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Reproductive toxicity is one of the prominent endpoints in the risk assessment

of environmental and industrial chemicals. Due to the complexity of the

reproductive system, traditional reproductive toxicity testing in animals,

especially guideline multigeneration reproductive toxicity studies, take a long

time and are expensive. Therefore, machine learning, as a promising alternative

approach, should be considered when evaluating the reproductive toxicity of

chemicals. We curated rat multigeneration reproductive toxicity testing data of

275 chemicals from ToxRefDB (Toxicity Reference Database) and developed

predictive models using seven machine learning algorithms (decision tree,

decision forest, random forest, k-nearest neighbors, support vector machine,

linear discriminant analysis, and logistic regression). A consensus model was

built based on the seven individual models. An external validation set was

curated from the COSMOS database and the literature. The performances of

individual and consensus models were evaluated using 500 iterations of 5-fold

cross-validations and the external validation data set. The balanced accuracy of

the models ranged from 58% to 65% in the 5-fold cross-validations and 45%–

61% in the external validations. Prediction confidence analysis was conducted to

provide additional information for more appropriate applications of the

developed models. The impact of our findings is in increasing confidence in

machine learning models. We demonstrate the importance of using consensus

models for harnessing the benefits of multiple machine learning models

(i.e., using redundant systems to check validity of outcomes). While we

continue to build upon the models to better characterize weak toxicants,

there is current utility in saving resources by being able to screen out strong

reproductive toxicants before investing in vivo testing. The modeling approach

(machine learning models) is offered for assessing the rat multigeneration

reproductive toxicity of chemicals. Our results suggest that machine learning

may be a promising alternative approach to evaluate the potential reproductive

toxicity of chemicals.
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Introduction

Reproductive toxicity refers to a group of adverse effects

caused by chemical substances on the reproductive systems of

males and females, such as alterations in fertility, implantation,

and estrous cycle. Safety evaluation of chemicals, including

reproductive toxicity assessment, is required by regulatory

agencies before authorization of the usage of many chemicals,

and is important in the process of new product development for

industries (Novic and Vracko 2010). To assess the reproductive

toxicity of a chemical, various in vivo animal testing methods are

typically used. A multigeneration reproductive toxicity study has

a complex study design which contains multiple factors (OECD

2001; Piersma et al., 2011) such as chemical exposure to two or

more generations, different dosing times, and dosing duration.

Various reproductive toxicity endpoints are observed in both

parental and offspring generations in a multigeneration

reproductive toxicity study, which uses a number of animals

and can take months to complete (Hofer et al., 2004). Therefore,

in vivo animal testing for the assessment of reproductive toxicity

for a chemical is time-consuming and expensive (Rorije et al.,

2011; Beekhuijzen 2017). It is not practically feasible to assess

reproductive toxicity using in vivo animal testing for all

chemicals (Ashburn and Thor 2004; Paul et al., 2010;

Tornqvist et al., 2014).

Another issue associated with assessing reproductive toxicity

using in vivo animal testing is the ethical concern of animal use.

The principle of 3Rs (Replacement, Reduction and Refinement)

was proposed over 50 years ago to guide animal use

(Tannenbaum and Bennett 2015; Brannen et al., 2016; Fischer

et al., 2020). Replacement refers to substituting the use of animal

models with non-animal alternative methods. Reduction refers to

using the minimal number of animals required to demonstrate

statistical significance. Refinement aims to minimize the

potential pain and suffering of animals in the experiments.

The scientific community, regulatory agencies, and industry

are searching for efficient alternative approaches to animal

models in reproductive toxicity assessment.

Two types of alternative methods for animal testing, in vitro

and in silico methods, have been explored. While the multi-tissue

reproductive system is probably one of the most complex

systems, it is difficult to mimic the whole reproductive system

using an in vitro model (Brannen et al., 2016; Nikolaidis 2017).

Therefore, in silico methods as an alternative approach have

attracted more effort and interest for reproductive toxicity

prediction with their power and efficiency and have been

widely used in reproductive toxicity assessment (Zhang et al.,

2020). Some in silico models have been built for predicting

potential reproductive toxicity (Martin et al., 2011; Basant

et al., 2016; Jiang et al., 2019; Feng et al., 2021). Martin et al.

built predictive models for reproductive toxicity by combining

the in vivomultigeneration reproductive toxicity testing data and

in vitro high-throughput screening assay data (Martin et al.,

2011). Their model was evaluated only by a one-time 5-fold

cross-validation, and thus the performance is not statistically

robust. Another barrier for application of their model is the need

for in vitro high-throughput screening assay data that are not

available for new chemicals. Feng et al. generated ensemble

models based on individual models that were constructed

using three machine learning algorithms and nine sets of

molecular fingerprints of 1,823 chemicals for reproductive

toxicity prediction (Feng et al., 2021). This dataset was

originally generated to build machine learning models for

predicting reproductive toxicity (Jiang et al., 2019). Though

both articles reported similar high prediction accuracies for

their models, it is challenging to ensure the reliability of the

results because of the quality issues of the dataset used. The

reproductive toxicity data are heterogeneous and not solely from

multigeneration in vivo animal testing results. Therefore, the

reproductive toxicity data are not suitable for training a model for

specifically predicting multigeneration reproductive toxicity in

in vivo animal testing. For example, ethanol is defined as a

reproductive toxic chemical, because reproductive toxicity was

reported from a poorly designed study in the literature. In the 28-

day study comparing ginger extract and ethanol on reproductive

toxicity, a single high dose (4 g/kg) of ethanol, much higher than

the commonly used doses for testing the lowest-observed-adverse

effect level (LOAEL), was found to increase total homocysteine

and malondialdehyde compared with the control (corn oil) and

ginger groups for which a much lower dose (1 g/kg) was used

(Akbari et al., 2017). Besides classification models, regression

models were reported for reproductive toxicity. Basant et al.

collected multigeneration reproductive toxicity study data from

Toxicity Reference Database (ToxRefDB) and constructed

in silico models to predict LOAEL of reproductive toxic

chemicals (Basant et al., 2016). Computational models for

predicting potential rat multigeneration reproductive toxicity

likely observed in guideline studies from chemical structure

have not been reported and a well curated dataset from

guideline studies are not available. Therefore, machine

learning models to classify chemicals as potentially toxic or

not toxic in rat multigeneration reproductive animal testing

solely based on chemical structures are needed and could

facilitate chemical risk assessment in terms of multigeneration

reproductive toxicity.

The goal of this study was to construct machine learning

models using in vivo animal testing data for screening chemicals

with potential reproductive toxicity. Accordingly, machine

learning models were established and validated by cross-

validations and external validations. The models showed the

potential utility in screening potential toxicants of rat

multigeneration reproductive toxicity and provide an

additional tool in assisting the decision-making in regulatory

science when experimental data are not available or limited. Our

study suggests that machine learning could be a promising

alternative approach in chemical risk assessment.
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Materials and methods

Study design

The study design is illustrated in Figure 1. ToxRefDB

contains high quality in vivo animal studies (Martin et al.,

2009). The database includes the information of chemicals,

study design, treatment-related effects, and effect levels. Rat

multigeneration reproductive toxicity data were curated from

ToxRefDB (https://www.epa.gov/chemical-research/exploring-

toxcast-data-downloadable-data, version November 2014) and

used as the training dataset. The external validation dataset

included rat multigeneration reproductive toxicity data

curated from the COSMetics to Optimise Safety (COSMOS)

database (https://archive.cosmostox.org/home/welcome/,

accessed on February 16, 2021) and the literature. The

training dataset was used to build predictive models using

seven machine learning algorithms: decision tree (DT),

decision forest (DF), random forest (RF), k-nearest neighbors

(kNN), support vector machine (SVM), linear discriminant

analysis (LDA), and logistic regression (LR). In addition, a

consensus model was generated from the seven individual

models using majority voting. Five iterations of inner 5-fold

cross-validations were performed for parameter tuning. Then,

500 iterations of 5-fold cross-validations were performed to

evaluate performance of the machine learning models.

Prediction confidence analysis was conducted on the results of

5-fold cross-validations. Machine learning models were built

from the whole training dataset and evaluated by the external

validation dataset.

Datasets

Rat multigeneration reproductive toxicity studies were

queried from ToxRefDB based on the following inclusion

criteria: 1) multigeneration reproductive toxicity study; 2) oral

dose administration in rats; 3) acceptable (data usability); 4)

complete (data entry status); 5) all effects (data entry level); 6)

testing and observation of reproductive effects. Multigeneration

reproductive toxicity studies in ToxRefDB have three categories

of treatment-related effect endpoints, “Parental,” “Offspring,”

and “Reproductive.” Only the endpoints in the category of

“Reproductive” were selected as the effects of reproductive

toxicity. Chemicals with LOAEL data at the effect category of

“Reproductive” were assigned as positives of reproductive

toxicity. The chemicals without LOAEL were considered as

negatives of reproductive toxicity. Mixtures of compounds

were removed, and the remaining data were taken as the

training dataset.

FIGURE 1
Study design. The training dataset was curated from ToxRefDB and the external validation dataset was curated from the COSMOS database and
the literature. The training dataset was randomly split into five folds. Four folds were used to build models using each of the seven machine learning
algorithms and the remaining fold was used to evaluate the constructed models. Predictions were recorded in Result-1 to Result-7 and the
consensus predictions were generated and recorded in Result-8. This process was repeated five times until each of the five folds was used as a
testing set once and only once to complete a 5-fold cross-validation. The 5-fold cross-validation was iterated 500 times. The whole training dataset
was used to construct models using the same machine learning algorithms and results were recorded in Result-9 to Result-16. MGR:
multigeneration reproductive; DT, decision tree; DF, decision forest; RF, random forest; kNN, k-nearest neighbors; SVM, support vector machine;
LDA, linear discriminant analysis; LR, logistic regression.
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Rat multigeneration reproductive toxicity studies with the

same data inclusion criteria were obtained from the COSMOS

database and literature. After removing the chemicals contained

in the training dataset, the remaining chemicals were used as the

external validation dataset to validate the models constructed

from the training dataset. The categories of the chemicals of the

training and the external validation datasets are summarized in

Table 1.

Molecular descriptors calculation and pre-
processing

Simplified molecular input line entry system (SMILES)

codes of the compounds were collected from the CompTox

Chemicals Dashboard (https://comptox.epa.gov/dashboard/

chemical_lists/TOXREFDB2) and PubChem (https://

pubchem.ncbi.nlm.nih.gov/). Two-dimensional (2D)

structures were then generated using the Online SMILES

Translator and Structure File Generator (https://cactus.nci.

nih.gov/translate/) and output as structural description

files (SDF).

Mold2 is a software that calculates molecular descriptors

from 2D chemical structures (Hong et al., 2008; Hong et al.,

2017). Mold2 descriptors include chemical physical property,

counts for atoms, counts for bonds, counts for functional groups,

structural features, 2D autocorrelation, Balaban index,

connectivity index, distance (topological) index, eigen value-

based descriptors, information content, Kier index, molecular

walk counts, Schultz index, topological charge index, Wiener

index, and Zagreb index. Therefore, it was used to calculate

molecular descriptors from the SDF files for the compounds of

training and external validation datasets. Mold2 calculated

777 molecular descriptors for each chemical. Some of these

777 descriptors convey little or no information for subsequent

machine learning. Therefore, such low informative descriptors

were removed. First, molecular descriptors with zero values for

more than 90% of the compounds in the training dataset were

discarded. Shannon entropy analysis (Godden et al., 2000) was

then applied on the remaining descriptors to select molecular

descriptors with high information. More specifically, the range of

values of a molecular descriptor in the training dataset (the

minimum to the maximum) was divided into 20 even bins. The

chemicals were then assigned to these 20 bins based on their

molecular descriptor values. Shannon entropy value for the

descriptor was calculated according to the distribution of the

chemicals in these 20 bins by Eq. 1.

Hn(p1, p2, ..., pn) � −∑
n

i�1
pi log2pi (1)

Where pi is the ratio of chemicals in bin i to the total number of

chemicals. Descriptors with Shannon entropy less than 2.5 were

removed.

The descriptors with Shannon entropy greater than 2.5 were

further processed using decision tree-based machine learning

algorithms DT, DF, and RF. In brief, the training chemicals were

randomly divided into five folds. Four folds were used to build

DT, DF, and RF models based on the descriptors with Shannon

entropy greater than 2.5. The descriptors used in the models were

recorded. This process was repeated five times with five different

combinations of four folds to build DT models. The whole

process was iterated 500 times with different random divisions

(using different random seeds). The frequency values of a

descriptor were calculated by counting the DT, DF, and RF

models that used the descriptor in the 500 cross-validations.

Importance of a descriptor was calculated as the ratio of its

frequency to the maximum frequency among all descriptors,

separately for DT, DF, and RF. The overall importance of the

descriptor was calculated as the average importance among DT,

DF, and RF. Descriptors with overall importance greater than

20% were kept for subsequent model development with machine

learning algorithms.

TABLE 1 Chemical category distribution of the training dataset and external validation dataset.

Data
set (total chemicals)

Chemical category Number of chemicals

Training data (275) drug 12

cosmetic 12

food contact substance 8

pesticide 243

External data (29) drug 6

cosmetic 15

food additive/food contact 5

pesticide 1

research chemical 2

Frontiers in Pharmacology frontiersin.org04

Liu et al. 10.3389/fphar.2022.1018226

https://comptox.epa.gov/dashboard/chemical_lists/TOXREFDB2
https://comptox.epa.gov/dashboard/chemical_lists/TOXREFDB2
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://cactus.nci.nih.gov/translate/
https://cactus.nci.nih.gov/translate/
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1018226


Model development

Seven different machine learning algorithms were used for

classification, including DT, DF, RF, kNN, SVM, LDA, and LR.

DT is a popular approach for classification. It uses a tree-like

structure to represent the predictions based on a series of features

(Kingsford and Salzberg 2008; Karalis 2020). DF combines

multiple decision trees and builds the ensemble model (Tong

et al., 2003; Hong et al., 2004; Hong et al., 2005; Chen et al., 2013;

Ng et al., 2015a; Ng et al., 2015b; Hong et al., 2017; Sakkiah et al.,

2017; Hong et al., 2018; Sakkiah et al., 2020). RF is an ensemble

learning algorithm (Breiman 2001). kNN generates the

prediction for a sample based on the distance of k samples

that are nearest (Baskin 2018). SVM searches for a hyperplane

that can separate different groups of samples (Cortes and Vapnik

1995; Cristianini and Shawe-Taylor 2000; Christmann and

Steinwart 2008). LDA is an algorithm which assumes that all

data are normally distributed (Martin et al., 2011; Sipes et al.,

2011). LR is a popular algorithm for supervised binary

classification (Cai et al., 2019).

Tuning algorithmic parameters is a critical step in model

development. When developing a model from a training dataset,

a subset of 80% of the chemicals were used to tune parameters for

the seven machine learning algorithms. In short, for each of the

seven machine learning algorithms (DT, DF, RF, kNN, SVM,

LDA, and LR), a set of algorithmic parameters was set up. This

data subset was then randomly split into five folds. One fold was

held out and the other four folds were used to build a model. The

developed model was used to predict the held out chemicals. This

process was repeated till each of the five folds was held out once

and only once. Matthews correlation coefficient (MCC) was

calculated from the predictions on the five folds. This inner 5-

fold cross-validation was repeated five times. An average MCC

value was calculated from the five MCC values. The algorithmic

parameters were then changed to repeat the whole process. The

parameters that resulted in the highest average MCC were

selected for subsequent model development for the algorithm.

With the optimized parameters, the training dataset curated from

ToxRefDB was used in cross-validations and in external

validation.

Based on the seven individual models constructed using DT,

DF, RF, kNN, SVM, LDA, and LR, a consensus machine learning

model was built by voting predictions from the seven individual

models. More specifically, the consensus model predicts a

chemical as positive if more than three of the seven models

predict the chemical as positive, otherwise the chemical is

predicted as negative (Supplementary Figure S1). The

probability to predict a chemical as positive output from the

consensus model is calculated using Eq. 2 when more than three

individual models predict the chemical as positive or using Eq. 3

when three or less individual models predict the chemical as

positive.

Positive − probability � 1 − 7 −N+

8
(2)

Positive − probability � N+

6
(3)

Where N+ indicates the number of models that predict the

chemical as positive. The consensus modeling was conducted

using an in-house Matlab script.

Cross-validations

The 5-fold cross-validation approach was used to estimate

performance of machine learning models in prediction of rat

multigeneration reproductive toxicity. In a 5-fold cross-

validation, the dataset curated from ToxRefDB was randomly

split into five folds of equal size. Four folds were used as training

data, while the remaining fold was used as testing data. Predictive

models were constructed using the training data with seven

machine learning algorithms (DT, DF, RF, kNN, SVM, LDA,

and LR) and then were tested using the testing data. In addition, a

consensus model was generated based on the seven machine

learning models and was tested using the testing data. This

process was repeated five times till each of the five folds was

used as testing data once and only once. For each of the eight

models (seven individual models and one consensus model), the

predictions on all five folds were used to calculate performance

metrics for evaluating its performance. To reach a statistically

robustness in estimation of model performance, the 5-fold cross-

validation was iterated 500 times with different random seeds to

randomly divide the whole dataset into five folds. The results

from the 500 iterations of 5-fold cross-validations were analyzed

to evaluate performance of the machine learning models for

predicting rat multigeneration reproductive toxicity. The 5-fold

cross validations were performed using an in-house Matlab script

for DF and Python (3.8.5) Scikit-learn packages (0.23.2) for DT,

RF, kNN, SVM, LDA, and LR models.

External validation

Cross-validations are used to estimate goodness-of-fit of

models constructed based on a dataset but are not suitable to

generalization of models built from the dataset to the data

generated in different situations such as different labs and

time. Therefore, external validation is needed for estimating

generalization of machine learning models yielded from the

rat multigeneration reproductive toxicity dataset curated from

ToxRefDB. In the external validations, DT, DF, RF, kNN, SVM,

LDA, and LR models were built using the full training dataset

curated from ToxRefDB. Then, each of the seven models was

applied to predict the potential rat multigeneration reproductive

toxicity of chemicals in the external dataset. The consensus
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predictions by voting of the seven models for the same chemicals

were generated as the predictions of the consensus model.

Performance metrics were calculated based on the prediction

results to assess the external validations.

Performance measurement

Predictive performance of the machine learning models was

measured by seven metrics: accuracy, sensitivity, specificity,

balanced accuracy, positive predictive rate, negative predictive

rate, and Matthews correlation coefficient (MCC). These metrics

for a set of predictions were calculated using Eqs 4–10.

Accuracy � TP + TN

TP + TN + FP + FN
(4)

Sensitivity � TP

TP + FN
(5)

Specif icity � TN

TN + FP
(6)

Balanced  accuracy � Sensitivity + Specif icity
2

(7)

Positive predictive rate � TP

TP + FP
(8)

Negative predictive rate � TN

TN + FN
(9)

MCC � TPpTN − FPpFN���������(TP + FP)√
p(TP + FN)p(TP + FP)p(TP + FN)

(10)
Where TP, TN, FP, and FN represent true positives, true

negatives, false positives, and false negatives, respectively.

Prediction confidence analysis

The output from a machine learning model not only gives a

prediction (a class label in classification or a numerical value in

regression), but also could provide other parameters that

delineate the prediction, depending on the algorithms used.

One parameter commonly provided by machine learning

models for classification is the probability of a sample

(chemical here) that is likely from the class predicted (such as

potential rat multigeneration reproductive toxic chemicals). DT

uses Eq. 11 to calculate the probability for a chemical to be

classified as positive.

Probabilitypositive
DT � npositive

npositive + nnegative
(11)

Where npositive and nnegative are number of positive and negative

chemicals in the end node the chemical in prediction falls,

respectively. Both DF and RF combine multiple trees. They

use Eq. 12 to calculate probability for a chemical to be

classified as positive.

Probabilitypositive
DF,RF � ∑n

i�1Probability
positive
DTi

n
(12)

kNN uses the fraction of positive chemicals (npositive) among the k

chemicals around the chemical in prediction as the probability

for the chemical to be classified as positive which can be

calculated using Eq. 13.

Probabilitypositive
kNN � npositive

k
(13)

SVM in scikit-learn do not directly provide probability

estimation. Probability to class (e.g., positive) is calculated

using Eq. 14 based on an expensive five-fold cross-validation.

Probabilitypositive
SVM � 1

1 + eAf+B
(14)

Where the parameters A and B are determined by maximum

likelihood estimation using cross validation on the training se,

and f is the uncalibrated value output from SVM. LDA uses Eq.

15 to calculate the probability for a chemical to be classified as

positive.

Probabilitypositive
LDA � ea·x+b (15)

Where b is the intercept and a is the coefficients vector which are

determined through training; x is the descriptors vector. LR

calculates the probability for a chemical to be classified as

positive using Eq. 16.

Probabilitypositive
LR � 1

1 + e−(a·x+b)
(16)

Where a is the coefficients vector and b is the intercept which are

determined through training; x is the descriptors vector.

In addition to the predicted class, the prediction probability is

an informative measurement for assessing the goodness of a

machine learning model as this probability indicates the

confidence of the prediction. Therefore, prediction confidence

was calculated from the probability for a prediction using Eq. 17

and was used to evaluate the confidence of the prediction.

prediction confidence � prob − 0.5
0.5

(17)

Where prob is the probability of a chemical to have rat

multigeneration reproductive toxic output from a machine

learning model. The value of 0.5 is the minimum probability

a chemical is predicted as rat multigeneration reproductive toxic.

If the probability of a prediction is less than 0.5, the chemical is

predicted as a negative and would not be predicted to show rat

multigeneration reproductive toxicity. The prediction confidence

values range between 0 and 1. A higher confidence value

represents the more confidence in the prediction.

In prediction confidence analysis, prediction confidence values

were first calculated using the prediction probability values from

the 500 iterations of 5-fold cross-validations for each of the eight
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machine learning algorithms (including the consensus modeling).

The prediction confidence values were partitioned into 10 groups

with equal range (between 0 and 1 with an internal of 0.1). The

performance metrics of predictions in each of the 10 groups were

then calculated. Last, the correlation between the prediction

performance and prediction confidence level was analyzed.

Impact of lowest-observed-adverse effect
level

In a mutigeneration reproductive toxicity study, different

doses are used. LOAEL is the lowest dose at which a reproductive

adverse effect is observed for the testing chemical. A low LOAEL

indicates that a small amount of the chemical could cause

reproductive adverse effects, and thus the chemical is highly

toxic. In data curation, all chemicals having LOAEL values

recorded in ToxRefDB were categorized as positives. To

examine the influence of LOAEL on predictive performance,

positive chemicals were divided into two groups, highly toxic

chemicals (LOAEL ≤100 mg/kg/day) and chemicals with low

toxicity (LOAEL >100 mg/kg/day). The sensitivity was then

calculated separately for each of the groups and for each of

the machine learning algorithms. Finally, the calculated sesitivity

values for the two groups from the same machine learning

algorithms were compared.

Analysis of chemical space

The dataset from ToxRefDB has a limited chemical space

(the majority are pesticide compounds) which may influence

extrapolation of the machine learning models constructed based

on this dataset to new chemicals. To pinpoint possible causes of

model performance differences in the cross-validations and

external validations, chemical spaces of the training dataset

and the external validation dataset were calculated and

compared. First, both datasets post pre-processing descriptors

were transformed with principal component analysis (PCA).

More specifically, for the training dataset represented in

principal components (PCs), the centroid of the chemicals

was first calculated. The Euclidean distances between the

yielded centroid and chemicals in both training and external

validation datasets were then computed. The distances from the

two datasets were finally statistically compared.

Results

Datasets

To ensure data quality for model development, only rat

multigeneration reproductive studies with acceptable and

complete data entries were selected (Pham et al., 2019). In

total, 275 chemicals with data from rat multigeneration

reproductive studies in ToxRefDB were used as the training

chemicals for model development. Of the 275 chemicals,

94 have study LOAEL values of effect category “Reproductive”

in ToxRefDB and were assigned as positive chemicals. Figure 2

shows the distribution of LOAEL values of the positive chemicals.

The LOAEL values cover a wide range of four magnitudes. The

remaining 181 chemicals do not have LOAEL values in

ToxRefDB and were assigned as negative chemicals in rat

multigeneration reproductive toxicity studies.

For external validation of our models built with training data

from ToxRefDB, 29 chemicals with rat multigeneration

reproductive toxicity testing (21 from COSMOS database and

eight from the literature) were obtained as the external validation

dataset. More specifically, of the 970 chemicals in COSMOS,

25 chemicals have rat multigeneration reproductive toxicity

study data. Of the 25 chemicals, four exist in the training

dataset and were excluded from external validation, and the

remaining 21 chemicals were included in the external validation

dataset. Of these 21 chemicals, 13 have LOAEL values and were

assigned as positive chemicals, while the remaining eight do not

have LOAEL and were assigned as negative chemicals. PubMed

searching was conducted using combined keywords [rats (Title/

Abstract)] AND [reproductive (Title/Abstract)] AND

[multigenerational (Title/Abstract)] AND (2012–2021). After

discarding publications of reviews, non-multigeneration

reproductive toxicity studies, and studies on mixtures or

metals or minerals, 10 chemicals were from the published

multigeneration reproductive studies. Of the 10, one was

FIGURE 2
Distribution of positive chemicals in the training dataset at
LOAEL (lowest observed adverse effect level) values. The x-axis
indicates the log10 of LOAEL values. The y-axis gives the number
of chemicals.
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included in the 275 training chemicals and one was contained in

the 21 external validation chemicals from COSMOS. The

remaining eight chemicals were added to the external

validation dataset. Of the eight chemicals, five have LOAEL

values and were assigned as positive chemicals, while the

other three do not have LOAEL values and were assigned as

negative chemicals. Finally, 29 unique chemicals (18 positive and

11 negative) were used as the external validation dataset.

The lists of the training and external validation chemicals are

provided in Supplementary Tables S1, S2, respectively.

For each of the chemicals in the training and external

validation datasets, 777 molecular descriptors were calculated

using software Mold2 (https://www.fda.gov/science-research/

bioinformatics-tools/mold2). First, the descriptors with values

in less than 10% of the training chemicals were removed,

resulting in 505 descriptors in the datasets. Then, Shannon

entropy analysis was conducted on the 505 descriptors using

the training dataset. Briefly, Shannon entropy was calculated for

each of the 505 descriptors. The distribution of the 505 Shannon

entropy values is plotted in Figure 3.

The descriptors with Shannon entropy less than 2.5 were

discarded, thus 323 descriptors remained in the datasets. Next,

500 iterations of 5-fold cross-validations on the training dataset

with the 323 descriptors were conducted using the tree-based

machine learning algorithms (DT, DF, and RF). The frequency

for each of the 323 descriptors in the cross-validations was

examined for each of the three algorithms to calculate an

importance value. The calculated importance values of the

323 descriptors for DT, DF, and RF are plotted as red, blue,

and green circles in Figure 4, respectively. The average

importance values were calculated for the descriptors based

on their three individual importance values, and the ranked

average importance values are plotted as the black curve in

Figure 4. Lastly, 34 descriptors with importance

values >0.2 were selected for model development and

validation. The selected 34 molecular descriptors are listed in

Supplementary Table S3.

Cross-validations

To estimate the goodness of machine learning models

constructed on the training dataset from ToxRefDB,

500 iterations of 5-fold cross-validations were conducted on

the training dataset using seven machine learning algorithms

DT, DF, RF, kNN, SVM, LDA, and LR. Then, the consensus

model predictions were generated based on the predictions of

individual models from the cross-validations. For each of the

500 iterations of cross-validations and for each of the eight

machine learning algorithms, performance metrics were

calculated using Eqs 5–11 by comparing the predictions with

the actual rat multigeneration reproductive toxicity assignment

(positive or negative).

The performance metrics values from the 500 iterations of

cross-validations were given in Supplementary Tables S4–S11.

The prediction accuracy, positive predictive rate, and negative

predictive rate values are summarized in Supplementary Figure

FIGURE 3
Shannon entropy of molecular descriptors. The x-axis
indicates Shannon entropy and the y-axis depicts the number of
descriptors. The red line marks the threshold of Shannon entropy
for filtering descriptors with Shannon entropy <2.5.

FIGURE 4
Importance of descriptors from tree-based models. The
x-axis represents the rank of descriptors, while the y-axis indicates
importance of descriptors. The importance values from decision
tree (DT), decision forest (DF), and random forest (RF) are
plotted as red, blue and green circles, respectively. The black solid
line represents the combined overall importance. The red dash line
marks the threshold of importance for descriptor selection.
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S2, while the balanced accuracy, MCC, sensitivity, and specificity

values are summarized in Figure 5. The average balanced

accuracy (Figure 5A), MCC (Figure 5B), sensitivity

(Figure 5C), and specificity (Figure 5D) from the cross-

validations are plotted as magenta, green, red, and cyan bars,

respectively, for the eight machine learning algorithms indicated

at the x-axis, while the corresponding standard deviations are

shown as sticks above the bars. Examination of Figure 5 found

that the models constructed with the eight machine learning

algorithms had some predictive power with average balance

accuracy greater than 0.5 (0.58–0.65) (Figure 5A) and average

MCC greater than 0 (0.17–0.32) (Figure 5B). Furthermore, the

model’s performance was very stable with a small standard

deviation among the 500 iterations of cross-validations. Not

surprisingly, the model performance varied in machine

learning algorithms. However, the variation is not large.

Moreover, the consensus modeling outperformed the seven

individual machine learning algorithms. Another interesting

observation is that all machine learning models had lower

sensitivity (average values were between 0.32 and 0.48,

Figure 5C) than specificity (average values were between

0.74 and 0.89, Figure 5D). It is worth noting that kNN

models had lower sensitivity than a hypothetical random

model (indicated by the black dash line in Figure 5C), though

the kNN models had the highest specificity (Figure 5D). Other

machine learning models had a better balance between sensitivity

and specificity.

External validations

To assess the extrapolation of machine learning models

constructed with the training dataset obtained from ToxRefDB

to predicting the potential of rat multigeneration reproductive

toxicity of new chemicals, the external validation dataset curated

from COSMOS and the literature was used for validation of the

machine learning models. First, all 275 chemicals in the training

dataset were used to build models using the seven machine

learning algorithms. Then, the seven constructed models were

used to predict potential rat multigeneration reproductive toxicity

of the 29 chemicals in the external validation dataset. Lastly,

consensus model predictions on the 29 chemicals were made

based on the predictions from the seven individual machine

learning models. The performance metrics of these eight

FIGURE 5
Results of 5-fold cross-validations: (A) Balanced accuracy, (B) Matthews correlation coefficient (MCC), (C) Sensitivity, and (D) Specificity. The
x-axis indicates machine learning models and the y-axis represents performance metrics and starts from the performance of hypothetic random
model except for sensitivity (C) for which the hypothetic randommodelmetrics wasmarked by the dash line. The average performancemetrics from
the 500 iterations of 5-fold cross-validation were plotted as bars and the related standard deviations were given as sticks above the bars. The
dash line in figure (C) represented 0.34, the ratio of positive compounds in all compounds. DT, decision tree; DF, decision forest; RF, random forest;
kNN, k-nearest neighbors; LDA, linear discriminant analysis; LR, logistic regression; SVM, support vector machine; Cons, consensus model.
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models were calculated by comparing the predictions with the

actual rat multigeneration reproductive toxicity study results and

were plotted as bars in Figure 6. The overall performance of the

external validations showed some predictive power with metrics

values greater than those of the hypothetic random model (>50%
of accuracy, >50% balanced accuracy, and >0 of MCC) for seven

machine learningmodels, but the DTmodel had <50% of accuracy

and balanced accuracy and <0 of MCC. Though the performance

variation in the seven models was not large, the DF, LDA, and

consensus models outperformed the other four models. Similar to

the cross-validations, all eight models had greater specificity than

sensitivity, indicating all models performed better on negative

chemicals than positive chemicals. However, positive and negative

predictions had very similar accuracy [positive predictive rate

(PPR) and negative predictive rate (NPR)] for all the models

except the DTmodel which had remarkably lower PPR than NPR.

The comparison between the average performance metrics

values from the 500 iterations of cross-validations and the

performance metrics values from the external validations is

given in Figure 7. Not surprisingly, the external validations

showed slightly lower performance than the cross-validations

for most of the eight machine learning models as most of the

performance metrics are under the diagonal line, which indicates

the same performance between the external validations and

cross-validations. Interestingly, DF had similar performance in

the external validations and in the cross-validations (the red solid

circles are close to the diagonal line in Figure 7). It is worth noting

that the DT model not only performed the worst in the external

validation (Figure 6), but also showed the largest difference from

the cross-validations (six of the seven metrics are far down to the

diagonal line, the blue solid circles in Figure 7), indicating DT is

prone to overfitting.

FIGURE 6
External validation results. The x-axis indicates performance
metrics, while the y-axis gives values of the performance metrics.
Machine learning algorithmswere color coded by the color legend
above the figure.

FIGURE 7
Performance metrics comparison between the cross-
validations and external validations. The x-axis indicates the
average performancemetrics from the cross-validations, while the
y-axis gives the values from the external validations. The
diagonal dash line depicts where performance metrics are the
same for the cross-validations and external validations. Results
from the eight machine learning models are plotted in different
shapes and colors given by the legend above the figure.

FIGURE 8
Prediction confidence analysis of the cross-validations.
Prediction confidence levels are given at the x-axis. The accuracy
of predictions at each confidence level is indicated by the y-axis.
Performance metrics for the eight machine learning models
are plotted in different shapes and colors given by the up-left
corner legend.
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Prediction confidence analysis

In addition to accuracy of predictions from a machine

learning model, prediction confidence from the model is a

useful metric for application of the machine learning model.

The prediction confidence values were calculated for the

predictions from the 500 iterations of 5-fold cross-

validations. The accuracies of predictions at different

confidence levels were calculated and are given in Figure 8.

The relationships between confidence level and other

performance metrics were plotted in Supplementary Table

S3. Generally, the accuracy of predictions (y-axis) increased

with increasing prediction confidence levels (x-axis),

especially for RF and consensus models. Interestingly, the

predictions from DT (red circles in Figure 8) at the highest

confidence level (0.9–1) showed higher prediction accuracy,

while predictions at other confidence levels did not display a

similar relationship between prediction accuracy and

prediction confidence levels. Further examination of the

distribution of prediction confidence values found that the

majority of DT predictions had very high prediction

confidence (>0.9), and the small numbers of predictions at

other confidence levels hardly show a statistically meaningful

relationship. The results indicated that prediction confidence

provides an additional performance assessment in

applications of the developed machine learning models.

Impact of lowest-observed-adverse effect
level on prediction performance

In data curation from ToxRefDB, chemicals with LOAEL

recorded in any reproductive toxicity endpoints in the rat

multigeneration reproductive toxicity studies were assigned as

positive chemicals. However, different LOAEL values indicate

different activity: the lower a LOAEL value, the stronger the

reproductive toxicity observed for the chemical. To examine the

difference in performance of the machine learning models on

chemicals with strong and weak reproductive toxicity, the

94 positive chemicals were divided into two groups based on

their observed LOAEL values: strong chemicals with

LOAEL ≤100 mg/kg/day and weak chemicals with

LOAEL >100 mg/kg/day. Sensitivities on the strong and weak

chemicals from the eight machine learning models are plotted as

cyan and magenta bars in Figure 9, respectively. As expected, all

eight machine learning models performed better on strong

chemicals than on weak chemicals. Furthermore, it was

observed that only DT and consensus models showed some

predictive power on weak chemicals, and the other six

machine learning models had very limited or no predictive

power in predicting weak chemicals (close to or lower than

the dashed line in Figure 9 for the hypothetical random

model), indicating a huge challenge in development of

machine learning models for predicting chemicals with weak

rat multigeneration reproductive toxicity.

Discussion

Reproductive toxicity is an important safety concern of

compounds. In vivo multigeneration reproductive toxicity testing

is complicated, time-consuming, expensive, and can require many

animals. Therefore, alternative approaches are needed to assist the

assessment of multigeneration reproductive toxicity. The existing in

vivo reproductive toxicity data are invaluable for the development of

alternative approaches. In the development of machine learning

models as alternative approaches, data quality is crucial for

objectively assessing applicability of the developed models. In this

study, we focused on predicting the potential reproductive toxicity of

chemicals in rat multigeneration reproductive toxicity studies.

Therefore, 275 chemicals and their reproductive toxicity data in

ratmultigeneration reproductive toxicity studies were collected from

ToxRefDB and used as the training dataset for constructing the

predictive models. A dataset with 29 unique chemicals and their rat

multigeneration reproductive toxicity data were curated from the

COSMOS database and the literature as the external validation

dataset. We constructed seven individual models using machine

learning algorithms DT, DF, RF, kNN, SVM, LDA, and LR. In

addition, a consensus model was derived based on the seven

individual models. The performance of these eight models was

evaluated through cross-validations and external validations. Our

results showed that machine learning models trained on the data

obtained from rat multigeneration reproductive toxicity studies had

FIGURE 9
Sensitivity of positive chemicals with different LOAEL. The
results from the eight machine models are indicated at the x-axis.
The y-axis gives the prediction sensitivity. The sensitivities are
plotted in cyan and pink bars for chemicals with
LOAEL <100 mg/kg/day and >100 mg/kg/day, respectively. The
black dash line represents the ratio of positive compounds in the
training dataset.
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some predictive power and can be reasonably extrapolated to predict

rat multigeneration reproductive toxicity of new chemicals.

However, it is necessary to be cautious when applying the

developed machine learning models. Model predictions are

representative of activity in rat multigeneration reproductive

toxicity studies and should not be interpreted as potential activity

in other reproductive toxicity studies, such as one-generation, short-

term reproductive toxicity testing.

Although the eight machine learning models performed

differently in both cross-validations and external validations,

the variations in performance of these machine learning

models are not large in terms of any of the seven metrics

(Figures 5, 6, Supplementary Table S2). Our results suggest

that the selection of machine learning algorithms is not a

huge concern. However, the consensus model outperformed

the seven individual models. Moreover, the consensus models

had a better balance between sensitivity and specificity compared

to the seven individual models, gaining improvement in

sensitivity (Figure 5C and Figure 9). As all models had lower

sensitivity than specificity, and identification of potential positive

chemicals in rat multigeneration reproductive toxicity studies is

the major goal, the improvement in sensitivity of the consensus

model is vital in application of such machine learning models.

Therefore, consensus modeling based on individual machine

learning algorithms is recommended as an alternative

approach for predicting potential activity of chemicals in rat

multigeneration reproductive toxicity studies.

In development and validation of machine learning models,

selection of informative chemical descriptors is crucial to the

success of the developed models for predicting new chemicals that

are not included in the training. However, information leaking

sometimes happens, therefore it is important to avoid information

leaking during this process. The information of modeling target (rat

multigeneration reproductive toxicity of chemicals in this study)

should not be leaked to the selection of molecular descriptors for

model building and validation. In this study, the

777 Mold2 descriptors were first filtered by removing descriptors

that have the same value zero for >90% of chemicals. The left

descriptors were then subjected to Shannon entropy analysis to

remove descriptors with low information content (Shannon

entropy less than 2.5). At last, the remaining molecular descriptors

were filtered by the frequency used in the construction of tree-based

models. During the whole process, the modeling target (rat

multigeneration reproductive toxicity) data were not used. No

information leaking happened in the selection of molecular

descriptors, so the performance validation results should be fair

and realistic.

One important process inmachine learningmodel development

is to determine a set of appropriate algorithmic parameters for the

machine learning algorithm. Each machine learning algorithm has

its own algorithmic parameters, which are not only algorithm

dependent but also training data related. Thus, a universal set of

parameters for an algorithm suitable for all datasets is not realistic.

Appropriate algorithmic parameters need to be determined before

constructing a machine learning model using the training data.

However, it is critical to avoid information leaking where the whole

training dataset is used for algorithmic parameters determination.

Therefore, an inner 5-fold cross-validation was used to optimize the

parameters for the seven machine learning algorithms. More

specifically, before constructing a model on a training dataset

using a machine learning algorithm, a set of algorithmic

parameters were fixed. The whole training dataset was randomly

divided into five folds to conduct a 5-fold cross-validation using the

fixed parameters and measure the performance. This process was

repeated five times with random division of the whole training

dataset into five folds using different random seeds. The average

performance from thefive iterations of inner 5-fold cross-validations

were calculated to measure the performance with the fixed set of

algorithmic parameters. The parameters were then repeatedly

changed to conduct the inner 5-fold cross-validations. At last, the

set of parameters that resulted in the best performance were used to

construct a model using the whole training dataset. As the training

dataset is not balanced between positive and negative chemicals

(94 positive and 181 negative), the overall prediction accuracy is not

a goodmetric for assessingmodel performance, as it is biased toward

the majority (negative). The commonly used balanced accuracy in

statistics favors the minority (positive) too much, and thus is not a

suitable metric for comparing models. Therefore, MCC was used as

the performance metric to determine the parameters that resulted in

the best performed model since MCC is more reasonable than

accuracy and balanced accuracy in balancing positive and negative

chemicals for performance measurement (Chicco et al., 2021).

Comparison of prediction performance between the cross-

validations and external validations showed that, except for the DF

model, all machine learning models had better performance in cross-

FIGURE 10
Boxplot of distances to the centroid of training chemicals for
the training dataset and external validation dataset.
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validations than in external validations (Figure 7). To ascertain the

potential cause for the differences in performance, the chemical spaces

of the training dataset and the external validation dataset are compared

in Figure 10. The principal component (PC) analysis showed some

differences between the training chemicals and the external validation

chemicals (Supplementary Table S3). However, because the first two

PCs only cover 30% of the variance of the chemicals, it is difficult to see

the clear difference between the training chemicals and the external

chemicals as well as among different categories of the external

chemicals. The first three PCs cover about 38% of the variance as

shown in Supplementary Figure S5which gives the variance covered by

all PCs. It is also difficult to see the clear difference in a 3-dimensional

space of the first three PCs. The first 20 PCs cover 95% of the variance

as shown by the red dashed line in Supplementary Figure S5. Therefore,

we used the 20-dimensional space with the first 20 PCs to represent the

training space and used the distance to the centroid of training

chemicals in the 20-dimensional space as applicability domain

measurement. The distances to the centroid of the chemicals in the

training dataset are significantly larger for the external validation

chemicals than for the training chemicals. Therefore, the models

constructed from the training dataset lost some predictive power in

predicting the external validation chemicals compared to predicting the

training chemicals. The performance difference can also be indicated by

the difference in chemical categories between the training dataset and

the external validation dataset (Table 1). The majority of the training

chemicals (243 of 275) are pesticides, while most of the external

validation chemicals are cosmetics and drugs. Close look up at the

external validation chemicals indicates the role of applicability domain.

Because only one pesticide and two research chemicals are in the

external validation set, they are not statistically representative for the

categories. Therefore, we excluded them in the comparative analysis. As

it can be seen form Supplementary Figure S6, 22, 15, and 11 of the

26 external chemicals have larger distances to the centroid than >50%,
80%, and 90% of the training chemicals. The 11 external chemicals far

from the training space (the centroid) include one drug (4-

methylimidazole), seven cosmetics [3-(dimethylamino)propylamine,

1,4-cyclohexanedimethanol, 2-butanol, butylated hydroxytoluene,

1,3-butanediol, octadecyl 2-hydroxy-1,2,3-propanetricarboxylate,

benzoic acid], and three food additives (acetone peroxide, 2,2-

dibromo-3-nitrilopropionamide, azodicarbonamide) which are not

well represented in the training data set. For example, 4-

methylimidazole has a distance to the centroid 9.751

(Supplementary Figure S6) which is larger than the distances of

95% training chemicals. It showed toxicity in the rat

multigeneration reproductive toxicity study. However, among the

eight machine learning models, only the decision forest correctly

predicted as positive. Our results suggest that caution should be

taken in applying machine learning models to chemicals that are

dissimilar to training chemicals.

The results of prediction confidence analysis showed a general

trend that predictions at a higher confidence level weremore accurate

than prediction at a lower confidence level. Therefore, prediction

confidence provides an additional metric for appropriate application

ofmachine learningmodels. Furthermore, distribution of predictions

at confidence levels also needs to be examined when assessing a

machine learning model. It is expected that a good model not only

has high accuracy for high confidence predictions, but also does not

predict many chemicals at low confidence. The distributions of

predictions in the cross-validations at different confidence levels

are plotted in Supplementary Figure S7 for the eight machine

learning models. Predictions at different confidence levels are

similar, indicating the previous observations in confidence analysis

aremeaningful and not impacted by extremely few chemicals at some

confidence levels. It is worth noting that the RFmodel and consensus

model have fewer predictions at very high confidence >0.75 than the
other confidence levels, although both models had very high

prediction accuracy at high confidence levels (Figure 8). Our

results indicate that prediction confidence analysis should examine

both accuracy and distribution of predictions at confidence levels.

The rat multigeneration reproductive toxicity studies in

ToxRefDB reported diverse reproductive toxicity observations

and a wide range of LOAEL values. The positive chemicals

displayed quite different toxicity levels that might be caused

through different mechanisms. All the machine learning

models, especially the consensus model, performed differently

on the chemicals with stronger reproductive toxicity (smaller

LOAEL) and with weaker toxicity (larger LOAEL): predictions

on the chemicals with smaller LOAEL are more accurate than on

the chemicals with larger LOAEL (Figure 9). Our speculation is

that chemicals with strong reproductive toxicity may have more

distinct structural features and cause toxicity throughmore similar

mechanisms. However, pinpointing the mechanisms of the diverse

reproductive toxicity observations in the rat multigeneration

reproductive toxicity studies and ascertaining the associated

structural features are important, but very challenging with

current experimental data and deserving of further investigation.

Although the models constructed showed some predictive power

on potential activity of chemicals in rat multigeneration reproductive

toxicity studies, the datasets used and models developed in this study

have some limitations. First, due to the diverse reproductive toxicity

endpoints observed in a rat multigeneration reproductive toxicity

study and, thus, different mechanisms possibly associated with the

observed toxicity endpoints, the number of chemicals with

experimental data for model development is relatively small,

resulting in obstructions in development of highly performing

machine learning models. With more chemicals tested in rat

multigeneration reproductive toxicity studies in the future, the

performance of machine learning models could be improved.

Second, although our results demonstrated that consensus

modeling through combining individual machine learning models

could improve overall prediction accuracy, especially sensitivity, the

sensitivity from all machine learning models, including the consensus

model, were much lower compared to the specificity. This disparity

between sensitivity and specificity was likely caused by the

disproportion between the positive and negative chemicals in the

training dataset and should be improved. One solution is to test more
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chemicals in the experiment. Another solution is to computationally

integrate strategies for balancing positive and negative chemicals in

machine learning model development. Third, only rat testing data

were curated for development and validation of the machine learning

models. Therefore, applications of the developed machine learning

models to prediction of multigeneration reproductive toxicity in other

species should be cautious.

Conclusion

In this study, machine learning models for rat multigeneration

reproductive toxicity prediction were developed using seven

machine learning algorithms. The developed models were

evaluated by 5-fold cross-validations and external validations.

These models demonstrated some predictive power for predicting

potential activity of chemicals in rat multigeneration reproductive

toxicity studies. Our results indicate that machine learning

algorithms do not dramatically impact performance of the

developed models. However, consensus modeling based on

individual machine learning algorithms improved model

performance, especially sensitivity, recommending consensus

modeling as a good practice in applying machine learning to

predict rat multigeneration reproductive toxicity. The prediction

confidence derived from machine learning models correlated with

prediction accuracy, providing an additional metric in applications

of the developed machine learning models. Here, we demonstrate

the importance of consensus models for building increased

confidence in machine learning methods. Though the prediction

accuracy needs improvement due to the complicatedmechanisms of

reproductive toxicity observed in rat multigeneration reproductive

toxicity studies, our findings shed light on exploring machine

learning models as alternative methods for in vivo rat

multigeneration reproductive toxicity testing, and the developed

models could be used in screening chemicals for experimental

testing of reproductive toxicity. While direct application of the

current model to risk assessment may be limited until further

development, the model could be used in a battery of other

in silico and/or in vitro programs for screening chemicals. As

part of a new chemical development program, our model could

result in cost savings by screening out strong reproductive toxicants,

eliminating the need for additional in vivo testing.
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