknown (not required for cellular 
infected cells transformation)

References and further information on this family can be found in the report by Moseley and coworkers [24]. CTLA, cytotoxic T-lymphocyte
associated antigen; IL, interleukin; IL-17R, interleukin-17 receptor; Th, T-helper.
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at least partially controlled at the level of mRNA stability,
because AU-rich elements exist in the 3′-untranslated
region that could target the transcript for rapid degra-
dation [2,27,28]. Clearly, much still remains to be learned
about how IL-17 expression is controlled biologically.

Functionally, IL-17 has been classified as a pro-
inflammatory mediator, based on its ability to induce a
wide array of inflammatory effectors in target cells (Fig. 1).
Among these are cytokines (e.g. IL-6, tumor necrosis
factor [TNF]-α, IL-1β, IFN-γ, and granulocyte colony-
stimulating factor), chemokines (e.g. CXC chemokine
ligand [CXCL]2/MIP-2/IL-8, CXCL1/Groα/KC, CC
chemokine ligand [CCL]2/MCP-1, CCL5/RANTES, and
CXCL5/LIX), and other effectors (e.g. cyclo-oxygenase-2,
prostaglandin E2, nitric oxide, and intercellular adhesion
molecule-1; for review [8]). Moreover, IL-17 cooperates
either additively or synergistically with various inflammatory
cytokines or agonists, thus placing this cytokine in the
midst of a complex network that amplifies inflammation
(see below). In this sense, IL-17 appears to function as an
activator of the innate immune system, analogous to TNF-
α and IL-1β, with which it shares many target genes.
However, because IL-17 is produced by T cells rather
than by monocytes or other innate cells, it presumably
comes into play during adaptive or memory immune
responses. Consequently, the function of IL-17 may be to
trigger innate immune responses shortly after a second
encounter with antigen, when the memory response is
activated but when concentrations of antigen are still too
low to trigger a full-scale innate immune response.

Interleukin-17 as a synergistic cytokine
A prominent feature of IL-17 is its ability to synergize with
other cytokines to enhance inflammation (for review [29]).
In particular, IL-17 has been shown to synergize with IL-1β
and TNF-α to drive expression of numerous inflammatory
effectors [18,30–35]. IL-17 also synergizes with CD40
ligand, a TNF receptor family member, to upregulate target
gene expression [36]. Similarly, IL-17 synergizes with
IFN-γ to promote chemokine gene expression [37].
Microarray analysis of an osteoblast cell line examining
synergy between IL-17 and TNF-α revealed that all genes
induced by IL-17 alone were induced more potently in
cooperation with TNF-α. This finding suggests that a
primary function of IL-17 may be to amplify ongoing
inflammatory responses [34,35].

Although the molecular mechanisms that mediate cytokine
synergy are not fully understood, several have been
proposed. For example, IL-17 cooperates with TNF-α or
IL-1β to enhance mRNA stabilization of the CXCL1/Groα/
KC chemokine transcript in peritoneal mesothelial cells
[33]. In its synergy with CD40 ligand, IL-17 upregulates
expression of CD40, thus enhancing all CD40 ligand
dependent responses [36]. However, this is not true of

IL-17 synergy with TNF-α, because IL-17 does not appear
to enhance TNF receptor expression in osteoblasts [35].
Although IL-17 synergy with IFN-γ has been reported to
occur via enhancement of the nuclear factor-κB (NF-κB)
pathway [37], this is not the mechanism by which IL-17
synergizes with TNF-α [35]. Rather, we recently showed
that IL-17 synergizes with TNF-α to promote IL-6
production by upregulating expression of CCAAT/
enhancer binding protein (C/EBP)δ (also known as
NF-IL-6β), a member of the bZIP family of transcription
factors. The conserved C/EBP site in the IL-6 proximal
promoter is essential for expression of IL-6, and thus
cooperative upregulation of C/EBPδ mediated by IL-17
and TNF-α helps in turn to enhance transcription of the
IL-6 gene [35,38]. Another report suggested that
p38/mitogen-activated protein kinase (MAPK) may be a
target of cooperative signaling between IL-17 and TNF-α
[39]. In addition to transcription and RNA stability,
synergistic signaling may affect regulation of chromatin

Figure 1

Opposing roles of IL-17 in bone turnover. IL-17 is produced by T cells
(particularly memory T cells), and acts on a wide variety of target cells
to trigger expression of inflammatory effectors. Most of these effectors
have been shown to have an impact on bone metabolism. Those
factors that promote osteoclastogenesis indirectly favor bone
destruction. Conversely, chemotactic factors promote neutrophil
recruitment and activation, which can exert both bone protective and
bone destructive effects. G-CSF, granulocyte colony-stimulating factor;
ICAM, intercellular adhesion molecule; IFN, interferon; IL, interleukin;
LIX, LPS-inducible CXC chemokine; MCP, monocyte chemotactic
protein; PGE2, prostaglandin E2; RANKL, receptor activator of nuclear
factor-κB ligand; TNF, tumor necrosis factor.



243

remodeling, cytokine secretion, and possibly other levels
of gene or protein regulation. Given the proclivity of IL-17
to function in concert with other cytokines, it will be very
important to dissect the multiple mechanisms by which
this cytokine promotes cooperative/synergistic signaling.

The immune system and bone homeostasis
Bone undergoes a continuous cycle of remodeling that is
required for its maintenance and healing, and recent
advances have elucidated many of the molecular
mechanisms that regulate or have an impact on this
process (for review [40,41]). Two major types of cells are
involved in bone remodeling. Osteoblasts, cells that are
crucially involved in bone formation, are derived from
mesenchymal stem cells and are closely related to
fibroblasts, adipocytes, and muscle cells [42].
Osteoclasts, the cells responsible for bone degradation,
are derived from hematopoietic precursors, and are thus
related to macrophages and DCs [43]. In normal
physiology, osteoblasts trigger the formation of
osteoclasts, thus helping to maintain homeostasis in bone
remodeling. Conversely, the bone resorbing activity of
osteoclasts causes the release of various growth factors
and bone cell mitogens that induce proliferation and
differentiation of osteoblasts [40]. Importantly, a number of
pathologic conditions adversely affect bone by altering the
balance between osteoblast and osteoclast activity,
causing localized or systemic osteoporosis (or, less
frequently, osteopetrosis) [41,44]. Such conditions may
have severe medical and economic consequences. For
example, it is estimated that as many as 15% of adults
suffer from periodontal disease severe enough to cause
tooth loss, and the acute crippling in advanced rheuma-
toid arthritis (RA) can have devastating consequences for
the quality of life of its victims. Therefore, it is paramount to
understand the network of factors that control bone homeo-
stasis, in order to develop optimal avenues of intervention
and treatment in diseases that involve bone loss.

Recent discoveries have significantly advanced our
understanding of the molecular basis for bone turnover
(for review [41,45]). At a molecular level, osteoblasts
express a receptor called RANKL (receptor activator of
NF-κB ligand; also termed osteoprotegerin [OPG] ligand).
RANKL is a member of the TNF receptor superfamily and
is central in controlling osteoclastogenesis, and hence
bone degradation [46,47]. RANKL acts by engaging its
counter-receptor RANK (receptor activator of NF-κB) on
osteoclast precursors, thereby triggering their maturation
and activation in conjunction with signals from the growth
factor macrophage colony-stimulating factor [48]. The
interaction between RANK and RANKL can be further
modulated by a soluble ‘decoy’ receptor called OPG,
which also binds to RANK but does not induce osteo-
clastogenesis [49]. The relative balance between OPG
and RANKL dictates the magnitude of osteoclastogenesis.

For many years it has been recognized that the immune
system exerts a profound effect on bone cell activity,
explaining why infectious diseases such as periodontal
disease or autoimmune diseases such as RA are
associated with bone destruction (for review [50]). In
particular, both T cells and inflammatory cytokines have
been implicated in this process. Interestingly, activated T
cells inducibly express RANKL, and can thus bypass
osteoblasts in triggering osteoclastogenesis, ultimately
tipping the balance in favor of bone destruction [51].
Inflammatory cytokines such as TNF-α or IL-1β (and IL-17;
see below) act on osteoblasts to upregulate RANKL,
either directly or indirectly through the production of other
cytokines/chemokines [52]. Clinical strategies to block
cytokines such as TNF-α and IL-1β have been quite
effective in treating RA, and efforts are underway to
influence the RANK–RANKL axis directly through the
therapeutic use of OPG [45,53].

Evidence for a role of interleukin-17 in bone
and arthritis
A number of studies have implicated IL-17 in bone
metabolism. Most prominently, IL-17 is found at
significantly elevated levels in the synovial fluid of patients
with RA, and is present in osteoarthritic joints as well [54].
IL-17 has also been found in patients with relatively severe
periodontitis, where it could potentially contribute to bone
destruction [55]. In addition, IL-17 exerts many of its
effects on bone cells in culture [54,56], including
induction of both membrane-bound and soluble RANKL in
primary mouse osteoblast/stromal cell cultures [52]. IL-17
is strongly implicated in several mouse models of RA.
Enhancement of RANKL following IL-17 stimulation was
not observed in several osteoblast or stromal cell lines,
including MC3T3-E1 or ST-2 cells (Kirkwood KL, personal
communication). However, in vivo bone erosion mediated
by over-expression of IL-17 has been shown to occur
through alterations in the RANKL/OPG ratio [57]. Further-
more, IL-17 knockout mice are highly resistant to collagen
induced arthritis (CIA) [58], and blocking IL-17 reduces
inflammatory symptoms and bone loss in mice with CIA
[59,60]. Conversely, excess IL-17, as provided by adeno-
virus-mediated gene vectors, exacerbates disease [61–64].
Remarkably, mice deficient in the T cell costimulatory
molecule ICOS (inducible co-stimulator) are also profoundly
resistant to CIA, and the only cytokine deficiency detected
in these mice was a reduction in IL-17 [65].

It is also striking that most IL-17-induced factors tend to
be bone resorptive in nature (Fig. 1; for review [66]). For
example, IL-6 has been shown to be a contributing factor
to estrogen mediated bone loss [67] as well as bone loss
due to periodontal disease [68]. Similarly, CXCL8/IL-8,
prostaglandin E2, and nitric oxide have all been implicated
in the pathogenesis of periodontitis [69]. However, the
role played by neutrophils in bone turnover is more

Available online http://arthritis-research.com/content/6/6/240
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complex. During chronic inflammation, neutrophils are
thought to contribute to bone destruction. However,
neutrophils are generally considered to be bone protective
in the context of periodontal disease-induced bone loss
(for review [70,71]). IL-17 is a potent activator of
neutrophil recruitment and activation, due in large part to
its ability to promote chemokine secretion. Thus, IL-17
could potentially play a positive role in situations where
neutrophil activity is bone protective.

In summary, IL-17 clearly has an impact on bone
metabolism, and in the context of arthritis it appears to be
a bone destructive cytokine.

Interleukin-17 in other diseases
IL-17 has been implicated in numerous other disease
settings. Intriguingly, IL-17 is highly homologous to an open
reading frame found in the T cell tropic Herpesvirus saimiri,
although its physiologic significance within the context of
this virus remains unknown [12,72]. However, addition of
the gene encoding murine IL-17 into the vaccinia virus
enhanced its virulence significantly, suggesting a possible
pathogenic role for this cytokine in viral infections [73]. The
role played by IL-17 in tumorigenesis is complex. IL-17 was
shown to promote growth and tumorigenicity of human
cervical tumors in athymic (nude) mice [74]. In contrast, IL-
17 also inhibited the growth of hematopoietic tumors in
immunocompetent but not nude mice [75]. IL-17 has also
been found at elevated levels in the context of bacterial
infections, such as periodontitis [55] and Helicobacter
pylori infections [76]. Finally, IL-17 plays an important role
in immune responses in the lung. Specifically, IL-17R–/–

mice are highly susceptible to lung airway infections due to
a failure to recruit neutrophils [77]. Human bronchial
epithelial cells induce chemokines following IL-17
stimulation, and local administration of IL-17 in mouse lung
tissue causes neutrophil recruitment and increases in
elastase and myeloperoxidase activities (for review
[78,79]). Finally, data from IL-17–/– and IL-17R–/– mice
indicate that this cytokine is also involved in a variety of
other T cell dependent events. For example, delayed type
hypersensitivity and contact hypersensitivity responses are
severely impaired in IL-17–/– mice [80]. Interestingly,
attempts to over-express IL-17 transgenically have not
been successful, perhaps because of a generalized
inflammation that is lethal to developing embryos [81].
Thus, IL-17 is important for numerous immune functions
related to regulation of inflammation, and can play both
pathogenic and protective roles in vivo.

Interleukin-17 and interleukin-17 receptor
signaling
The signaling mechanisms used by IL-17 to regulate its
downstream targets are surprisingly poorly defined. As
indicated above, the IL-17R is the founding member of a
new subclass of cytokine receptors that do not bear

homology to type I or II cytokine receptors, TNF receptors,
or other receptor families [12,82]. Because so little is
known about signaling pathways induced by this class of
receptor, few predictions can be made based its primary
amino acid structure.

Recently, however, it was suggested that IL-17 receptors
may contain a putative TIR (Toll/IL-1 receptor) domain in
the intracellular region [7], and the IL-17R tail also
contains at least two putative TNF receptor-associated
factor (TRAF)-binding domains (Gaffen SL, unpublished
observations) [83]. Although early reports suggested that
IL-17 activates the transcription factor NF-κB [12], careful
comparisons show that NF-κB induction is generally quite
modest as compared with that triggered by TNF-α or Toll-
like receptor agonists [35]. Other signaling pathways
implicated in IL-17 signaling include the MAPK, protein
kinase A and JAK/STAT (Janus kinase/signal transducer
and activator of transcription) pathways (for review [8]).
However, only in a few cases have these pathways been
linked to specific signaling outcomes. One study showed
convincingly that IL-17 recruits the adaptor molecule
TRAF6 in murine embryonic fibroblast cells, which are
among the few cell types that induce NF-κB strongly. In
these cells, TRAF6 lies upstream of signaling leading to IL-
6 and intercellular adhesion molecule-1 expression [84].
Based on paradigms in the TNF and Toll-like receptors,
TRAF6 probably also lies upstream of MAPK signaling,
although this remains to be proven for the IL-17R [85]. In
another study, the IL-17-induced MAPK pathway was
linked to IL-6 gene expression via stabilization of IL-6
mRNA [39]. Similarly, IL-17 alone mediates cyclo-
oxygenase-2 mRNA stability in a p38-MAPK dependent
manner [86]. To date, no detailed mutagenesis studies of
IL-17R have been performed, and so regions of the
receptor required for activation of various signaling
pathways have not yet been determined.

Conclusion
IL-17 is the prototypical member of a fascinating new
family of cytokines. Although it is clear that IL-17 is
proinflammatory in nature, its physiologic significance is
only just beginning to be elucidated. The unique structure
of IL-17 and its receptor hint at exciting new discoveries in
the area of signal transduction as well as potential
therapeutic intervention strategies. With respect to
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arthritis, IL-17 appears to be largely pathogenic. However,
findings in IL-17 and IL-17R knockout mice indicate a
nonredundant role for this cytokine in regulating host
immunity to infection. Future work on the IL-17 family will
no doubt yield many surprises, and will probably establish
new paradigms for cytokine biology.
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