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Human norovirus (HuNoV) GII.P17-GII.17 (Kawasaki2014 variant) reportedly emerged

in 2014 and caused gastroenteritis outbreaks worldwide. To clarify the evolution of

both VP1 and RNA-dependent RNA polymerase (RdRp) regions of GII.P17-GII.17,

we analyzed both global and novel Japanese strains detected during 2013–2017.

Time-scaled phylogenetic trees revealed that the ancestral GII.17 VP1 region diverged

around 1949, while the ancestral GII.P17 RdRp region diverged around 2010. The

evolutionary rates of the VP1 and RdRp regions were estimated at ∼2.7 × 10−3 and

∼2.3 × 10−3 substitutions/site/year, respectively. The phylogenetic distances of the VP1

region exhibited no overlaps between intra-cluster and inter-cluster peaks in the GII.17

strains, whereas those of the RdRp region exhibited a unimodal distribution in the GII.P17

strains. Conformational epitope positions in the VP1 protein of the GII.P17-GII.17 strains

were similar, although some substitutions, insertions and deletions had occurred. Strains

belonging to the same cluster also harbored substitutions around the binding sites for the

histo-blood group antigens of the VP1 protein. Moreover, some amino acid substitutions
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were estimated to be near the interface between monomers and the active site of the

RdRp protein. These results suggest that the GII.P17-GII.17 virus has produced variants

with the potential to alter viral antigenicity, host-binding capability, and replication property

over the past 10 years.
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INTRODUCTION

Human norovirus (HuNoV) is a major causative pathogen of
acute viral gastroenteritis (de Graaf et al., 2016). Although
HuNoV is most prevalent during autumn and winter in the
northern hemisphere, the virus can be detected throughout
the year (Ahmed et al., 2013). A previous report suggested
that approximately 680 million people annually suffer from
gastroenteritis due to HuNoV infection worldwide (Kirk et al.,
2015). Molecular epidemiological studies have indicated that
distinct GII.4 variants have recurrently emerged every 2–3 years
in the past decade to cause pandemics of gastroenteritis in all
aged individuals (Bull et al., 2010). Furthermore, GII.P17-GII.17
(Kawasaki2014 variant) has suddenly been prevalent since 2014
in various countries including Japan, China, South Korea, Italy,
Romania, Argentina, Brazil, and the USA (Chan et al., 2015;
Fu et al., 2015; Matsushima et al., 2015; Medici et al., 2015;
Dang Thanh et al., 2016; Dinu et al., 2016; Cannon et al.,
2017; Degiuseppe et al., 2017; Silva et al., 2017). However, the
epidemiology of this virus over a long period of time is unclear
at present.

HuNoV belongs to the genus Norovirus of the family
Caliciviridae, and it is further genetically classified into three
genogroups, GI, GII, and GIV. Genetic analyses have shown
that HuNoV GI and GII can be further classified into 9 and 22
genotypes, respectively (Kroneman et al., 2013). Of these, many
genotypes have been associated with gastroenteritis outbreaks
throughout the world (Hoa Tran et al., 2013). The genomes
of noroviruses contain three open reading frames and encodes
six non-structural proteins, including the RNA-dependent RNA
polymerase and the two capsid proteins VP1 and VP2 (de Graaf
et al., 2016).

Molecular evolutionary analysis based on advanced
bioinformatics technologies is a powerful tool to better
understand not only the phylogeny of pathogens, but also their
antigenicity (Bok et al., 2009; Siebenga et al., 2010; Boon et al.,
2011; Lu et al., 2016; Parra et al., 2017; Tohma et al., 2017;
Nagasawa et al., 2018). Furthermore, next-generation sequencing
technologies are also useful for the comprehensive analysis of
various virus genomes (Quiñones-Mateu et al., 2014). In this
study, we used both these methodologies to conduct a detailed
molecular evolutionary analysis of the VP1 and RdRp regions of
GII.P17-GII.17 strains detected in various countries.

MATERIALS AND METHODS

Sample Preparation and Ethics Statement
A total of 76 strains of GII.P17-GII.17 detected in Miyagi (16
strains), Kanagawa (11 samples), Saitama (10 samples), Ibaraki

(9 strains), Gunma (7 strains), Aichi (7 strains), Hiroshima (5
strains), Tochigi (4 strains), Fukuoka (3 strains), Yamaguchi
(3 strains), and Aomori (1 strain) prefectures from 2013 to
2017 were sequenced in this study. Fecal samples were collected
from patients with acute gastroenteritis associated with HuNoV
infection under compliance with the Food Sanitation Law and
the Law Concerning the Prevention of Infections and Medical
Care for Patients of Infections of Japan. Informed consent was
obtained from all participants, which was acquired from the
subjects or their legally acceptable representatives for sample
donation. The personal data of the patients was anonymized.
To perform extraneous study (this study) and due to the
lack of written informed consent, this study obtained ethical
approval from the Research and Ethical Committees for the
Use of Human Subjects of the National Institute of Infectious
Diseases, Tokyo, Japan (No. 576). All methods were conducted
in accordance with the approved guidelines. Information on
the samples is given in Table S1. RNA was extracted from
10% suspensions of fecal samples in phosphate buffered
saline using a QIAamp Viral RNA Mini kit (Qiagen, Hilden,
Germany). The extracted RNA was subjected to sequencing as
described below.

Sequencing
Sequencing was performed with Sanger and next-generation
sequencers. For Sanger sequencing, a reverse transcription–
polymerase chain reaction (RT-PCR) was first performed for
30min at 45◦C and then 2min at 94◦C, followed by a total
of 45 cycles of 30 s at 98◦C, 30 s at 55◦C and 90 s at 68◦C,
and then a final extension of 7min at 68◦C using specific
primers for the VP1 and RdRp regions and a PrimeScript II
High Fidelity One Step RT-PCR kit (TaKaRa, Shiga, Japan;
Table S2). Cycle sequencing was performed for 1min at 96◦C,
followed by a total of 30 cycles of 10 s at 96◦C, 10 s at 50◦C
and 2min at 60◦C using a BigDye Terminator v3.1 Cycle
Sequencing kit (Applied Biosystems, Carlsbad, California, USA).
TheDNA sequences were analyzed using a 3500Genetic Analyser
(Applied Biosystems). Full-length nucleotide sequences of the
VP1 and RdRp regions were acquired using the primer walking
method. Next-generation sequencing was conducted as described
previously (Dennis et al., 2014; Ide et al., 2015). Data analysis was
performed using CLC Genomics Workbench v8.0.1 (Qiagen).
Contigs were assembled from the obtained sequence reads by
de novo assembly. HuNoV genotypes were determined using
the Norovirus Genotyping Tool (version 2.0) and the Human
Calicivirus Typing Tool1 (Kroneman et al., 2011).

1Available online at: https://norovirus.phiresearchlab.org/
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Construction of Datasets for
Bioinformatics
All full-length nucleotide sequences of the VP1 and RdRp regions
of GII.17, including information on sample collection years and
no mixed nucleotides, were obtained from GenBank2 (accessed
on 29 August, 2017). For the GII.P17-GII.17 genotype, only
sequences with information on sample collection years and
months were used in this study. Moreover, nine sequences
associated with some recent outbreaks of GII.P17-GII.17 (Sakon
et al., 2018) were combined with those of the new Japanese
strains above. To construct time-scaled phylogenetic tree, we
added representative VP1 sequences of all GII genotypes,
including porcine NoV GII (GII.11, GII.18, and GII.19) and
other HuNoV GII genotypes (18 strains), as well as an
outgroup strain of HuNoV GI genotype (GI.1) to the dataset
of the VP1 region (resulting in a total of 365 strains).
The representative RdRp sequences of the GII genotypes,
including porcine NoV (GII.P11 and GII.P18) and other
HuNoV GII genotypes (20 strains), as well as an outgroup
strain of HuNoV GI genotype (GI.P1), were appended to
produce an RdRp dataset consisting of 156 strains (Table S1).
The constructed datasets were aligned with MAFFT software
(Katoh and Standley, 2013).

Time-Scaled Phylogenetic Trees
Phylogenetic trees with molecular clocks were generated by
the Bayesian Markov Chain Monte Carlo (MCMC) method
using the BEAST2 package v2.4.8 (Bouckaert et al., 2014). Best
substitution models (GTR+Γ+I for both VP1 and RdRp) were
determined for the constructed datasets (365 strains for VP1
and 156 strains for the RdRp) by comparison of the Bayesian
Information Criterion (BIC) values using jModelTest2 software
(Guindon and Gascuel, 2003; Darriba et al., 2012). Appropriate
clock and tree prior models (relaxed clock exponential and
coalescent exponential population tree prior for both VP1 and
RdRp) were selected by path-sampling/stepping stone-sampling
marginal-likelihood estimation using the BEAST2 package (Baele
et al., 2012). The MCMC runs were conducted with chain
lengths of 930,000,000 steps with sampling every 16,000 steps
for VP1, and with chain lengths of 465,000,000 steps with
sampling every 8,000 steps for RdRp. The analyzed data was
evaluated by the effective sample sizes (ESS) values using Tracer3

software, and values of 200 or more were accepted. Maximum
clade credibility trees were generated by discarding the first 10%
of trees (burn-in) using TreeAnnotator v2.4.8 in the BEAST2
package. The time-scaled phylogenetic trees were visualized
by FigTree4 v1.4.0 software. Branch reliability was supported
by highest posterior densities (HPDs) of 95%. Moreover, the
evolutionary rates of GII.P17-GII.17 strains were estimated as
described above. The analyzed parameters with substitution,
clock, and tree prior models are shown in Table 1. In this
study, the evolutionary rates of overall clusters in the GII.P17-
GII.17 strains were calculated since the rate of a cluster could

2https://www.ncbi.nlm.nih.gov/genbank/
3Available online at: http://tree.bio.ed.ac.uk/software/tracer/
4Available online at: http://tree.bio.ed.ac.uk/software/figtree/

not be estimated due to the limited number of strains available
for analysis.

Bayesian Skyline Plot
Transition of effective population sizes was estimated by
a Bayesian skyline plot using the BEAST2 package v2.4.8.
Appropriate substitution models were selected based on
comparison of the BIC values in the dataset, including 337
strains of the Kawasaki2014 variant in the VP1 region.
The clock models were appropriately selected on the basis
of path-sampling/stepping stone-sampling marginal-likelihood
estimation. The MCMC was run on chain lengths of 480,000,000
steps with sampling every 2,000 steps. After evaluation based
on the ESS values, the Bayesian skyline plot was generated by
Tracer3 software.

Phylogenetic Distances
Phylogenetic trees were created using the maximum likelihood
method in MEGA7 software (Kumar et al., 2016). Best
substitution models (GTR+Γ+I for VP1 and K80+Γ for RdRp)
were selected using the jModelTest2. Branch reliability was
supported by 1,000 replications of bootstrap values. Phylogenetic
distances between GII.17 strains were calculated by Patristic
software (Fourment and Gibbs, 2006).

Construction of Three-Dimensional
Structures, Conformational Epitope
Analyses, and Selective Pressure Analyses
Structural models of the VP1 and RdRp proteins of HuNoV
[Hu/GII/JP/1976/GII.17/Tokyo/27-3: AB684681 (VP1),
Hu/GII/NE/1995/GII.P3/Amsterdam/1: KJ194500 (RdRp),
Hu/GII/JP/2014/GII.P17-GII.17/Kawasaki323: AB983218 (VP1
and RdRp), Hu/GII/JP/2015/GII.P17-GII.17/Kawasaki308:
LC037415 (VP1 and RdRp)] were generated based on homology
modeling using the MODELLER software v9.15 (Webb and Sali,
2014). Three crystal structures for VP1 (PDBID: 1IHM, 5F4M
and 5LKC) and one for RdRp (PDBID: 1SH0) were used as the
templates based on Basic Local Alignment Search Tool5 (BLAST)
analyses of the proteins. Amino acid sequences of the templates
and the target strains were aligned using MAFFTash software
(Standley et al., 2007; Katoh et al., 2009). The constructed
structures were minimized using the GROMOS96, implemented
by Swiss PDB Viewer v4.1 and evaluated by Ramachandran plots
via the RAMPAGE server, which showed the favored regions
of 96.1% ± 0.26 (VP1) and 98.0% ± 0.46 (RdRp), the allowed
regions of 3.43% ± 0.32 (VP1) and 1.47% ± 0.32 (RdRp), and
the outlier regions of 0.47% ± 0.058 (VP1) and 0.57% ± 0.15
(RdRp) (mean ± SD) of all residues in each structure (Guex and
Peitsch, 1997; Lovell et al., 2003). The final models were modified
and colored using Chimera v1.12 (Pettersen et al., 2004).
Conformational epitopes on the VP1 dimer structures of the
GII.17 strains were predicted using DiscoTope 2.0, EPCES, and
EPSVR programmes (Liang et al., 2007, 2010; Kringelum et al.,
2012). Cut-off values were set at −3.1 for the DiscoTope 2.0 and
81 for the EPCES and EPSVR in order to encompass epitopes

5Available online at: https://blast.ncbi.nlm.nih.gov/Blast.cgi
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TABLE 1 | Evolutionary rates of GII.P17-GII.17 strains in the VP1 and RdRp regions.

Regions Numbers of strains Substitution models Clock models Tree prior models Evolutionary rates (95% HPD intervals)

VP1 337 SYM+Ŵ Strict Constant size 2.7 × 10−3 (2.2–3.2 × 10−3)

RdRp 133 K80+Ŵ Relaxed exponential Exponential 2.3 × 10−3 (1.5–3.2 × 10−3)

on the VP1 of GII.17 identified by a previous in vitro study
(Lindesmith et al., 2017). Consensus sites identified by more
than one of the three tools and regions with two or more closely
apposed residues of the sites on the VP1 dimer structures were
determined to be conformational epitopes. Positive selection
sites in the VP1 region of the GII.17 strains were predicted using
the Fast, Unconstrained Bayesian AppRoximation (FUBAR)
and Mixed Effects Model of Evolution (MEME) algorithms on
the Datamonkey server (Pond and Frost, 2005; Delport et al.,
2010; Murrell et al., 2012, 2013; Weaver et al., 2018). Generally,
FUBAR hypothesizes constant selection pressure at each site for
the entire phylogeny and utilizes a Bayesian approach to estimate
non-synonymous (dN) and synonymous (dS) substitution rates
at each site. MEME is used to detect positive selection sites
under a proportion of branches. Significance levels were set
at posterior probabilities of >0.9 for FUBAR and p < 0.05
for MEME.

Median Joining Network Analyses
Transmission links between GII.P17-GII.17 strains were
analyzed using a median joining network with PopART
software (Bandelt et al., 1999; Leigh and Bryant, 2015). We
constructed a dataset that covered nucleotide sequence lengths
from the start position of RdRp to the terminal position of
VP1 (resulting in a total of 114 strains). The dataset was then
processed to detect recombination between the RdRp and VP1
sequences based on seven primary exploratory recombination
signal detection methods (RDP, GENECONV, BootScan,
MaxChi, Chimera, SiScan, and 3Seq) using RDP4 software
(Martin et al., 2015) and the threshold of the p-value for
significance was set at 0.001. Recombination regions were
assigned when they were identified by more than four of
the seven methods; however, this criterion resulted in the
identification of no recombinant sequences in the dataset. The
median joining networks were analyzed using an epsilon value
of zero.

RESULTS

Time-Scaled Phylogeny of the VP1 and
RdRp Regions in the GII.P17-GII.17 Strains
We constructed time-scaled phylogenetic trees using the MCMC
method based on the full-length of the VP1 (343 strains)
and RdRp (133 strains) regions in the GII.17 strains detected
in the various countries (Figures 1, 2). The MCMC tree for
the VP1 region estimated that the common ancestor of the
GII.17, GII.13, and GII.21 diverged in September, 1931 (95%
HPD January, 1911–February, 1950). A common ancestor of
the GII.17 strains diverged in November, 1948 (95% HPD

September, 1934–November, 1961) and further diverged into
seven clusters by around October, 2011. Of these, the GII.P17-
GII.17 strains belonged to clusters 1 and 2 (Figure 1). The
GII.17 strains in clusters 3, 4, 5, and 6 (no information on
the RdRp sequence in cluster 7) were composed of the distinct
RdRp genotypes, including GII.P3, GII.P16, GII.P4, and GII.Pe,
respectively (Figure 1 andTable S1). Most strains of the GII.P17-
GII.17 belonged to the cluster 1 (the Kawasaki308 type). The
common ancestor of the cluster 1 diverged in October, 2011
(95% HPD May, 2009–August, 2013), while that of cluster
2 (the Kawasaki323 type) emerged in July, 2010 (95% HPD
July, 2007–September, 2012) (Figure 1). Moreover, analyses of
phylogenetic distances exhibited no overlap between intra- and
inter-cluster peaks at a value of 0.035 (Figure 3A).With respect to
the RdRp region (Figure 2), the common ancestor of the GII.P17
and GII.P3 diverged in January, 1988 (95% HPD December,
1980–May, 1993). Subsequently, the common ancestor of the
GII.P17 diverged in October, 2009 (95% HPD May, 2006–April,
2012) and then further into two clusters by around August,
2012. The GII.P17-GII.17 strains were contained in clusters
1 and 2 in the RdRp region, which was compatible with the
classification in the VP1 region. Most strains of the GII.P17-
GII.17 also belonged to cluster 1 (the Kawasaki308 type). The
common ancestor of cluster 1 diverged in August, 2012 (95%
HPD December, 2010–January, 2014), while that of cluster
2 (the Kawasaki323 type) did so in April, 2011 (95% HPD
September, 2009–October, 2012). Furthermore, phylogenetic
distances overlapped between the intra- and inter-cluster peaks
(Figure 3B). These results suggest that the GII.P17-GII.17 strains
emerged and formed two variants in approximately the past
10 years.

Evolutionary Rates of the VP1 and RdRp

Regions in the GII.P17-GII.17 Strains
The evolutionary rates of the VP1 and RdRp regions of the
GII.P17-GII.17 strains are presented in Table 1. The rate for the
VP1 region was 2.7 × 10−3 substitutions/site/year (95% HPD
2.2–3.2 × 10−3), while that for the RdRp region was 2.3 × 10−3

(95% HPD 1.5–3.2 × 10−3). These results indicate that the VP1
and RdRp regions of the GII.P17-GII.17 strains evolved with
similar rates.

Phylodynamics of GII.P17-GII.17 Strains in
the VP1 Region
We estimated the transition of population sizes of
GII.P17-GII.17 in the VP1 region using a Bayesian
skyline plot. The population of this region increased
sharply in around 2014 and remained constant from
2016 after an immediate reduction (Figure 4). These
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FIGURE 1 | Time-scaled phylogenetic trees of the full-length VP1 region of HuNoV constructed using the Bayesian MCMC inference. The visualization of the tree is

enlarged to focus on GII.17, GII.13, and GII.21. The values within parentheses indicate the 95% HPDs for each divergent year, and red arrows indicate the Japanese

samples collected in this study.
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FIGURE 2 | Time-scaled phylogenetic trees of the full-length RdRp region of HuNoV constructed using the Bayesian MCMC inference. The tree visualization is

enlarged to focus on GII.P17 and GII.P3. The values within parentheses indicate the 95% HPDs for each divergent year, and red arrows indicate the Japanese

samples collected in this study.
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FIGURE 3 | Phylogenetic distances between the nucleotide sequences of GII.17 strains in the full-length VP1 and RdRp regions. (A) Distribution of intra-genotype

phylogenetic distances in the VP1 region of the GII.17 strains; (B) Distribution of intra-genotype phylogenetic distances in the RdRp region of the GII.P17 strains. The

y-axis shows the number of sequence pairs corresponding to each distance while the x-axis represents phylogenetic distances.

results suggest that this was compatible between the
fluctuation of the plot and actually epidemiological
GII.17 prevalence.

Prediction of Conformational Epitopes and
Selective Pressures in the VP1 in
GII.P17-GII.17 Strains
Conformational epitopes and selective pressures in the VP1
protein were analyzed in order to assess the possibility of
antigenicity changes at pre and post emergence of GII.P17-
GII.17 based on the time-scaled phylogeny for the VP1 region
in Figure 1. As a result, common epitopes among strains of
clusters 1, 2 (GII.P17-GII.17 clusters) and 3 [a closely related
cluster (GII.P3-GII.17 strain) to the GII.P17-GII.17 clusters]
were found in the shell domain and the protruding 2 (P2)
domain. Although the amino acid epitope positions were similar
among the strains, many amino acid substitutions were identified
(Figure 5 and Table 2). Substitutions in epitopes were also
identified in strains belonging to the same cluster. Of these
substitution residues, amino acids (aa) 375, aa376, aa394, aa396,
and aa442 are located close to the histo-blood group antigen

FIGURE 4 | Bayesian skyline plots for the VP1 sequences of GII.P17-GII.17

strains. The y-axis represents the effective population sizes on a logarithmic

scale, whereas the x-axis denotes time in years. The solid black line indicates

the mean posterior value and the intervals with 95% HPDs are shown by

blue lines.

(HBGA) binding sites of VP1, which are utilized for attachment
of HuNoV to host cells. Additionally, three positive selection sites
were identified in the P2 domain (Asn342Ser, Glu376Asn/Asp,
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FIGURE 5 | Structural models of the VP1 protein for representative GII.17 strains in the clusters of the Kawasaki2014 variant and its ancestor. Three-dimensional VP1

dimer structures for Tokyo/27-3 [ancestor; cluster 3; (A)], Kawasaki323 [cluster 2; (B)], and Kawasaki308 [cluster 1; (C)] viruses are shown. Each monomeric chain

(Continued)
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FIGURE 5 | that comprise the dimer structures is colored gray (chain A) and dim gray (chain B). The predicted epitope regions of the strains are circled in black and

the amino acids of the epitopes with no substitutions are colored blue for the shell domain and cyan for the P2 domain. Positive selection sites are colored yellow with

the positions under the order of alignments. Orange circles represent the HBGA binding sites on the structures. Amino acid substitutions on the epitopes,

non-epitopes, and positive selection sites within the clusters are colored green, magenta, and red, respectively.

and Arg412Leu/Glu/Pro). Of these sites, aa342 and aa376 were
at predicted epitopes (Figure 5). These results indicate that
GII.P17-GII.17 could evolve with changes in antigenicity and
binding affinity to HBGAs.

Mapping of Amino Acid Substitutions of
GII.P17-GII.17 to the RdRp Protein
To assess the possibility of changes of RNA replication properties
at pre and post emergence of GII.P17-GII.17 based on the time-
scaled phylogeny for the RdRp region in Figure 2, we mapped
the amino acid substitutions between GII.P17 strains and other
RdRp genotypes onto three-dimensional structures of the RdRp
protein (Figure 6). A total of 48 amino acid substitutions were
identified among the GII.P17 and GII.P4 strains (Accession
number; FJ537137). Of these, the substitutions at aa33, aa34,
aa49, and aa434 were located close to the interface between
monomers, while substitutions at aa206, aa215, aa409, aa438,
and aa442 were located close to the active site (Figure 6A).
Moreover, a total of 16 amino acid substitutions were estimated
among the GII.P17 and GII.P3 (a closely related genotype to
GII.P17) strains (Accession number; KJ194500). The substitution
at aa49 was located adjacent to the interface between monomers,
whereas the substitutions at aa206, aa215, aa407, and aa409
were located proximal to the active site (Figure S1). For intra-
GII.P17 genotype, Phe206Leu and Lys405Arg substitutions were
found around the active site in the strains of cluster 2 (12
strains) (Figure 6B). Thirty one substitutions were also found
in the strains belonging to the cluster 1 (121 strains), and a
Ser427Asn substitution was located proximally at the interface
between monomers. Ile193Val, Ile215Val, Asp224Glu, Ile346Val,
Thr394Ala, Val395Ile, Asn409Ser, Val438Met, Gly445Ser, and
Phe503Leu substitutions were located close to the active
sites (Figure 6C).

Transmission Network Between the
GII.P17-GII.17 Strains
Links in circulation of prevalent GII.P17-GII.17 (cluster 1) in
Japanese regions and in other countries were analyzed using a
median joining network. The strains analyzed in this study were
divided into four clusters. Strains belonging to cluster 1 were
mainly found from Japan, while those belonging to clusters 2
and 3 were found in various countries including Japan, China,
Hong Kong, Taiwan, and Australia. The strains in cluster 4 were
detected only inMiyagi prefecture in Japan. Notably, the network
contained the key strains that were linked to the many other
strains (Figure 7). These results suggest that the GII.P17-GII.17
strains form a broad network and that some strains are associated
with the prevalence of the virus.

DISCUSSION

In this study, we demonstrated the molecular evolution of

both the VP1 and RdRp regions of GII.P17-GII.17 since the

emergence of the virus. First, a MCMC time-scaled evolutionary

phylogenetic tree based on GII.17 VP1 nucleotide sequences
showed that all the present strains grouped into a total of seven
clusters (Figure 1). Trees also indicated that the recently emerged
GII.P17-GII.17 strains uniquely formed 2 clusters (clusters 1
and 2) based on both the VP1 and RdRp regions. The common
ancestor of theVP1 region of the GII.P17-GII.17 viruses diverged
first, followed by divergence of the RdRp region after a several-
year delay (Figures 1, 2). Previous reports have also suggested a
gap in the divergence of GII.P16-GII.2 strains (Mizukoshi et al.,
2017; Nagasawa et al., 2018). To resolve this issue, we analyzed
the phylogenetic distances of the VP1 and RdRp regions and
found that the distance of the VP1 region was longer than that
of RdRp, indicating that the genetic diversity of VP1 in GII.P17-
GII.17 is larger than that of RdRp (Figure 3). However, the
evolutionary rates for the overall cluster in GII.P17-GII.17 were
similar between the VP1 and RdRp regions (Table 1). Thus, we
also calculated the rates of the strains belonging to the cluster 1,
which resulted in reduction of the value in the RdRp region, but
not in theVP1 region (data not shown). These results suggest that
the differences of divergent times and genetic distances between
these regions may be associated with those in the changes of
the evolutionary rates. Furthermore, we analyzed the time-scaled
MCMC phylogenetic trees by adding 343 sequences of GII.17
for the VP1, 133 sequences of GII.P17 for the RdRp and data
of not only collection years but also months, which produced
confidence intervals (95% HPD values) that were smaller in our
analyses than in an earlier report (Sang and Yang, 2018). Thus,
more precise collection data, as well as the use of a large number
of virus strains, may facilitate the construction of more precise
MCMC phylogeny.

The evolutionary rates of the VP1 and RdRp regions
in the GII.P17-GII.17 were ∼2.7 and ∼2.3 × 10−3

substitutions/site/year, respectively (Table 1). The rate for
GII.17 is likely similar to that for GII.2 in the VP1 region, but
lower than that of GII.4 (Bok et al., 2009; Siebenga et al., 2010;
Mizukoshi et al., 2017; Motoya et al., 2017). Furthermore, the
rate for GII.P17 is likely analogous to that for GII.P16, but
lower than that of GII.P4 (Nagasawa et al., 2018; Ozaki et al.,
2018). Interestingly, it has been suggested that GII.P4-GII.4
virus prevalence is associated with the rapid evolution of the
VP1 regions with a high ratio of non-synonymous amino acid
substitutions to synonymous substitutions (Bull et al., 2010;
Parra et al., 2017). Previous reports have also suggested that
the rates of non-synonymous amino substitutions in the VP1
protein differ between GII.17 and GII.4, with GII.4 being
greater than GII.17 (Mori et al., 2017); therefore, the rates of
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antigenicity change between GII.17 and GII.4 viruses may be
distinct. In contrast, it has been estimated that the number of
negative selection sites in GII.P4 RdRp are larger than that in
GII.P17 (Ozaki et al., 2018), and thus variations in nucleotide
substitution in GII.P4 RdRp may be restricted compared to
GII.P17. However, despite such restrictions, we observed a lower
evolutionary rate in GII.P17 than GII.P4. This may be due to
differences in replication activities and/or in replication errors
of the RdRp protein between GII.P17 and GII.P4. Additional in
vitro studies may be needed to address these possibilities.

We also assessed the phylodynamics of GII.P17-GII.17 and
found that the genome population sizes of GII.P17-GII.17
increased rapidly during 2014–2015 and then decreased rapidly
thereafter (Figure 4). These fluctuations may be associated with
epidemics of the newly emerged HuNoV and the acquisition
of herd immunity. For example, the fluctuations in the
phylodynamics of the GII.4 virus could be associated with the
emergence of a variant virus with altered antigenicity and the
acquisition of herd immunity to the VP1 capsid protein of that
virus (Debbink et al., 2013; Lindesmith et al., 2013; Motoya et al.,
2017). Thus, it is possible that the phylodynamic fluctuations
in GII.P17-GII.17 identified in this study are associated with
epidemics in various regions and subsequent acquisition of
herd immunity (Chan et al., 2015; Fu et al., 2015; Matsushima
et al., 2015; Dang Thanh et al., 2016). These results suggest
that continuous phylodynamic analysis may provide early notice
of other HuNoV epidemics and repeat prevalence of HuNoV,
including GII.17.

We additionally found amino acid substitutions in the
conformational epitopes of the VP1 capsid protein of GII.P17-
GII.17 (Figure 5 and Table 2). Such substitutions were also
identified around the HBGA binding sites. Such evolutionary
substitutions may induce both changes in antigenicity and in
HBGA binding ability (Tan et al., 2009; Chen et al., 2011; de
Rougemont et al., 2011; Lindesmith et al., 2012; Debbink et al.,
2013; Jin et al., 2015). Indeed, Lindesmith et al. showed that
some amino acid substitutions (corresponding to aa394-aa397
in our alignments) are located adjacent of the HBGA binding
sites and result in changes in the antigenicity of the GII.17 capsid
protein (Lindesmith et al., 2017). Jin et al. also reported changes
to the antigenicities and HBGA binding affinities of GII.17
capsid proteins belonging to different phylogenetic clusters (Jin
et al., 2016). Moreover, an amino acid substitution (aa376)
located adjacent the HBGA binding sites was identified as a
possible positive selection site. Previous reports have suggested
that aa375 and aa377 are associated with the HBGA binding
ability (He et al., 2017; Koromyslova et al., 2017); however, to
the best of our knowledge, there have been no reports regarding
possible roles of the aa376 substitution in antigenicity and
the HBGA binding capability, which is a subject for possible
further study.

We also showed that GII.P17-GII.17 contains amino
acid substitutions in residues adjacent to the RdRp
active sites and the contact surfaces between RdRp
monomers (Figure 6). Ng et al. showed that the amino
acids around the active sites regulate viral genome replication
(Ng et al., 2008). Moreover, substitutions around the monomer
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FIGURE 6 | Structural models of the RdRp protein for representative GII.P17 strains. Homodimer structures of the RdRp of GII.P4 [PDBID 1SH0; (A)], Kawasaki323

[cluster 2; (B)], and Kawasaki308 [cluster 1; (C)] are shown. Each monomeric chain that compose the dimer structure are colored gray (chain A) and dim gray

(Continued)
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FIGURE 6 | (chain B). Amino acid substitutions between GII.P17 and GII.P4 (A) or within the GII.P17 clusters (B,C) that are close to the interface between monomers

and to the active site cleft are colored blue with the positions under the order of alignments, whereas the substitutions distant from these regions are shown in yellow.

The residues of active sites for RNA replication are colored red. The purple quadrilaterals highlight the region of the active site cleft.

FIGURE 7 | A median joining network for the major epidemic cluster of GII.P17-GII.17 strains based on nucleotide sequences from the RdRp to VP1 (3133 bp). The

detected areas for Japanese strains used in the analysis are shown with the number of strains on a Japanese map. The filled circles represent viral haplotypes,

including collection years and months for the strains. The sizes of the circles represent the number of strains within the haplotype. Red arrows indicate strains

associated with the production of many haplotypes.

contact surfaces of RdRp affect the stability of the dimer and
its RNA binding abilities (Chen et al., 2009). Thus, the similar
substitutions found in the present study warrant additional
investigation into changes in the properties of the RdRp protein.
Previous studies have also revealed key amino acids associated
with the efficiency of HuNoV genome replication (Bull et al.,
2010; Eden et al., 2011). Of these, the threonine residue at
aa33 is phosphorylated by a host factor, Akt, and is involved
in producing high replication rates (Eden et al., 2011). This
residue is located around the interface between monomers
in the RdRp structure. The RdRp protein of GII.P4 contains
a threonine residue at the position, while that of GII.P17
contains an asparagine (data not shown). This may suggest that
the enzyme activity of RdRp differs between the GII.P4 and
GII.P17 genotypes.

We constructed a genome network of the GII.P17-GII.17
strains examined in this study and found four major clusters
(Figure 7). Notably, the strains belonging to clusters 1 and 4
were detected exclusively in Japan, while the strains belonging
to clusters 2 and 3 were detected from various countries.
Moreover, the two haplotype strains found in Japan might
give rise to many variant types. However, we could not
determine specific amino acid substitutions in the strains
belonging to clusters 1 and 3, which contained the haplotype
strains (data not shown). Thus, these haplotype strains may
exhibit no phenotypes acquiring high infectivity due to the
mutations, although the reason for this remains unclear at
present. Moreover, the strains belonging to cluster 4 had unique
amino acid substitutions in p48, p22, protease, RdRp, and
VP2 proteins (data not shown). These viruses were found
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only in Miyagi prefecture in Japan, during short periods and
was never detected in other areas, perhaps because these
mutations are deleterious to the propagations of the virus. As
a limitation, the results of the present analyses may partially
be affected by selection bias introduced in the collection of
the strains.

In conclusion, the GII.P17-GII.17 virus has evolved
differently to GII.P4-GII.4. However, this virus may have
the potential to alter its antigenicity, host-binding capability (i.e.,
HBGA) and genome replication efficiency. Such changes
could recurrently generate variants of GII.17 with the
potential to produce pandemics such as those caused by
GII.4 variant strains. Thus, additional and continuous
evolutionary analyses of this genotype should be needed in
the future.
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