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The terms microparticles (MPs) and microvesicles (MVs) refer to large extracellular

vesicles (EVs) generated from a broad spectrum of cells upon its activation or death by

apoptosis. The unique surface antigens of MPs/MVs allow for the identification of their

cellular origin as well as its functional characterization. Two basic aspects of MP/MV

functions in physiology and pathological conditions are widely considered. Firstly, it

has become evident that large EVs have strong procoagulant properties. Secondly,

experimental and clinical studies have shown that MPs/MVs play a crucial role in

the pathophysiology of inflammation-associated disorders. A cardinal feature of these

disorders is an enhanced generation of platelets-, endothelial-, and leukocyte-derived

EVs. Nevertheless, anti-inflammatory effects of miscellaneous EV types have also been

described, which provided important new insights into the large EV-inflammation axis.

Advances in understanding the biology of MPs/MVs have led to the preparation of this

review article aimed at discussing the association between large EVs and inflammation,

depending on their cellular origin.

Keywords: microvesicles and exosomes, inflammation, platelet-derived microvesicles, leukocyte-derived

microvesicles, endothelial-derived microvesicles

EXTRACELLULAR VESICLES AT A GLANCE

The story of EVs started in 1946, when Chargaff and West (1) reported that prolonged
centrifugation of human plasma (31,000 × g per 150min) resulted in extending the coagulation
time due to loss of the “clotting factor.” In 1967, Wolf (2) identified platelet-derived vesicles, which
were named “platelet dust”—his paper is considered a milestone in EV research by many authors.
Fourteen years later, Trams and colleagues (3) for the first time used the term “exosomes” to
describe vesicles released from normal and neoplastic cell cultures. A series of studies by Johnstone
et al. focusing on the role of exosomes during blood reticulocyte maturation (4–6) also need to
be mentioned, in which the authors concluded that exosome shedding leads to loss of some plasma
membrane functions (4) due to the elimination of redundantmembrane proteins (6). Undoubtedly,
the findings of these studies helped to understand that exosomes may perform crucial roles in
cellular functioning and that they are not just cellular remainder.

In recent years, there have been major advances in the understanding of the biology of EVs.
However, the accurate definition of EVs is still a matter of debate. There are many reasons
why it is still difficult to establish a clear, meticulous definition of EVs, for example the fact
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that they are released from many cell types which results in
their varied compositions and functions. Moreover, they are
released via multiple mechanisms. Also, EVs exhibit various sizes
(30–2,000 nm in diameter), therefore many different analytical
methods are used for their isolation and identification from the
extracellular milieu (7).

In late 2014, the International Society for Extracellular
Vesicles (ISEV) published a statement paper on minimal
experimental requirements for the definition of EVs and their
functions (8). The authors present basic steps of the research
that are required for obtaining accurate results on EVs, including
separation, characterization and functional studies (8). However,
these recommendations should be continually reviewed (9).

Another aspect that needs to be emphasized is that, starting
from 2004, the most common term for EVs used in literature
is the “exosome” (or “exosomes”) (8), however many other
terms are also applied to describe EV subtypes; the terminology
is constantly evolving. Currently, in order to systematize the
knowledge on EVs, three main EV types are recognized:
exosomes, microvesicles (MVs; microparticles, MPs; ectosomes),
and apoptotic bodies (apoptotic vesicles) (10). All of these EV
subtypes have common denominators, for example: they are
nano-sized vesicles composed of phospholipid bilayers with a
spheroidal shape and contain membrane and cytosolic proteins,
receptors, and nucleic acids originating from their cell of origin
(11). Notwithstanding, the diversity of EV antigens can also
be considered a feature that differentiates EVs in terms of
cellular origin and functions. Indeed, an Internet compendium
of exosomal cargo, ExoCarta, (http://www.exocarta.org) contains
data on 41,860 proteins, over 7,540 RNAs and 1,116 lipids
identified in exosomes in multiple organisms (12). Two
other online databases, EVpedia (http://www.evpedia.info) (13)
and Vesiclepedia (14) (http://www.microvesicles.org) present
information on all EV types including, but not limited to,
exosomes.

Recently, ISEV proposed to classify EVs on the basis of
centrifugation conditions into: EVs sedimenting at 100,000 × g
into small EVs (sEVs) rather than exosomes; EVs sedimenting
at speeds lower than 20,000 × g into medium EVs (mEVs,
microvesicles, ectosomes), and EVs sedimenting at 2,000× g into
large EVs (lEVs, large fragments of cells, large apoptotic bodies)
(15). Since these recommendations are relatively new (dated
March 2017), most authors still use previous, long-established
terms. Numerous excellent reviews on EV biogenesis, including
their formation and secretion, have already been published
(16, 17), thus, in the current review, we provide only a brief
description of the two main EV populations: small (exosomes)
and medium EVs (microvesicles).

EXOSOMES—A SHORT PRESENTATION

Exosomes are the smallest among all the EV subtypes (30–
150 nm) and their density ranges between 1.10 and 1.19 g/mL.
They are secreted by many physiological cell types (18–37)
summarized in Table 1. The presence of exosomes in different
biological fluids is well researched (38–52); cancer cells are

also known to have the ability to release exosomes (53). Most
exosomes are secreted from multivesicular bodies (MVBs) (16),
also known as multivesicular elements (MVEs), late endosomes
or endocytic carrier vesicles (54, 55). In vivo experiments
elegantly demonstrated that MVBs are organelles containing
intraluminal vesicles (ILVs), which release exosomes into the
extracellular space upon fusion with the plasma membrane (54).
In contrast, T cells may release exosomes directly from discrete
domains of the plasma membrane (56). Two sophisticated
mechanisms are engaged in exosome generation. One of them
depends on the ESCRT (endosomal sorting complex required
for transport) machinery (57), while the other one is ESCRT-
independent (58). Naturally, not all ILVs become exosomes, since
part of MVBs fuse with lysosomes and undergo destruction
(Figure 1) (58). Tetraspanins (CD9, CD63, CD37, CD81, CD82),
heat shock proteins (HSPs), tumor susceptibility gene 101 protein
(Tsg101), and ALG-2-interacting protein X (Alix) are all antigens
commonly expressed on the exosomes surface (11, 59). With
reference to ExoCarta (12), CD9 is the major exosomal antigen
identified in 98 different studies. Importantly, basic studies
conducted in the past several years have confirmed that exosomes
are predominantly involved in cell-to-cell interactions (60–62).

MICROVESICLES (MICROPARTICLES)—A
SHORT PRESENTATION

Each EV type is unique with regard to size and biogenesis.
Analysis of MVs from human cells and cell cultures reveal that
they are plasma membrane vesicles with diameters ranging from
100 to 1,000 nm (1µm) (17). Nevertheless, similarly to exosomes,
a uniformly accepted definition of MVs is not available. One
noteworthy description was proposed by Shet et al. (63), who
characterized MVs as vesicles: obtained via ultracentrifugation,
with a size of ≤1000 nm and expressing phosphatidylserine (PS)
verified by annexin V-positive staining. In contrast, the group
of Connor et al. (64) described the existence of annexin V-
negative MVs. Of note, some authors studying MVs define them
as exosomes or use these two concepts as synonyms, which is
incorrect. Under both physiological and pathological conditions,
MVs are released from cytoplasmic membrane, and engrossingly,
the same cells may produce exosomes and MVs concurrently
(18, 21). MVs may be released frommultiple cell types, including
platelets (18), erythrocytes (65), leukocytes [neutrophils (21,
66), monocytes (67), T, and B lymphocytes (67)], brain cells
(68, 69), dendritic cells (70), adipocytes (71), endothelial cells
(72, 73), endothelial progenitor cells (74), hepatocytes (75),
and by hardly ever researched photoreceptors (76) as well
as by tumor cells (16, 17). Subsequently, numerous reports
describe the occurrence of MVs in biological fluids. Typically,
peripheral blood (67) is a standard material for MV isolation
and characterization. Other MV-containing fluids are cord blood
(77), urine (78), cerebrospinal fluid (79), saliva (80), amniotic
fluid (81), synovial fluid (82), and vitreous fluid (76). Despite
the naturally occurring biological fluids, evidence suggests that
MVs are present in bronchoalveolar lavage fluid (BALF) (83),
ascites, pleural, chyloid, and postoperative drainage fluid (84),
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TABLE 1 | Exosome characteristics according to type of parental cell.

Type of cell releasing exosomes Size (nm) Density (g/mL) Exosome-specific antigens References

Blood cells Platelets 40–100 1.14–1.18 a. CD63—classic for many exosomes. (18)

B lymphocytes 60–80 1.13 a. major histocompatibility complex class II (MHC

class II).

(19)

Monocytes 50–100 ND a. miRNA-223. (20)

Neutrophils 30–80 ND a. Asthma remodeling-related proteins, including:

Matrix metallopeptidase 9 (MMP9),

Leukotriene A4 hydrolase (LTA4H),

Serpin family H member 1 (SERPINH1),

Collagen type I alpha 1 chain (COL1A1).

(21)

Eosinophils 162 ± 13.6 ND a. ALG-2-interacting protein X (Alix),

b. CD63,

c. CD9.

(22)

Central nervous

system cells

Microglia 40–120 1.15 a. Membrane alanyl aminopeptidase (ANPEP),

b. Monocarboxylate transporter 1 (MCT-1).

(23)

Oligodendrocytes 30–80 1.10–1.14 a. Myelin proteolipid protein (PLP),

b. 2′3′-cyclic-nucleotide-phosphodiesterase (CNP),

c. Myelin basic protein (MBP),

d. Myelin oligodendrocyte glycoprotein (MOG).

(24)

Cortical neurons 100 1.11–1.19 a. Glutamate/aspartate anionic amino acid transporter 1

(GLAST1),

b. Ceruloplasmin.

(25)

Dendritic cells 30–100 ND a. Tumor necrosis factor alpha (TNF-α). (27)

30–100 ND a. MHC class I and class II,

b. CD80, CD86, CD40, CD14.

(28)

Adipocytes 50–150 ND a. Matrix metalloproteinase-3 (MMP3). (30)

Mast cells 40–80 ND a. 116 miRNAs,

b. 1,800 mRNAs.

(31)

30–100 ND a. 82 mast cell-specific proteins,

b. Mast cell-specific transcripts, including:

c. Mast cell carboxypeptidase A (CPA3),

d. Tryptase alpha/beta 1 (TPSAB1).

(32)

Endothelial cells Human umbilical vein

endothelial cells

(HUVECs)

30–150 ND a. Different miRNAs: miR-21, miR-126-3p, miR-126-5p,

miR-222.

(33)

Human brain

microvascular

endothelial cells

(HBMECs)

<200 ND a. CD105,

b. CD144.

(34)

Endothelial progenitor cells (EPCs) <200 ND a. CD34,

b. Kinase insert domain receptor (KDR).

(34)

Hepatocytes 57.6 ± 23

and

49.5 ± 17

ND a. 251 proteins, including:

b. Cytochromes,

c. Uridine 5′-diphospho-glucuronosyltransferase (UGT),

d. Apolipoprotein E (ApoE).

(35)

Intestinal epithelial cells 30–90 ND Apical exosomes:

a. MHC class I and class II,

b. CD26,

c. Syntaxin 3 (STX3),

d. Microsomal dipeptidase

(MDP).

Basolateral exosomes:

a. MHC class I and class II,

b. CD26,

c. A33 antigen,

d. Epithelial cell surface

antigen (ESA).

(36)

Cardiomyocytes ∼100 ND a. Glucose transporters (Glut1, Glut4),

b. Lactate dehydrogenase (LDH),

c. Glyceraldehyde-3-phosphate dehydrogenase

(GAPDH).

(37)

ND, not determined.
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FIGURE 1 | Biogenesis of microvesicles (MVs) and exosomes. Unlike MVs, which are shedded directly from the plasma membrane, most exosomes are formed

by invagination of endosomes and are stored within multivesicular bodies (MVBs) before release. Exosomes inside MVBs are also called intraluminal vesicles (ILVs).

Upon fusion of MVBs with the plasma membrane exosomes are released into the extracellular environment. Both MVs and exosomes enclose greatly varying

compositions of proteins, lipids, and nucleic acids and can be characterized by differing surface antigens.

and likewise can be isolated from atherosclerotic plaques (85).
Data gathered from experimental and clinical investigations have
implied that MVs are shedding from plasma membranes upon
cell activation and apoptosis and that the antigenic expression of
endothelial (86), platelet (87), and monocytic (88) MVs depends
on the type of stimulus. Given that MVs are fragments of cell
membranes, it might seem that their release does not require
convoluted biochemical processes. In reality, they are multi-stage
processes the mechanisms of which are not yet fully understood
(89). As can be deducted from Table 2, antigens of parental cells
can be used to identify MVs in biological fluids as well as in
conditioned media from cultured tissues. Moreover, the results
of in vitro and in vivo studies, although not unanimously (64),
suggest that the vast majority of MVs expose PS. The review of
literature also shows that many scientists largely focused their
attention on another MV surface antigen, namely tissue factor
(TF). Thus, TF-bearing MVs are increasingly being used to
evaluate thromboembolic complications in different pathological
conditions (90), including cardiovascular diseases (91, 92) and
cancer (93). The great variety of bioactive molecules (proteins,
lipids, and nucleic acids) which can be transported by MVs from

cell to cell enables these nano-sized particles to perform many
functions in coagulation, inflammation, cancer, and angiogenesis
(94). In this paper we will review current state of knowledge
on the role of MVs in inflammation and inflammatory-related
disorders.

PLATELET-DERIVED MICROVESICLES
(PMVs) AND INFLAMMATION

Platelets are small, anucleated cellular elements derived from
megakaryocytes which play substantial role in blood coagulation
(95). It is generally recognized that platelets are effectively
the root cause of circulating MVs. As discussed by Kornek
and Schuppan (96), platelet-derived MVs (PMVs) constitute
the most commonly researched MV type. Furthermore, PMVs
represent predominant fraction of MVs in circulation (97).
Flow cytometry is commonly used to determine the number
of PMVs in biological fluids by using monoclonal antibodies
against glycoprotein IIb (CD41), glycoprotein IIIa (CD61), and
P-selectin (CD62P) (98).
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This section of the article contains the summary of current
state of knowledge on the role of PMVs in inflammation,
although they can also be found in biological fluids of healthy
organisms. In order to improve understanding of PMVs’ role in
physiological conditions, Berckmans et al. (97) conducted a study
which showed that PMVs have anticoagulant properties thanks to
protein C (PC) activation. It is also interesting that the function of
megakaryocytes as the main source of PMVs in healthy subjects
was confirmed in another research (99).

Two types of observations point at the significance of
PMVs in inflammation. First, a number of experimental
researchers reported that PMV cargo can interact with cells
involved in inflammatory reactions. Second, an increase
in blood PMV levels has been reported in inflammatory-
associated disorders. Essentially, the proinflammatory action
of PMVs comes down to modulation of several processes,
including activation of both immune cells and endothelium,
intensification of leukocyte transendothelial migration (TEM)
and cell to cell interaction, stimulation of chemotaxis, and
reducing apoptosis of inflammatory cells. Moreover, PMVs
remain a rich potential source of proinflammatory cytokines
and complement components. At the beginning of the MV
era it was comprehensively accepted that PMVs are strong
proinflammatory mediators. This is partially true and also
obviously incomplete since recent studies documented that
PMVs serve as anti-inflammatory factors (11, 16, 94, 96). This
missing aspect will be discussed in the subsequent part of this
section.

One universal concept that has emerged from previous studies
is that PMVs modulate the phenotype of different cells via
transport of their bioactive components to target cells. The
observation that PMVs can activate a great variety of cells
which are engaged in both immunity and inflammation allowed
major progress in the understanding of interdependence between
inflammatory processes and PMVs. This mechanism was studied
in detail by Barry et al. (100, 101) in the late 90s. In the
initial report, they proved that PMVs induce expression of
cyclooxygenase-2 (COX-2) and prostacyclin (PGI2) production
in endothelial cells (100) throughout arachidonic acid (AA). This
observation initiated a series of studies on the possibility of
shifting endothelial properties into a proinflammatory state with
PMV participation. The authors further noted that interaction
between monocytes and endothelial cells is modulated by
PMVs (101). This data clearly indicates that PMVs have the
ability to activate intracellular cell adhesion molecule-1 (ICAM-
1, CD54) on endothelial cells and integrin subunit alpha
L (CD11a), integrin subunit alpha M (CD11b), and CD14
on blood monocytes as well as on the U-937 macrophage
cell line (101). All of these surface antigens are crucial in
inflammation. ICAM-1 interacts with two types of leukocyte
receptors: lymphocyte function-associated antigen 1 (LFA-1,
CD11a-CD18) and macrophage-1 antigen (Mac-1, CD11b-
CD18), which is the key step leading to TEM (102). This
complex process, so called diapedesis, recruits leukocytes to
the site of inflammation (103). Interestingly, the chemotaxis
of U-937 cells also seems to be induced by PMVs (101).
When examining the mechanism of monocyte recruitment to

endothelium, Mause et a1. (104) reported that this process
depends on chemokine (C-C motif) ligand 5 [CCL5, also
known as regulated on activation, normal T cell expressed
and secreted (RANTES)], transferred into endothelial cells by
PMVs. Accordingly, an early study was conducted in order
to understand the relationship between PMVs and leukocyte-
leukocyte interactions (105). Forlow et al. (105) demonstrated
that P-selectin, which is a protein localized in the membranes
of PMVs, constitutes a critical component in neutrophil
aggregation and accumulation. After creating a specific bond
with its primary ligand, P-selectin glycoprotein ligand-1 (PSGL-
1, CD162) it serves as “bridge” between circulating or adherent
neutrophils (105). Other researchers proved that PMVs inhibit
the apoptosis of polymorphonuclear leukocytes (PMNs) (106).
Indeed, stimulation of platelets with thrombin leads to the release
of PMVs, which through transforming growth factor beta 1
(TGF-β1) suppress PMNs apoptosis (106). On the other hand,
PMVs promote apoptosis in macrophages, probably because of
the transfer of active caspase 3 (107).

The PMVs’ ability to induce the adhesion of PMNs to
endothelium spurred considerable interest, mostly because this
process is involved in inflammatory reactions (as mentioned
earlier). A study conducted by Lindemann et al. (108) concluded
that interleukin (IL)-1β is carried by PMVs and induces
human endothelial cell adhesiveness for neutrophils. Recently,
Xie et al. (109) attempted to characterize the role of PMVs
in endothelial cell damage. Data published by them have
shown that PMVs can synergize with PMNs and together are
responsible for the destruction of microvascular endothelium
(109). Most notably, this reaction is dynamically modulated
by the interaction of soluble CD40 ligand (sCD40L) from
PMVs with CD40, a receptor found on granulocytes (109).
Recognition of PMVs as a source of sCD40L is extraordinarily
important for considering their role in inflammation. Despite the
findings of Xie et al. (109), sCD40L is a strong proinflammatory
molecule, which binds to CD40 in cells of the immune system,
such as monocytes/macrophages, as well as in endothelial cells,
and initiates a series of biochemical and molecular reactions,
including: monocyte extravasation, cytokine synthesis [monocyte
chemoattractant protein-1 (MCP-1), IL-1, IL-6, IL-8, matrix
metalloproteinases (MMPs)], and reactive oxygen species (ROS)
generation (110). Furthermore, proteomic analysis of PMVs
revealed that they constitute a source of many proinflammatory
compounds (111). While literally hundreds of proteins were
detected (111), those engaged in inflammatory response belonged
to the C-X-C motif chemokine family (CXCL4, CXCL7) and
the C-C motif chemokine family (CCL5, CCL23). Furthermore,
PMVs were shown to create macromolecular structures with
immune complexes (112). Meticulous analysis proved that these
structures, via presentation of autoantigens and stimulation of
leukotriene production by neutrophils, bolster inflammation
(112). It is noteworthy that works of other research groups
confirmed that PMVs are a source of IL-1, IL-6 and tumor
necrosis factor-α (TNF-α) (113, 114). Without a doubt, the
above-described properties of PMVs confirm their active
participation in the pathogenesis of atherosclerosis and its
complications. Although the formation of atherosclerotic plaques
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is a complex mechanism, leukocytes activation, adhesion, and
migration as well as endothelial dysfunctions are also significant,
and now it is clear that all these processes are moderated
by PMVs. Accordingly, as might be expected, elevated plasma
levels of PMVs were described in atherosclerosis and associated
cardiovascular disease (115, 116).

As shown above, much effort has been made to describe
the leukocyte-PMV-endothelial axis. Naturally, immunological
response is not just a single-step process, but it involves
an adaptive immune compartment. Indeed, this question in
the context of lymphocyte relationship with PMVs remains
substantially underresearched. Notwithstanding, an introductory
study demonstrated that PMVs transfer CD40L (CD154) to B
cells. CD40L-bearing PMVs induce IgG production, germinal
center formation as well as B cell proliferation. Using an
immortalized pancreatic endothelial cell line (MS-1), the authors
additionally proved that PMVs are actively involved in the
regulation of MCP-1 expression (117). More recently, the
immunostimulatory effect of PMVs on the acquired immune
system was quantified in Daudi B cell line (118). This small
study illustrated that PMVs strongly induce the expression of
CD86 and CD27 with simultaneous decrease of IgD expression in
Daudi cells (118). The synthesis of IgGwas increased whenDaudi
cells were co-cultured with PMVs (118). Although this data is
fragmented and remains to be further investigated, the activation
of the adaptive immune system is almost certainly related to the
cooperation with PMVs.

In recent experiments different agonists, such as thrombin,
collagen, and calcium ionophore A23187 (calcimycin) (100, 105),
were used to activate platelets and MV release. Notwithstanding,
it is well known that platelets may be activated during
infection by contact with bacterial proteins. For example,
direct evidence implicates that staphylococcal superantigen-
like protein 5 (SSL5) is a powerful modulator of PMV
generation (119). Major SSL5-induced PMV effects observed
were linked with monocytes and provoking them to synthesize
proinflammatory cytokines, including IL-1β, TNF-α, MCP-1, and
MMP-9 (119). This experiment also showed that PMVs enhance
the chemotaxis of monocytes (119). Moreover, PMVs contribute
to the development of inflammation during enterohemorrhagic
Escherichia coli-associated hemolytic uremic syndrome (EHEC-
HUS) (120). In the acute phase of the disease patients exhibited
increased levels of PMV-expressed complement component 3
(C3) and C9 (120). Release of PMVs rich in complement
components and complement control proteins were stimulated
by Shiga toxin and lipopolysaccharide (LPS) (120). There is also
evidence that PMVs may play a role in viral infections. A study
carried out at the University of Louisville provided clear evidence
of transferring C-X-C chemokine receptor type 4 (CXCR4) by
PMVs to CD4+/CXCR4−null cells and, in consequence, making
them susceptible to infection by human immunodeficiency virus
(X4-HIV) (121). It does not come as surprise that Corrales-
Medina et al. (122) reported increased levels of PMVs in blood of
HIV-infected patients. Furthermore, increased activity of PMVs
during HIV infection has been described (123). However, the
intensification of PMV generation is not characteristic for all
viral infections. For example, patients with dengue virus (DENV)

infection exhibit reduced shedding of PMVs (124). The role of
PMVs in parasitosis is poorly characterized because researches
are mainly limited to malaria infection. The direct engagement
of PMVs in Plasmodium falciparum infestation was documented
by Faille et al. (125). Intriguingly, they have shown that PMVs
preferentially bind with P. falciparum-parasitized red blood cells
(PRBCs) (125). Despite the fact that PMVs can directly bind
to human brain endothelial cells (HBECs), PRBCs adherence to
HBECs is dramatically increased by PMVs, which links PMVs to
cerebral malaria (125). Few clinical studies confirmed this in vitro
report on the relationship between malaria, its complications and
PMVs (126, 127). In particular, high plasma PMV levels were
associated with coma depth and thrombocytopenia in patients
with P. falciparum cerebral malaria (126). Similarly, researchers
reported the existence of links between increased levels of plasma
PMVs, fever and days with acute illness in P. vivaxmalaria (127).
Collectively, these studies consistently demonstrated that acute
phase response during infections may be additionally modulated
by PMVs.

Traditionally, when thinking about the assessment of
inflammation in everyday medical practice, each clinician pays
particular attention to C-reactive protein (CRP). CRP is an
acute phase reactant with two conformationally different forms:
pentameric CRP (pCRP) and monomeric CRP (mCRP), which is
the product of pCRP dissociation (128). Even though mCRP is
characterized by a stronger proinflammatory potential compared
to pCRP (129), previous report demonstrated that out of all the
MV types PMVs are the ones to bind pCRP (130). The properties
of PMVs escalate localized inflammation through the classical
complement pathway activation and leukocyte recruitment into
tissues (130).

The mechanism of PMVs role in inflammation is not as
simple as it initially appears. Therefore, further insights into
the role of PMVs in inflammation originated from previous
studies showing their anti-inflammatory attributes (131–135).
Unlike well-established proinflammatory effects, themechanisms
of inflammation suppression are poorly understood and, as far
as we know, a limited number of papers address this issue. It
should also be emphasized that anti-inflammatory properties of
PMVs are primarily due to the inhibition of cytokine release.
First, PMV cargo serves as signaling molecules to inhibit
inflammatory reaction. By way of illustration, lipoxygenase 12
(12-LO) positive PMVs are thought to be involved as mediators
in the synthesis of lipoxin A4 (LXA4) by mast cells, which
leads to the inhibition of inflammation (131). Second, further
insights into the role of PMVs in inflammatory response
regulation were gained by demonstration that PMVs reduce the
release of the proinflammatory proteins TNF-α and IL-10 by
macrophages (132). Simultaneously, the release of TGF-β was
induced by PMVs (132). Accordingly, it was speculated that
differentiation between monocytes and immature dendritic cells
(DCs) is downmodulated by PMVs (132). However, these results
should be approached with caution, as PMVs were isolated
from stored (not fresh) platelets (132). On the other hand, the
ability of PMVs to participate in reprograming macrophage
function was also described by Laffont et al. (133). Release
of CCL4, TNF, and colony stimulating factor 1 (CSF1) was
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found to decrease in macrophages co-incubated with PMVs
(133). Another investigation confirmed that PMVs reduce
TNF-α and IL-8 secretion from plasmacytoid dendritic cells
(pDCs) (134). Finally, Dinkla et al. described the inhibitory
effect of PMVs on adaptive immune system (135). This study
constitutes compelling evidence that regulatory T cells (Tregs)
are suppressed to release IL-17 and interferon gamma (IFN-
γ) by PMVs in a P-selectin-dependent manner (135). As
can be concluded from the analysis of available literature,
proinflammatory properties of PMVs constitute the greater
part of the paper, whereas anti-inflammatory properties are
only analyzed in a scarce number of experimental studies.
Nevertheless, PMVs can combine their proinflammatory action
with the ability to reduce inflammation.

ENDOTHELIAL-DERIVED MICROVESICLES
(EMVs) AND INFLAMMATION

It is widely acknowledged that endothelium is a single large
organ with weight of around 720 g and surface of 6,000 m2

(136). Endothelial cells are an important source of MVs. Altered
vascular homeostasis, that is state of activation or apoptosis,
is associated with the release of MVs. They are defined based
on cytometric analysis of glycoprotein expression, including E-
selectin (CD62E), endoglin (CD105), platelet endothelial cell
adhesion molecule 1 (PECAM-1, CD31), vascular cell adhesion
molecule 1 (VCAM-1, CD106), vascular endothelial cadherin
(VE-cadherin, CD144), and melanoma cell adhesion molecule
(MCAM, CD146) (137). Some of these surface markers are
also characteristic for other MV types (137), therefore their
combinations are frequently used in EMV studies, for example
CD105+/CD144+ (138) or CD105+/CD146+ (139). It was
Combes et al. who for the first time provided direct evidence
demonstrating the presence of EMVs in circulation (72). Since
then many studies were devoted to understanding the role of
EMVs in various pathological processes. Considering the origin
of EMVs, literature strongly emphasizes their proatherogenic and
prothrombotic action; meanwhile, the following section of this
review describes the involvement of EMVs in inflammation.

Attention should be drawn to the existence of a disproportion
between the number of studies on the role of EMVs in
inflammation and the number of reports on PMVs. However, a
growing body of evidence indicates that EMVs are also important
mediators of inflammatory reactions. Discussing this issue
should be initiated by the presentation of in vitro results showing
that human endothelial cells release MVs after stimulation or
injury with various proinflammatory cytokines. An early research
conducted by a group of French scientists reported that TNF
promotes EMV release by human umbilical vein endothelial cells
(HUVECs) (72). Other experiments demonstrated that EMV
production is increased in the presence of IL-1α (140), IL-1β
(141), IFN-γ (141), complement proteins C5b-9 (142), CRP
(143), and LPS (141). The fact that TNF strongly stimulates the
release of EMVs is often used in in vitro studies (72, 86, 144–147).

The second important remark is that specific set of
EMV surface proteins may modulate local and generalized

inflammation. It also seems that the expression of these antigens
depends on endothelial cell stimulation through inflammatory
agents, first and foremost by TNF. Experimental data signify that
the TNF-EMV axis is a perfect example of the inflammation
cycle: TNF promotes EMV generation, which in turn increases
the expression of adhesion molecules on subsequent endothelial
cells. In a previously mentioned experiment designed to answer
questions about the role of inflammatory stimuli on EMV
generation, Combes et al. (72) found that adhesion molecule
(E-selectin, ICAM-1, PECAM-1, and αvβ3) expression on
EMVs is enhanced by TNF. Moreover, there are indications
that TNF-α induction of EMVs depends on p38 mitogen-
activated protein kinase (MAPK) (145). Released EMVs act
on subsequent endothelial cells, increasing the secretion of
soluble ICAM-1, which does not depend on MAPK (145). It
should also be stressed that this study associated EMVs with
IL-6, demonstrating a very strong positive correlation between
these two inflammatory components (145). The findings of
Lee et al. (146) confirmed that EMVs increase endothelial
surface expression of ICAM-1 in a dose-dependent manner.
Among several molecular mechanisms that may contribute to
EMV shedding, the authors incontrovertibly proved the role
of nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-κB) and tumor necrosis factor receptor-1 (TNFR-
1) (146). As for the question of inflammation, they also
described that attachment of monocytes to endothelial cells
is modulated by EMVs (146). Accordingly, an earlier study
(147) found the ability of EMVs to bind with monocytes.
Indeed, several clinical studies identified increased binding of
EMVs with leukocytes in inflammatory conditions, including
severe systemic inflammatory response syndrome (SIRS) (148),
metabolic syndrome (149), and multiple sclerosis (150, 151).
As mentioned earlier, TNF causes increased expression of
adhesion molecules, predominantly ICAM-1, both on EMVs and
endothelium surface, which results in an intensified interaction
between leukocytes and endothelial cells. Moreover, studies show
greater affinity of EMVs to monocytes than to neutrophils
and lymphocytes (150). It is also clear from experimentally
induced TEM that monocyte migration is enhanced when cells
are conjugated with EMVs (150, 151). As emphasized at the
beginning of this paragraph, interactions between EMVs and
endothelial cells are examples of an inflammation cycle. In the
same context, Liu et al. (152) have recently confirmed that the axis
of TNF-endothelium-EMV-endothelium is a self-perpetuating
inflammatory process. They concluded that TNF-induced EMVs
stimulate endothelial cells to produce proinflammatory cytokines
including interferon gamma-induced protein 10 (IP-10) (152).
Interestingly, EMVs can also be generated in the process
of endothelial cell stimulation by bubbles, which represents
a laboratory model of decompression sickness (DCS) (153).
These bubble-induced EMVs support inflammatory responses
by promotion of proinflammatory cytokine release (soluble
ICAM-1 and soluble VCAM-1) (153). Collectively, the studies
discussed in this section lead to the conclusion that EMVs have
the ability to activate both endothelium and leukocytes, which
fortifies migration of leukocytes to the site of inflammation.
Recently, Nakaoka et al. (154) have put forward important
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and thought-provoking observations on the proinflammatory
mechanism of EMV. First, two unique microRNAs (hsa-
miR-145-5p and hsa-miR-320a) were encapsulated in EMVs.
Second, hsa-miR-145-5p and hsa-miR-320a were transferred to
monocytes and upregulated mRNAs of inflammatory cytokines
(TNF-α, IL-1β, IL-6, IL-10, and IL-18) (154). In another study by
Yamamoto et al. (141) the researchers tried to identify the effect
of inflammation-induced EMVs on pericytes. These findings
indicate that the release of EMVs in response to inflammatory
factors is incorporated into cerebrovascular pericytes and
increase vascular endothelial growth factor B (VEGF-B) mRNA
and protein expression in a miRNA-dependent manner (141).
Unquestionably, this aspect also links EMVs to the process of
angiogenesis. On the contrary, experiments reported by Jansen
et al. (155) showed that EMVs reduce ICAM-1 expression
by transporting miR-222 to endothelial cells. This apparently
results in a decrease of monocyte adhesion to endothelium
(155). Detailed studies on the mechanisms by which microRNAs
associated with EMVs modulate inflammatory reactions are
in a relatively early phase of development, however it may
already be speculated that the trend in proinflammatory vs.
anti-inflammatory properties depends on the type of microRNA.

Only few reports are currently available on the role of EMVs in
adaptive immunity modulation. It is important to remember that
EMVs activate lymphocyte proinflammatory pathways through
surface antigens. Notably, previous work demonstrated that
EMVs induce maturation of plasmacytoid dendritic cells (pDCs)
(156). PDCs produce great amounts of type I interferons (IFN-
α, IFN-β, IFN-ω), type III interferons (IFN-λ1, IFN-λ2, IFN-
λ3), as well as IL-6, and TNF-α (157, 158). Thus, it has been
convincingly shown that after stimulation with EMVs pDCs
secrete IL-6 and IL-8. Fundamentally, this study also identified
increased naïve CD4+ T cell proliferation and Th1 cytokine
secretion in the presence of EMV-induced mature pDCs (156).
Moreover, EMVs support proliferation of CD4+ and CD8+
T cells (73). The presence of molecules engaged in antigen
presentation and T cell stimulation, including CD40, major
histocompatibility complex (MHC) class I and class II, and
inducible T cell costimulator ligand (ICOSL) was reported on
EMV surface (73). This finding, combined with the observation
that EMVs bind with CD4+ and CD8+ T cells, may provide
another explanation on how EMVs modulate immune response.
Other observations support the view that EMVs act as activators
of T cells response (159, 160). The number of Th1 cells increased
when peripheral blood mononuclear cells were co-incubated
with EMVs (159). An increase in T-box transcription factor (T-
bet) mRNA and protein was documented simultaneously during
the same experiment (159). Thus, it may be speculated that
EMVs use T-bet to promote Th1 cell differentiation and cytokine
synthesis. Subsequent research demonstrated that EMVs deliver
miR-155 to T cells (160). Although encapsulated miR-155 does
not influence proliferation and apoptosis of T cells, miR-155
inhibition causes suppression of IFN-γ, IL-2, IL-9, and IL-17A
release, while increasing the release of other cytokines such
as IL-4, IL-6, and IL-10 (160). Clinical implication derived
from the above mentioned papers (159, 160) is that changes
in T cell functioning under the influence of EMVs constitute

critical element of pathophysiology of some disorders such as
acute coronary syndrome (ACS) (159) and acute graft-versus-
host disease (aGvHD) (160). Accordingly, EMVs may constitute
therapeutic target for anti-inflammatory drugs.

Previous investigations contributed to better understanding
of dependence between EMVs and the already mentioned well-
known acute-phase reactant, CRP. In order to investigate possible
interaction between CRP and EMVs, Wang et al. (143) carried
out an experiment showing that endothelial cells treated with
CRP release more EMVs. This observation is concurrent with
data obtained by Devaraj et al. (161). The question arouse if
EMVs can carry CRP and what potential biological effect of this
phenomenon would be. Experimental and clinical data support
potential relationship between EMVs and CRP. Major advance
in our understanding of this link came when Habersberger
et al. (162) reported that EMVs are involved in the conversion
of pCRP to mCRP and transport mCRP to endothelial cells
causing their activation as determined by an increase in VCAM-1
surface expression. Crawford et al. (163) recently confirmed that
EMVs bear strong proinflammatory mCRP which may enhance
TEM of monocytes. Moreover, the number of circulating EMVs
correlates with CRP levels in some pathological conditions, such
as coronary heart disease (164), chronic kidney disease (165), and
familial Mediterranean fever (166).

In the view of pleiotropic nature of EMVs actions, it
is not surprising that several studies investigated their roles
in infectiology, including bacterial sepsis, viral and malaria
infections. Nevertheless, more research needs to be performed
in order to gain better understanding of the role of EMVs in
bacterial sepsis. Sepsis is a severe and generalized inflammatory
reaction in response to infection, which in consequence may
lead to increased generation of main types of MVs (167).
Another factor critically important for the role of EMVs in
sepsis is their relationship with septic complications, primarily
with disseminated intravascular coagulopathy (DIC). In a study
conducted on adult patients with septic shock due to bacterial
infections, Delabranche et al. (168) reported that EMVs may
constitute a biomarker for DIC. Moreover, Matsumoto et al.
(169) concluded that enhanced generation of EMVs signalizes
extensive endothelial injury in sepsis-induced DIC. In contrast,
it has recently been shown that MVs isolated from patients
with septic shock, including that of endothelial origin, exhibit
vasculoprotective effects working against vascular hyporeactivity
(170). This may partially explain previous observations made
by the group lead by Soriano (171), which described three
fundamental pathophysiologic changes associated with sepsis
related to EMVs. First, the number of EMVs is increased in
sepsis patients in comparison to healthy control group. Second,
both EMV and EMV-monocyte conjugate levels are higher in
survivors compared with non-survivors. Third, lower levels of
EMVs and EMV-monocyte conjugates are associated with organ
dysfunction (171). Therefore, an important conclusion of these
studies (170, 171) is that EMVs in sepsis may perform a protective
role.

Although partial progress has beenmade in the understanding
of the role of EMVs in bacterial infections, little is known
about the relationship between EMVs and viral infections.
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In short, promoting a release of EMVs may be considered
common feature of viral infections. For example, elevated
numbers of EMVs have been described in HIV-positive patients
(172). Othman et al. evaluating the effects of adenovirus
administration in mice (173), also reported its ability to generate
EMVs. As for other type of human virus, parvovirus B19
(primate erythroparvovirus 1), release of apoptotic EMVs but
not activated EMVs have been reported (174). Despite more
studies being needed, these reports emphasize the association
between endothelial dysfunction and viral infection. Whereas,
it is accepted that EMV shedding is linked to bacterial and
viral infestation, the mode of EMV action in malaria is not
fully understood. One indication that EMVs are involved in
malaria pathogenesis comes from a study on children with
acute phase of cerebral malaria, showing increased number of
EMVs (175). In order to identify the influence of P. falciparum
infection on EMVs, Wassmer et al. (176) designed a study in
which they compared EMV generation in cultures of endothelial
cells in patients with uncomplicated and cerebral malaria. After
stimulation with TNF, cells obtained from patients suffering
from cerebral malaria released significantly more EMVs than
cells from uncomplicated cases. Therefore, it is important to
find out whether EMVs may be a novel therapeutic target in
severe malaria. Studies researching EMVs in infectious diseases
provide unique information concerning their role in immunity.
Clinically, EMVs may be an excellent biomarker of endothelial
dysfunction in various infections. From pathophysiological point
of view they perform opposing functions, since they are able
to support normal functions of endothelium in sepsis but they
are also significant for genesis and evolution of infections
complications.

LEUKOCYTE-DERIVED MICROVESICLES
(LMVs) AND INFLAMMATION

Leukocytes (white blood cells, WBCs) gained a considerable
interest as a subject of studies by a Nobel Prize winner, Paul
Ehrlich (177). It is commonly assumed that they perform
essential functions in immunological responses to infections
(178). Currently, considerable effort is made to understand
how leukocyte-derived microvesicles (LMVs) contribute to
hemostasis, inflammation and angiogenesis (179), however this
section of the review is intentionally limited to describing the role
of LMVs in inflammatory processes.

There is some experimental evidence that LMVsmay originate
from monocytes (63), neutrophils (66), as well as B and T cells
(67). Since this section deals in more detail with the analysis of
how LMVs control inflammation, for the sake of convenience
it is divided into three paragraphs, one per each cellular source.
LMVs’ levels are assessed in biological fluids by flow cytometry
using specific antibodies against surface proteins (Table 2). Based
on literature review, we claim that LMVs can act as either pro- or
anti-inflammatory modules. While the proinflammatory effects
are relatively well understood, the contrary effects are much less
described.

Early investigations of possible roles of LMVs in inflammation
concluded that leukocytes release MVs in response to
stimulation by chemotactic peptides, N-formylmethionyl-
leucyl-phenylalanine (fMLP), and IL-8 (180, 181). The results
of these initial studies have also demonstrated the ability of
LMVs to induce IL-6, MCP-1, and TF synthesis in endothelial
cells (180, 181), whereas evidence from in vitro studies suggests
that monocyte MVs may activate other cells than endothelial
cells. Furthermore, the role of monocyte-derived MVs in
inflammatory response was discussed by Cerri et al. (182), who
found that monocyte/macrophage MVs up-regulate secretion of
inflammatory mediators, including IL-8, MCP-1, and ICAM-1,
by airway epithelial cells (182). Human lung epithelial cells were
subsequently reported to increase synthesis of IL-8 and MCP-1
after stimulation by monocyte/macrophage derived MVs (183).
The observed effects were mediated by NF-κB activation through
a peroxisome proliferator-activated receptor gamma (PPAR-γ)
dependent pathway (183). Moreover, study performed by Eyre
et al. (184) indicates that podocyte stimulation by monocyte
MVs induces production of MCP-1 and IL-6. In this context
it is particularly important that MVs released by monocytes
activate the production of TNF-α and IL-6 by monocytes
and macrophages (185), hence monocyte MVs work in an
autocrine and paracrine mode, like EMVs. Also, monocyte and
T cell MVs might be an important element in the regulation
of cyclooxygenase 2 (COX-2), microsomal prostaglandin E
synthase 1 (mPGES-1), and prostaglandin E2 (PGE2) production
(186). In synovial fibroblasts, MVs derived from monocytes and
T cells induce synthesis of inflammatory mediators (IL-6, IL-8,
MCP-1, and−2) (187). To conclude, we can say that MCP-1
is the subject of many research projects concerning linking
inflammation to monocyte MVs. Moreover, MVs originated
from apoptoticmonocytes induce ROS generation via p38MAPK
pathway in endothelial cells and enhance platelet adhesion to
endothelium (188). However, in later observations, apoptotic
monocyte MVs were shown to have no effect on oxidative
stress (189). Given the cardinal role of ROS in inflammation
(190), it is understandable that these relationships should be
further examined in future studies. Furthermore, and probably
more appealing to the physicians, an extensive series of clinical
studies was conducted to evaluate the significance of monocyte
MVs in pathogenesis of inflammation-associated disorders.
It was confirmed that they constitute important elements in
pathogenesis of acute myocardial infarction (92, 191), type 2
diabetes mellitus and its complications (192–194), rheumatoid
arthritis (195), intracerebral hemorrhage (196), and lung cancer
(197). Possible role of LMVs in sepsis has also been suggested
by the finding that their levels were increased significantly in
patients with severe infection (198). Some data additionally
suggest that LPS stimulates the release of MVs from monocytic
cell lines (199), which show proinflammatory properties, since
mRNas of several cytokines were found to be up-regulated after
LPS stimulation (199).

Neutrophil MVs are another essential constituent of
inflammatory reactions. Stimulation of neutrophils results
in releasing heterogenous MV populations, which contain
hundreds of proteins, such as leukotriene A4 hydrolase
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(LKHA4), which also have proinflammatory effect (200). The
authors showed that neutrophil MVs can move in response to a
chemotactic gradient (200). There are several proinflammatory

proteins recognized on the surface of neutrophil MV. In
2008 Pluskota et al. (201) identified Mac-1 integrin on MVs
derived from stimulated neutrophils that activate platelets.

TABLE 2 | Microvesicle characteristics according to type of parental cell.

Type of cell releasing microvesicles Size (nm) MV-specific antigens References

Blood cells Platelets 100–1000 a. Glycoprotein Ib (GPIb, CD42b),

b. Glycoprotein IIb/IIIa (GPIIb/IIIa, αIIbβ3, CD41a),

c. P-selectin (CD62P),

d. Platelet endothelial cell adhesion molecule

(PECAM-1, CD31),

e. Integrin β1 (CD63).

(18)

Erythrocytes <1000 a. Glycophorin A (GYPA, CD235a),

b. Glycophorin B (GYPB, CD235b),

c. Blood group antigens (RH, KEL, JK, FY, LE, LU).

(65)

Neutrophils <1000 a. Carcinoembryonic antigen-related cell adhesion

molecule 8 (CEACAM8, CD66b),

b. L-selectin (CD62L),

c. Myeloperoxidase (MPO).

(66)

T lymphocyte <1000 a. CD3. (67)

B lymphocyte <1000 a. CD19. (67)

Monocytes <1000 a. CD14.

b. Tissue factor (TF).

(63)

Central nervous

system cells

Glia 300–1000 a. P2Y12,

b. CD45.

(68)

<1000 a. GFAP,

b. Glutamate transporter 1 (GLT-1),

c. TF.

(69)

Neurons <1000 a. Neuron-specific enolase (NSE),

b. Na+/K+ ATPase α3,

c. TF.

(69)

Dendritic cells 170 (mean) a. Alpha-actinin 4 (ACTN4). (70)

Adipocytes 30–500 a. Fatty acid binding protein 4 (FABP4),

b. Adiponectin,

c. Perilipin A/B.

(71)

Endothelial cells Human umbilical vein

endothelial cells (HUVECs)

100–1500 a. E-selectin (CD62E),

b. Intercellular adhesion molecule 1 (ICAM-1, CD54),

c. PECAM-1,

d. Integrin αvβ3.

e. TF,

f. Thrombomodulin (TM, CD141).

(72)

Human brain microvascular

endothelial cells (HBMECs)

<1000 a. Endoglin (CD105),

b. ICAM-1,

c. VCAM-1,

d. MHC class I and II,

e. CD40,

f. Inducible T-cell costimulator ligand (ICOSL, CD275).

(73)

Endothelial progenitor cells (EPCs) <1000 a. ICAM-1,

b. Integrin α4,

c. Integrin β1 (CD29),

d. CD44.

(74)

Hepatocytes 100–1000 a. Maltase-glucoamylase (MGA),

b. Ceruloplasmin precursor,

c. Amine oxidase, copper containing 3 (AOC3),

d. Apolipoprotein E precursor,

e. Vitamin D-binding protein precursor,

f. Isocitrate dehydrogenase 1, soluble (IDH1),

g. Fumarylacetoacetate hydrolase (FAH),

h. Vanin-1 (VNN1),

i. Transforming growth factor, beta-induced (TGFBI).

(75)

Frontiers in Immunology | www.frontiersin.org 10 December 2018 | Volume 9 | Article 2723

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Słomka et al. EVs in Inflammation

In addition to platelets, the primary effect of neutrophil
MVs includes interactions with endothelial cells, which
undergo a number of molecular and biochemical changes
(66, 200, 202, 203). An important factor to acknowledge while
considering these interactions is the observation that neutrophil
MVs deliver myeloperoxidase (MPO) to endothelial cells
causing their injury (66, 203). Furthermore, one factor that
was considered to be a potential link between neutrophil MVs
and inflammation is the deposition of MVs by neutrophils
on intestinal epithelial cells (IECs), which promotes epithelial
injury (202). The next argument in favor of the existence of
link between inflammation and neutrophil MVs comes from
growing clinical and experimental evidence indicating that
these MVs are generated during sepsis (204–206). For example,
one in vitro study showed that THP-1, a human monocytic
cell line, was activated after phagocytosis of neutrophil MVs
isolated from patients with sepsis (205). Accordingly, clinical
observations demonstrated that patients with Staphylococcus
aureus bacteremia had higher levels of neutrophil MVs in
their blood than healthy controls (204). Moreover, Prakash
et al. (205) found elevated levels of neutrophil MVs in
abdominal fluid from patients with sepsis and peritonitis.
Despite these mentioned results, the complete mechanism of
neutrophil MV action in sepsis remains unknown. In fact,
Timár et al. (204) extended previous observations, showing the
antibacterial effects of neutrophil MVs by inhibiting bacterial
growth.

The biological function of neutrophil MVs is not limited
to their role as proinflammatory agents. Therefore, the anti-
inflammatory trend was independently confirmed in a number
of studies. Experiments designed by Hyun et al. (207) and
Lim et al. (208) demonstrated that neutrophil, monocytes
and T cells deposit CD18+ MVs at the subendothelium
during extravasation, playing a protective role by preventing
vascular leakage. It is important to notice that the investigation
of immunosuppressive functions of neutrophil MV set the
foundations for discovering that they do not induce the release
of IL-8 and TNF-α by macrophages (209). In the original
paper describing these results, Gasser and Schifferli (209) clearly
demonstrated an increased release of the anti-inflammatory
mediator transforming TGF-β1 by neutrophil MV-stimulated
macrophages. Accordingly, annexin A1 (AnxA1), which is
present in neutrophil MVs, induces decrease in interaction
between MVs and endothelial cells (210). Lastly, neutrophil MVs
are also engaged in inflammation through their involvement
in cytokine production by natural killer (NK) cells (211). By
measuring the levels of pro- and anti-inflammatory proteins,
Pliyev et al. (211) were able to demonstrate that neutrophil
MVs reduced the release of IFNγ and TNF-α, but enhanced the
release of TGF-β1. Altogether, this data suggests that neutrophil
MVs might have different, also opposing functional roles in
inflammatory response.

Three lines of direct evidence suggested that lymphocyte MVs
play important role in promoting and inhibiting inflammatory

FIGURE 2 | Universal pro- and anti-inflammatory properties of MVs. The three main types of circulating MVs (PMVs, EMVs, and LMVs) exhibit common

proinflammatory activities such as activation of immune cells (73, 101, 105, 109, 117–119, 147, 150, 154, 156, 159, 160, 185), activation of endothelial cells

(66, 72, 100, 101, 104, 108, 145, 146, 180, 181, 200, 202, 203), release of proinflammatory cytokines

(111, 113, 114, 119, 121, 152–154, 180–187, 200, 201, 212, 214), enhanced leukocyte extravasation (101, 104, 108, 130, 150, 151), and mCRP generation

(162, 163). They also have an anti-inflammatory effect, based on the inhibition of the release of proinflammatory cytokines (132–134, 155, 209, 210).
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reaction. First, current data indicates that activated T-cells
generate MVs able to collaborate with many cell types. In short,
it was shown that T-cell generated MVs induce synthesis of
proinflammatory (TNF, IL-1β) as well as anti-inflammatory
(secretory interleukin-1 receptor antagonist, sIL-1Ra) cytokines
in monocytes (212). One provocative finding is that TNF and
IL-1β production, unlike sIL-1Ra, is inhibited by high-density
lipoproteins (HDL) (212). More recently, Carpintero et al. (213)
reached an analogous conclusion by demonstrating that HDL
inhibit T-cell MV-induced proinflammatory protein secretion
by monocytes. Follow-up experiments (214–216) were designed
to test the ability of T-cell generated MVs to activate mast
cells (MCs). The first study that addresses this question indeed
shows that T-cell generated MVs can initiate degranulation and
cytokine (IL-8, oncostatin M) release from MCs (214). Attention
should also be drawn to the new observation that T-cell generated
MVs provoke MCs to produce IL-24 (215). Moreover, it appears
that MC activation depends on miR-4443 provided by T-cell
generated MVs (216). The main consequence of miR-4443
internalization into MCs is therefore to downregulate the
protein tyrosine phosphatase receptor type J (PTPRJ) gene
expression, leading to increased extracellular signal-regulated
kinase (ERK) phosphorylation, and heightened release of
IL-8 (216). Moreover, there is substantial evidence that T-cell
generated MVs are involved in endothelial dysfunction, which
was documented by Martin et al. (217) and Mostefai et al. (218).
These authors postulated that T-cell generated MVs decrease

NO production at the same time increasing ROS production
in endothelial cells (217, 218). Based on the fact that T-cell
generated MVs may interact with different cells, Qiu et al. (219)
recognized them as the first to move in the proinflammatory
cytokine release by bronchial epithelial cells (BECs). Other than
describing MVs originating from T lymphocytes in terms of
their direct inflammatory action, studies by Qui’s team also
proved that these MVs promote apoptosis of normal cells (BECs)
(219, 220) and cancer cells (retinoblastoma cells) (221). Second,
increased amounts of circulating T-cell generated MVs were
found in patients with active chronic hepatitis C (222, 223). High
levels of these MVs in blood were associated with disease severity
(223) as most likely resulting from excessive fibrolytic activity of
hepatic stellate cells (HSCs) after their fusion with MVs (222).
Third, non-infectious inflammatory diseases also elevate blood
lymphocyte MV levels. A striking increase in the levels of T/B
lymphocyte MVs was apparent in polymyositis/dermatomyositis
(67), systemic lupus erythematosus (224), rheumatoid
arthritis (225) and non-alcoholic fatty liver disease (223).
It is interesting that levels of B-cell derived MVs were
significantly lower in multiple sclerosis patients than in healthy
controls, although clinical importance of this phenomenon is
unknown (226).

All the findings add to the conclusion that MVs released from
leukocytes show multidirectional actions during the response of
immune system. Their primary function appears to consist in the
activation of proinflammatory response in other cell types. Their

FIGURE 3 | The three types of MVs (PMVs, EMVs, and LMVs) are characterized by their unique anti-inflammatory properties. This applies to the following

mechanisms: suppression of leukocyte activation (132, 135), suppression of endothelial cell activation (155), protective role in sepsis (170, 171, 204), and release of

anti-inflammatory cytokines (209, 210, 212).
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role in inflammation is also emphasized by studies showing their
increased generation in infectious and inflammatory diseases.

EXOSOMES IN INFLAMMATION—A BRIEF
PRESENTATION

The major goal of this paper is to explain the relationship
between MVs and inflammation. However, it would certainly be
interesting to know whether inflammatory reactions are affected
by exosomes. Researches on this issue usually focus on the
specific exosomal cargo and generally confirm proinflammatory
and anti-inflammatory role of exosomes. First, exosomes
enhance local and systemic inflammation due to the fact that they
are sources of proinflammatory cytokines themselves and may
also stimulate their production in different cells. These cytokines
include proteins with recognized potent proinflammatory
properties: TNFα, IL-6, IL-1β, IL-8, CXCL1 (cytokine-induced
neutrophil chemoattractant 1, CINC-1), CCL2, PGE2, and
enzymes for leukotriene synthesis (227–232). Second, exosomes
may induce migration of granulocyte into inflamed tissues (232,
233) and promote inflammatory pathways in subsequent cells
(20, 234). Third, in vitro and in vivo experiments demonstrated
that exosomes induce B and T cells activation and proliferation
(235–238).

Notably, currently available data strongly indicates that
miRNAs associated with exosomes contributes to controlling
inflammatory processes. A wide variety of miRNAs in exosomes
was identified, however, they may have opposing roles in
regulating inflammation (239): enhancing (240, 241) or
suppressing inflammatory reactions (242–244). On this point,
it is worth mentioning that exosomes released by cancer cells
also have dual nature. Practically, these exosomes can promote
and inhibit immune responses during cancer development
and progression (245). One of the more intriguing aspects are
also observations that systemic administration of exosomes
suppress inflammation in animal models of diseases (246–249)
and it is promising to use exosomes in regenerative medicine
(250). Consequently, they may be a strategy in the treatment of
inflammatory-associated disorder.

CONCLUSION

Overall, our review strongly suggests that MVs may function
as strong regulator of both innate and adaptive immune
systems. Figure 2 demonstrates schematically the universal
pro- and anti-inflammatory properties of PMVs, EMVs, and
LMVs. The unique anti-inflammatory properties of these MVs
are also shown in Figure 3. Undoubtedly, elucidation of MV
functions contributes to better understanding of the complexity
of inflammatory response. While studies discussed in this paper
describe the importance of MVs in immunity, they also leave
some significant questions unanswered.

MVs—A New Paradox in Medicine?
Several observations indicate that MVs have paradoxical effects.
They are known to coordinate significant physiological

properties of tissues such as regeneration, remodeling,
angiogenesis, and healing (251, 252) and may protect parental
cells from lysis (253) and apoptosis (254). MVs have the ability
to intensify and inhibit inflammatory processes. Concentrated
researches on proinflammatory effects of MVs, especially of
platelets origin, supplement current knowledge on the role of
platelets in inflammation (255). Increased number of circulating
MVs is a pathogenetic feature of many inflammatory diseases,
which encourages researchers to explore the mechanisms of
their influence on inflammation. Another example of the MVs
paradox is their participation in hemostasis. Supposedly, the
role of PMVs in the generation of blood hypercoagulability is
well-established (256), however PMVs also exhibit anticoagulant
properties (97) and bleeding results in reducing their release
(257, 258). Thus, it seems that multiplicity of functions of MVs
under various physiological and pathological conditions is
immense and depends on specific cargo and factor stimulating
their release. Hence, it is impossible to unambiguously classify
MVs as beneficial or harmful structures.

Other MV Types in Inflammation—A Brief
Presentation
The interaction between numerous MV types such as red blood
cells MVs (RMVs), liver MVs (hepatic MVs, HMVs), central
nervous systemMVs (brain MVs, BMVs), and inflammation was
demonstrated by laboratory and clinical analyses. RMV forms
present in both red blood cell concentrates and circulation, which
some authors (259) consider to be the earliest described among
all the MVs types (260), can act in a pro- and anti-inflammatory
way (261–263). The liver, an organ lacking uniform histological
structure (264), is able to release MVs form hepatocytes (75),
cholangiocytes (265), stellate cells (265), stem cells (266), and
cancer cells (267). Fundamentally, EVs released by liver cells
are strongly proinflammatory (268–271). On the contrary, it was
also shown that HMVs protect hepatocytes from injury (272)
and induce the regeneration of parental cells (266). Populations
of MVs released by CNS cells are relatively rarely studied,
nevertheless, few investigations have yielded conclusions that
microglia and astrocytes derived MVs carry proinflammatory IL-
1β (273, 274). Opposing conclusions reached in other papers
accentuate that brain MVs activate protective mechanisms in
multiple sclerosis (275) and stroke (276).

Diagnostic Potential of MVs
One critical and yet unresolved problem is the diagnostic
potential of MVs in inflammatory disorders. MVs as marker
for diagnosis or treatment monitoring was tested by many
authors, especially in cardiovascular disorders (277) and cancer
(278). Currently, many researchers define MVs, and also
exosomes, as a “liquid biopsy,” which means that they can
be an alternative to a classic biopsy, characterized by various
limitations (278). On the other hand, however, until a precise,
fast and cheap analytical method is developed, the use of
MVs as a biomarker will remain fairly uncommon. One of
the most widely used analytical methods for quantifying MVs
levels and markers is flow cytometry (279). There are many
different analytical methods used inMVs studies, such as electron
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microscopy (280), nanoparticle tracking analysis (280), western
blot (280), dynamic light scattering (281), and enzyme-linked
immunosorbent assay (282), however none of them is currently
used in routine diagnostics. The vast majority of methods require
special preparation of biological material samples and specialized
equipment (283). In addition, recently developed sensitive and
specific methods have not been yet established in the routine
diagnosis yet (284). Certainly, there is an urging necessity to
develop a technique that can be used in everyday clinical
practice, which remains a high priority in the scope of medical
care.

MVs as Drug Delivery System
With regard to the potential use of MVs as therapeutic
agents, it is realistic to expect that MVs will be exploited
as a pharmacological option themselves or will prevent the
development of diseases complications. Moreover, they can also
be a platform for drug transport. Multidirectional actions of
specific MVs cargo make that researchers deliberate over how
specific therapy affects the release of MVs. Nevertheless, more
evidence is obtained to confirm that predominantly exosomes
perform cardinal role of therapeutic tolls, particularly in the
context of anti-inflammatory (285, 286), and anticancer activity
(287, 288), and are also beneficial in the treatment of CNS
disorders (289, 290). Moreover, the results of clinical trials
showed exosomes to be useful in treating cancers (291–293).
Out of all the links between MVs and their clinical use,
the interaction between MVs and cancer cells is the best
documented one (294, 295). For example, a study by Tang et al.
(294) showed that tumor cells incubated with chemotherapeutic

drugs are likely to secrete MVs connected with drugs which
are able to kill other tumor cells, but without side typical
effects occurring when drugs are used alone. MVs can likewise
deliver suicide mRNA/protein to cancer cells leading to tumor
regression (295). Undeniably, more research evaluating such
properties is necessary to provide evidence-based tools for cancer
treatment.
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