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Abstract

We approach the C. elegans connectome as an information processing network that

receives input from about 90 sensory neurons, processes that information through a highly

recurrent network of about 80 interneurons, and it produces a coordinated output from about

120 motor neurons that control the nematode’s muscles. We focus on the feedforward flow

of information from sensory neurons to motor neurons, and apply a recently developed net-

work analysis framework referred to as the “hourglass effect”. The analysis reveals that this

feedforward flow traverses a small core (“hourglass waist”) that consists of 10-15 interneu-

rons. These are mostly the same interneurons that were previously shown (using a different

analytical approach) to constitute the “rich-club” of the C. elegans connectome. This result is

robust to the methodology that separates the feedforward from the feedback flow of informa-

tion. The set of core interneurons remains mostly the same when we consider only chemical

synapses or the combination of chemical synapses and gap junctions. The hourglass orga-

nization of the connectome suggests that C. elegans has some similarities with encoder-

decoder artificial neural networks in which the input is first compressed and integrated in a

low-dimensional latent space that encodes the given data in a more efficient manner, fol-

lowed by a decoding network through which intermediate-level sub-functions are combined

in different ways to compute the correlated outputs of the network. The core neurons at the

hourglass waist represent the information bottleneck of the system, balancing the represen-

tation accuracy and compactness (complexity) of the given sensory information.

Author summary

The C. elegans nematode is the only species for which the complete wiring diagram (“con-

nectome”) of its neural system has been mapped. The connectome provides architectural

constraints that limit the scope of possible functions of a neural system. In this work, we

identify one such architectural constraint: the C. elegans connectome includes a small set

(10-15) of neurons that compress and integrate the information provided by the much

larger set of sensory neurons. These intermediate-level neurons encode few sub-functions
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that are combined and re-used in different ways to activate the circuits of motor neurons,

which drive all higher-level complex functions of the organism such as feeding or locomo-

tion. We refer to this encoding-decoding structure as “hourglass architecture” and identify

the core neurons at the “waist” of the hourglass. We also discuss the similarities between

this property of the C. elegans connectome and artificial neural networks. The hourglass

architecture opens a new way to think about, and experiment with, intermediate-level

neurons between input and output neural circuits.

Introduction

Natural, technological and information-processing complex systems are often hierarchically

modular [1, 2, 3, 4]. A modular system consists of smaller sub-systems (modules) that, at least

in principle, can function independently of whether or how they are connected to other mod-

ules: each module receives inputs from the environment or from other modules to perform a

certain function [5, 6, 7]. Modular systems are often also hierarchical, meaning that simpler

modules are embedded in, or reused by, modules of higher complexity [8, 9, 10 11]. It has been

shown that both modularity and hierarchy can emerge naturally as long as there is an underly-

ing cost for the connections between different system units [12, 13].

In the technological world, modularity and hierarchy are often viewed as essential principles

that provide benefits in terms of design effort (compared to “flat” or “monolithic” designs in

which the entire system is a single module), development cost (design a module once, reuse it

many times), and agility (upgrade, modify or replace modules without affecting the entire sys-

tem) [14, 15, 16]. In the natural world, the benefits of modularity and hierarchy are often

viewed in terms of evolvability (the ability to adapt and develop novel features can be accom-

plished with minor modifications in how existing modules are interconnected) [17, 18, 19]

and robustness (the ability to maintain a certain function even when there are internal or exter-

nal perturbations can be accomplished using existing modules in different ways) [20, 21, 22].

It has been observed across several disciplines that hierarchically modular systems are often

structured in a way that resembles a bow-tie or hourglass (depending on whether that structure

is viewed horizontally or vertically) [23, 24]. This structure enables the system to generate

many outputs from many inputs through a relatively small number of intermediate modules,

referred to as the “knot” of the bow-tie or the “waist” of the hourglass. The “hourglass effect”

has been observed in systems of embryogenesis [25, 26], metabolism [27, 28], immunology

[29, 30], signaling networks [31], vision and cognition [32, 33], deep neural networks [34],

computer networking [35], manufacturing [36], as well as in the context of general core-

periphery complex networks [37, 38]. The few intermediate modules in the hourglass waist are

critical for the operation of the entire system, and so they are also more conserved during the

evolution of the system compared to modules that are closer to inputs or outputs [39, 40, 35].

Note that the two terms, bow-tie and hourglass, have not been always interchangeable in the

network science literature. In particular, the term bow-tie has been applied even to networks

for which the knot includes a large fraction of the network’s nodes [41, 42].

In this paper, we apply the hourglass analysis framework of [23] on the C. elegans connec-

tome [43]. The C. elegans connectome can be thought of as an information processing network

that transforms stimuli received by the environment, through sensory neurons, into coordi-

nated bodily activities (such as locomotion) controlled by motor neurons [43]. Between the

sensory and motor neurons, there is a highly recurrent network of interneurons that gradually

transforms the input information to output motor activity. An important challenge in applying

The hourglass organization of the C. elegans connectome
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the analysis framework of [23] on C. elegans is that the former assumes that the network from

a given set of input nodes (sources) to a given set of output nodes (targets) is a Directed Acyclic

Graph (DAG). On the contrary, the C. elegans connectome includes many nested feedback

loops between all three types of neurons. For this reason, we extend the methods of [23] in net-

works that may include cycles as long as we are given a set of sources and a set of targets. The

key idea is to identify the set of feedforward paths from each source towards targets, and to

apply the hourglass analysis framework on the union of such paths, across all sources.

Our main result is that the C. elegans connectome exhibits the hourglass effect. This result

is robust to the “routing methodology” that separates the feedforward from the feedback flow

of information. Further, we observe the hourglass architecture when we consider just chemical

synapses, or the combination of the latter with gap junctions. On the contrary, appropriately

randomized networks do not exhibit the hourglass property. We also identify the neurons at

the “waist” of the hourglass. Interestingly, they are mostly the same set of interneurons that

were previously shown, using a different analytical methodology, to constitute the “rich-club”

of the C. elegans connectome [44]. We explain that these two network architectures, hourglass

and rich-club, are not equivalent—and in fact the hourglass property of the C. elegans connec-

tome is maintained even if we rewire the connections between core neurons so that they do

not form a rich-club. The fact that the core interneurons also form a rich-club suggests that

they form an information processing bottleneck that integrates the compressed information from
different sensory modalities, before driving any higher-level neural circuits.

We explain the benefits of the hourglass architecture, in the context of neural information

processing systems, using an encoder-decoder model that resembles recent architectures in

artificial neural networks [34, 45]. The encoding component compresses the redundant stimuli

provided by the sensory neurons into a low-dimensional latent feature space (represented by

the core neurons at the hourglass waist) that encodes the source information in a more effi-

cient manner. Then, the decoding component of the network combines those latent features,

which represent intermediate-level sub-functions, in different ways to drive each output

through the motor neurons. The toy-example of Fig 1 illustrates this idea using a Boolean cir-

cuit with five binary sources and five output functions.

Methods

Connectome

The dataset we analyze describes the neural network of the hermaphrodite C. elegans, as

reported in [43]. This connectome is a directed network between 279 neurons (the 282 non-

pharyngeal neurons excluding VC6 and CANL/R, which are missing connectivity data). Neu-

rons can be connected with two types of connections: chemical synapses and gap junctions

(or, electrical synapses). The former are typically slower but strongest connections, and they

transfer information only in one direction. The latter can be thought of as bi-directional

connections.

The synaptic network (i.e., the network formed by only chemical synapses) consists of 2194

neural connections, created by 6393 chemical synapses. The weight of a connection is defined

as the number of chemical synapses between the corresponding pair of neurons. The in-
strength or out-strength of a neuron is defined as the sum of connection weights entering or

leaving that neuron, respectively.

The complete network includes both chemical synapses and gap junctions. There are 514

pairs of neurons connected through gap junctions, creating the same number of bi-directional

connections between those neurons. Unless mentioned otherwise, we analyze the synaptic net-

work. In the Section “Including Gap Junctions: the Complete Network”, we extend the analysis

The hourglass organization of the C. elegans connectome
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to consider the complete network, asking whether there are any major differences when we

also consider gap junctions.

The C. elegans neurons can be classified as sensory (S), inter (I) and motor (M) neurons,

based on their structure and function [46]. Sensory neurons transfer information from the

external environment to the central nervous system (CNS). Motor neurons transfer informa-

tion from the CNS to effector organs (e.g. glands or muscles). Interneurons process informa-

tion within the CNS. The C. elegans connectome has 88 sensory neurons, 87 interneurons and

119 motor neurons. Some of these neurons however have a dual role: ten behave as S and M,

two as S and I, and three as M and I. In our analysis, we consider the S-M and S-I dual-role

neurons as sensory, and the M-I neurons as motor. Consequently, the final network consists of

88 sensory neurons, 82 interneurons, and 109 motor neurons.

We can think of C. elegans as an information processing system in which the feedforward
flow of information, from sensory to motor neurons, transfers sensory cues from the environ-

ment to the CNS, processes those signals to extract actionable information, which is then used

to drive the behavior/motion of the organism. This feedforward flow however is regulated by

multiple feedback loops that transfer information in the opposite direction, as well as lateral

connections between neurons of the same type.

The connections that we refer to as feedforward (FF) are those from S to I, I to M, and S to

M neurons. In the opposite direction (i.e., from I to S, M to I, and M to S neurons) the connec-

tions are referred to as feedback (FB). Connections between neurons of the same type (i.e., S to

S, I to I, and M to M neurons) are referred to as lateral (LT). In the synaptic network, there are

901 FF connections, 998 LT connections, and 295 FB connections. Fig 2 shows the breakdown

of these connection types in the synaptic and complete networks.

Fig 1. A hypothetical Boolean system with five sources and five targets. The sources are represented by orange

nodes while the targets by blue nodes. Each target is a logic function of the sources. The sources are correlated, as

shown by their logical expressions. A direct source-to-target computation would require 18 Boolean operations.

Instead, we can compute the targets with only 9 operations if we first compute the two intermediate green nodes

shown (3 operations) and then reuse those nodes to compute the targets (6 operations). This cost reduction is possible

because there are correlations between the target functions. The two intermediate nodes, which represent the hourglass

waist in this example, compress the information provided by the sources, computing sub-functions that are re-used at

least twice in the targets. In this example the encoding part of the network is the set of connections between sources

and intermediate nodes, while the decoding part is the set of connections between intermediate nodes and targets. In

general, the encoder and decoder components can include additional nodes, creating a deeper hourglass architecture.

https://doi.org/10.1371/journal.pcbi.1007526.g001

The hourglass organization of the C. elegans connectome
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The FB connection weights are often lower than FF and LT weights (see S1A Fig Also,

when considering neuron pairs that are reciprocally connected with both FF and FB

connections, it is more likely that the FF connection is strongest than the corresponding FB

connection (see S1B Fig). These observations suggest that the distinction between FF and FB

connections has some neurophysiological significance.

Fig 2. Neurons separated into three classes (S, I and M) based on structure and function. The number of

connections between these three classes (and within each class) are shown with arrows (green for FF, orange for LT

and purple for FB). (A) shows the synaptic network containing only chemical synapses, and (B) shows the complete

network containing both chemical synapses and gap junctions.

https://doi.org/10.1371/journal.pcbi.1007526.g002

The hourglass organization of the C. elegans connectome

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007526 February 6, 2020 5 / 30

https://doi.org/10.1371/journal.pcbi.1007526.g002
https://doi.org/10.1371/journal.pcbi.1007526


If we focus on the top-5% stronger connections, relative to all chemical synapses, this set is

dominated by feedforward S-to-I and I-to-M connections, as well as by lateral connections

between I neurons and M neurons (see S1 Table). None of the top-5% connections is of the

feedback type. This observation suggests that feedback connections are weaker—one reason

may be that they are involved mostly with the control of feedforward circuits, acting as modu-

lators rather than drivers.

Feedforward paths from sensory to motor neurons

The “routing problem” in a communication network refers to the selection of an efficient path,

or multiple paths, from each source node to each target. In neural networks, there is no estab-

lished “routing algorithm” that can accurately describe or model how information propagates

from a sensory neuron to a motor neuron. Whether a neuron will fire or not depends on how

many of its pre-synaptic neurons fire, the timing of those events, the physical size and location

of the synapses in the dendritic tree, and several other factors. There are some first principles,

however, that we can rely on to identify plausible routing schemes [47, 48]. These schemes

should be viewed only as phenomenological models—we do not claim that neurons actually

choose activation paths based on the following algorithms.

First, neurons cannot form routes based on information about the complete network or

through coordination with all neurons (such as the routing algorithms used by the Internet or

other technological systems). Instead, whether a neuron fires or not should be a function of

only locally available information. So, we cannot expect that neural circuits use optimal routes

that minimize the path length (“shortest path routing”) or other path-level cost functions [49].

Second, evolution has most likely selected routing schemes that result in efficient (even

though not necessarily optimal) neural communication. Consequently, we can reject routing

schemes that exploit all possible paths between two neurons as many of those paths would be

inefficient.

Third, for robustness and resilience reasons, it is likely that multiple paths are used to trans-

fer information from each sensory neuron to a motor neuron—schemes that only select a sin-

gle path would be too fragile.

Fourth, given the low firing reliability of neurons, it is unlikely that a sensory neuron can

communicate effectively with a motor neuron through multiple intermediate neurons. There

should be a limit on the length of any plausible neural path [50].

Putting the previous four principles together, we are led to the following hypothesis: a sen-

sory neuron S communicates with a motor neuron T through multiple paths that may be sub-

optimal but not much longer than the shortest path length from S to T.

Given this broad hypothesis, we identify several plausible routing schemes—and then

examine whether our results are robust to the selection of a specific routing scheme.

To help choose reasonable parameter values for the various routing schemes we consider,

we first examine the length and number of shortest paths from each sensory neuron S to each

motor neuron M. S2A Fig shows the distribution of the length of these paths, measured in

“hops” (i.e., connections between neurons). Almost all shortest paths from S to M neurons are

between 2-4 hops. So, if the shortest connection from a sensory to a motor neuron is say 3

hops, the second and fourth principles suggest that we may also consider slightly longer paths,

say 4 or 5 hops long.

S2B Fig shows the likelihood that an (S,M) pair is connected through x shortest paths. Note

that only 4% of (S,M) pairs are not connected by any path, about 32% of (S,M) pairs are con-

nected through only one shortest path, while the rest are connected with multiple shortest

paths.

The hourglass organization of the C. elegans connectome
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The various routing schemes we consider in the rest of the paper are (see Fig 3):

1. “SP”: As a reference point, SP refers to the selection of only shortest paths from a sensory

neuron s to a motor neuron t.

2. “SP4”: The subset of SP including paths that are at most 4 hops.

3. “SP5”: The subset of SP including paths that are at most 5 hops.

4. “SP+1”: The paths in SP together with all paths that are one hop longer than the shortest

path from s to t.

5. “SP+2”: The paths in SP together with all paths that are one or two hops longer than the

shortest path from s to t.

6. “SPþ1
4

”: The subset of SP+1 including paths that are at most 4 hops.

7. “SPþ1
5

”: The subset of SP+1 including paths that are at most 5 hops.

8. “SPþ2
4

”: The subset of SP+2 including paths that are at most 4 hops.

9. “SPþ2
5

”: The subset of SP+2 including paths that are at most 5 hops.

10. “P4”: All paths from s to t that are at most 4 hops long.

11. “P5”: All paths from s to t that are at most 5 hops long.

The last two routing schemes (P4 and P5) are not variations of shortest path but they are

based on the notion of diffusion-based routing. In the latter, information propagates from a

source towards a sink selecting among all possible connections either randomly (e.g., random-

Fig 3. A representative path for each routing scheme when the source is a and the target is i. The orange nodes

represent sensory neurons, the green nodes interneurons, and the blue nodes motor neurons.

https://doi.org/10.1371/journal.pcbi.1007526.g003

The hourglass organization of the C. elegans connectome
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walk based models) [51] or based on a threshold function (e.g., a neuron fires if at least a cer-

tain function of its pre-synaptic neurons fire) [52].

Path centrality metric and τ-core selection

After utilizing one of the previous routing schemes to compute all paths from a sensory neuron

to a motor neuron, we analyze these “source-target” paths based on the hourglass framework,

developed in [23]. The objective of this analysis is to examine whether there is a small set of

nodes through which almost all source-target paths go through. In other words, the hourglass

analysis examines whether there is a small set of neurons that forms a bottleneck in the flow of

information from sensory neurons towards motor neurons.

The path centrality P(v) of a node v is defined as the number of source-target paths that tra-

verse v. This metric has been also referred to as the stress of a node [53]. Fig 4 illustrates the

path centrality of each node in a small network—just for this example, the paths have been

computed based on the shortest path (SP) routing algorithm. Any other routing scheme could

have been used instead.

The path centrality metric is more general than betweenness or closeness centrality that are

only applicable to shortest paths. Katz centrality does not distinguish between terminal and

intermediate nodes and it penalizes longer paths. Metrics such as degree, strength, PageRank

Fig 4. The path centrality of each node (shown at the left) based on the set of shortest paths SP (shown at the

right). For τ = 90%, a possible core is the two neurons {e, f}.

https://doi.org/10.1371/journal.pcbi.1007526.g004

The hourglass organization of the C. elegans connectome
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or eigenvector centrality are heavily dependent on the local connectivity of nodes rather than

on the paths that traverse each node.

Given a set of source-target paths, the next step of the analysis is to compute the τ-Core, i.e.,

the smallest subset of nodes that can collectively cover a fraction τ of the given set of paths.

The fraction τ is referred to as the path coverage threshold and it is meant to ignore a small frac-

tion of paths that may be incorrect or invalid. Computing the τ-Core is an NP-Complete prob-

lem [23], and so we solve it with the following greedy heuristic (see [23] for an approximation

bound):

• Initially, the core set is empty.

• In each iteration:

1. Compute the path centrality of all remaining nodes.

2. Include the node with maximum path centrality in the core set and remove all paths that

traverse this node from the given set of paths.

• The algorithm terminates when we have covered at least a fraction τ of the given set of paths.

Fig 4 illustrates the core of a small network based on the shortest path routing mechanism,

for τ = 90%.

Hourglass score

Informally, the hourglass property of a network can be defined as having a small core, even

when the path coverage threshold τ is close to one. To make the previous definition more pre-

cise, we can compare the core size C(τ) of the given network G with the core size of a derived

network that maintains the same set source-target dependencies of G but that is not an hour-

glass by construction.

To do so, we create a flat dependency network Gf from G as follows:

1. Gf has the same set of source and target nodes as G but it does not have any intermediate

nodes.

2. For every ST-path from a source s to a target t in G, we add a direct connection from s to t
in Gf. If there are w connections from s to t in Gf, they can be replaced with a single connec-

tion of weight w.

Note that Gf preserves the source-target dependencies of G: each target in Gf is constructed

based on the same set of “source ingredients” as in G. Additionally, the number of ST-paths in

the original dependency network is equal to the number of paths in the weighted flat network

(a connection of weight w counts as w paths). However, the paths in Gf are direct, without

forming any intermediate modules that could be reused across different targets. So, by con-

struction, the flat network Gf cannot have the hourglass property.

Suppose that Cf(τ) represents the core size of the flat network Gf. The core of Gf can include

a combination of sources and targets, and it cannot be larger than either the set of sources or

targets. Additionally, the core of the flat network is larger or equal than the core of the original

network (because the core of the flat network also covers at least a fraction τ of the ST-paths of

the original network—but the core of the original network may be smaller because it can also

include intermediate nodes together with sources or targets). So,

CðtÞ � Cf ðtÞ � minfS;Tg ð1Þ

The hourglass organization of the C. elegans connectome
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To quantify the extent at which G exhibits the hourglass effect, we define the Hourglass
Score, or H-score, as follows:

HðtÞ ¼ 1 �
CðtÞ
Cf ðtÞ

ð2Þ

Clearly, 0�H(τ) < 1. The H-score of G is approximately one if the core size of the original

network is negligible compared to the the core size of the corresponding flat network. Fig 5

illustrates the definition of this metric.

An ideal hourglass-like network would have a single intermediate node that is traversed by

every single ST-path (i.e., C(1) = 1), and a large number of sources and targets none of which

originates or terminates, respectively, a large fraction of ST-paths (i.e., a large value of Cf(1)).

The H-score of this network would be approximately equal to one.

Randomization method

We examine the statistical significance of the observed hourglass score in a given network G
using an ensemble of randomized networks {Gr}. The latter are constructed so that they pre-

serve some key properties of G: the number of nodes and connections, the in-degree of each

node, and the partial ordering between nodes (explained next). The randomization reassigns

connections between pairs of nodes and changes the out-degree of nodes, as described below.

Fig 5. When the path coverage threshold is τ = 90%, a core for the original network (left) is the set {e, f}. The weight of

a connection in the flat network (right) represents the number of ST-paths between the corresponding source-target

pair in the original network. All connections of this flat network have unit weight. The core of the flat network for the

same τ consists of three nodes ({a, b, c} or ({i, g, h}). The H-score of the original network is 1 � 2

3
¼ 0:33.

https://doi.org/10.1371/journal.pcbi.1007526.g005

The hourglass organization of the C. elegans connectome
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Suppose we are given G and a set of paths P from sources to targets. If there is a path in

which node v appears after node u and there is no path in which u appears after v, we say that

u is an ancestor of v and write u 2 A(v). For a pair of nodes (u, v), we can have one of the fol-

lowing cases: (1) u is an ancestor on v, (2) v is an ancestor of u, (3) both u and v depend on

each other, and (4) u and v do not depend on each other. We aim to preserve the partial order-

ing of nodes, as follows:

1. if u is not an ancestor of v in G, then it cannot be that u becomes an ancestor of v in a ran-

domized network,

2. the set of ancestors of v in a randomized network is a subset of the set of ancestors A(v) in G.

The construction of randomization networks proceeds as follows: for each node v in the

original network, we first remove all incoming connections. We then randomly pick in-degree

(v) distinct nodes from A(v) and add connections from them to v. If in-degree(v) > |A(v)| then

we add in-degree(v) − |A(v)| additional connections (“multi-connections”) from randomly

selected nodes in A(v) to v. The randomization mechanism is illustrated in Fig 6. It should be

mentioned that there are several other randomization methods, preserving different network

features [54]. None of them however preserve the partial ordering between nodes, which is an

essential feature of a network in which a set of input-output dependency paths captures how

information flows from sources to targets.

Location metric

We also associate a location with each node to capture its relative position in the feedforward

network between sources and targets. One way to place intermediate nodes between sources

and targets is to consider the number of paths PS(v) from sources (excluding v if it is a source

itself) to v as a proxy for v’s complexity and the number of paths PT(v) from v to targets

(excluding v if it is a target itself) as a proxy for v’s generality. Nodes with zero in-degree

(which cover most sources) have the lowest complexity value (equal to 0), while nodes with

zero out-degree (which cover most targets) have the lowest generality value (equal to 0). The

following equation defines a location metric based on PS(v) and PT(v),

LðvÞ ¼
PSðvÞ

PSðvÞ þ PTðvÞ
ð3Þ

Fig 6. For the network and source-target paths given in the left two figures, we first compute the ancestors A(v) of each node v (shown in

the third figure from left). In the randomized network (shown at the right), we preserve the in-degree of each node v and randomly select

incoming connections from the set A(v).

https://doi.org/10.1371/journal.pcbi.1007526.g006
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L(v) varies between 0 (for zero in-degree sources) and 1 (for zero out-degree targets). If there

is a small number of paths from sources to a node v (low complexity) but a large number of

paths from v to targets (high complexity), v’s role in the network is more similar to sources

than targets, and so its location should be closer to 0 than 1. The opposite is true for nodes that

have high complexity but low generality.

Encoder-decoder architecture

Returning to the illustration of Figure-1, the number of paths from the set of sources S to a spe-

cific target t is denoted by PS(t), and is equal to the number of source literals in the mathemati-

cal expression for t. If a Boolean expression involves n literals, it requires n − 1 Boolean

operations. So, PS(t) can be thought of as the cost for computing t from S.

More generally, even if a feedforward network does not represent Boolean expressions, we

can think of the number of paths in PS(t) as a cost metric for “computing” the target t from the

set of sources S: the larger PS(t) is, the more ways exist in which the information provided by

the set of sources S affects the function of t.
Informally, an hourglass architecture is a network in which the information provided by a

large set of sources S is first encoded (or compressed) into a small set Z of intermediate nodes

at the “waist” of the hourglass. Then, the functions provided by the nodes in Z are decoded in

computing the targets in T. Additionally, in an hourglass architecture there should be relatively

few paths that bypass Z.

The question we focus on here is: how does an hourglass architecture decrease the cost of
computing a set of targets T from a set of sources S, and how large is that decrease in the case of
C. elegans?

Let CS(T) be the cumulative cost for computing the set of targets T from the set of sources S:

CSðTÞ ¼
X

t2T

PSðtÞ ð4Þ

Given a set of intermediate nodes Z, we can produce the targets T in a two-step process: first,

compute each node in Z from the sources S, and then compute each target in T from the set of

intermediate nodes Z. There may be some source-to-target paths however that bypass the

nodes in Z—we need to consider the cost of those “bypass-Z” paths as an extra term that

depends on the selection of Z. So, the cost CS,Z(T) of computing T from S given Z is:

CS;ZðTÞ ¼
X

z2Z

PSðzÞ þ
X

t2T

PZðtÞ þ
X

t2T

PS;bðtÞ ð5Þ

where the first summation term is the cost of computing Z from sources, the second is the cost

of computing targets from Z, and the third is the cost of bypass-Z paths.

The encoding-decoding gain FZ, defined below, quantifies how significant is the cost reduc-

tion provided by such an encoder-decoder architecture,

FZ ¼
CSðTÞ
CS;ZðTÞ

ð6Þ

IfFZ� 1, the intermediate nodes do not offer any cost reduction. On the other extreme, if

there is a single intermediate node z that depends on all n sources and all m targets depend

only on z, then FZ gets its maximum value, nm/(n + m).

To illustrate, consider a three-layer network with n sources, k intermediate nodes and m
targets, in which every intermediate node depends on every source, and every target depends

only on every intermediate node. Suppose that the set Z consists of k0 < k of the intermediate

The hourglass organization of the C. elegans connectome
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nodes. It is easy to see that:

FZ ¼
k nm

k0ðnþmÞ þ ðk � k0Þ nm
ð7Þ

If n> 2 and m> 2, we have that n + m< nm, meaning thatFZ is maximized (equal to nm/

(n + m)) when Z includes all k intermediate nodes (k = k0).
On the other hand, if the network includes k+ additional intermediate nodes that only con-

nect to one source and one target, the maximum value of FZ results when the set Z includes

only the k densely connected nodes and leaves the k+ nodes in the bypass paths:

max
Z
fFZg ¼

k nmþ kþ

kðnþmÞ þ kþ
ð8Þ

Returning to the network of Fig 1, the direct cost CS(T) is ∑t2T PS(t) = 6+5+3+2+6 = 22. The

cost of constructing the nodes in Z from sources is ∑z2Z PS(z) = 4+2 = 6, the cost of construct-

ing targets from Z nodes is ∑t2T PZ(t) = 1+1+1+1+2 = 6, while the cost of bypass-Z paths is

∑t2T PS,b(t) = 2+1+1+0+0 = 4. So, the encoding-decoding gain is 22/16 = 1.375 while its maxi-

mum possible value is 25/10 = 2.5.

Results

Hourglass analysis of feedforward paths

We defined earlier eleven different routing methods for computing paths from sensory to

motor neurons in C. elegans. Table 1 shows some relevant properties for each of these path

sets. The number of all possible pairs of sensory-motor neurons is about 9,500. About 90%-

95% of these pairs are connected with any of the eleven path sets. Even with the smallest path

set (SP4), there are typically multiple paths for every sensory-motor pair. The sensory-motor

neural paths are typically short: the median is 3 hops meaning that there are typically two

other neurons between a sensory and a motor neuron. The number of paths increases ten-fold

when we allow one more hop than the shortest path (SP+1), and about eight-fold more when

we allow a second extra hop (SP+2). Also, about 5%-10% of the connectome (after the removal

of FB connections between the three different classes of neurons) are not traversed by any of

these paths. This suggests that these connections are utilized only in feedback circuits between

neurons of the same type (e.g., feedback between interneurons).

Given a set P of feedforward paths from sensory to motor neurons, we now apply the hour-

glass analysis framework (see Section “Hourglass Score”). In particular, the goal is to compute

Table 1. Properties of the eleven paths sets from sensory to motor neurons computed using the eleven routing methods we consider.

Eleven sets of paths from sensory to motor neurons

SP SP4 SP5 SPþ1
4

SPþ2
4

P4 SPþ1
5

SPþ2
5

P5 SP+1 SP+2

Number of paths 41,305 36,942 40,801 239,941 435,877 441,153 392,895 1,926,944 3,245,610 434,930 3,434,325

10,50,90-percentile of path

lengths

3,3,5 3,3,4 3,3,4 3,4,4 3,4,4 3,4,4 3,4,5 4,5,5 4,5,5 3,4,5 4,5,6

Sensory-motor neuron pairs

connected

96% 91% 96% 91% 91% 91% 96% 96% 95% 96% 96%

Utilized connections Total 90% 90% 90% 95% 95% 95% 95% 95% 95% 95% 95%

FF 95% 95% 95% 95% 95% 95% 95% 95% 95% 95% 95%

LT 85% 85% 85% 95% 95% 95% 95% 95% 95% 95% 95%

https://doi.org/10.1371/journal.pcbi.1007526.t001
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the smallest set of neurons that can cover a percentage τ of all paths in P. That set of neurons

is referred to as τ-Core.
Fig 7A shows the cumulative path coverage as a function of the number of neurons in the τ-

Core (increasing values of τ require a larger set of core neurons). All path sets have the same

“sharp knee” property: almost all (80%-90%, depending on the routing method) of the feedfor-

ward paths traverse a small set of about 10 neurons. Routing methods that produce more paths

Fig 7. (A) Cumulative path coverage by the top-X core neurons for X = 1. . .100. Depending on path selection method,

the core size varies between 10-20 neurons when the path coverage threshold τ is 90%. For a given τ, routing methods

that produce more paths (such as SP+2 or P5) result in a smaller core. (B) Effect of τ on hourglass metric (H-score) for

each path set. The ordering of the legends is the same with the top-down ordering of the curves.

https://doi.org/10.1371/journal.pcbi.1007526.g007
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(such as SP+2) tend to have a smaller τ-Core than more constrained routing methods (such as

SP4).

Fig 7B examines the effect of the path coverage threshold τ on the hourglass metric

(H-score). For all path sets, the H-score is close to one (its theoretical maximum value) as

long as τ< 90%. This suggests an hourglass-like architecture, independent of which routing

scheme has produced the set of feedforward paths.

Table 2 shows the sequence of core neurons (for τ = 90%) for each path set. The first 10-11

of those neurons appear in almost every path set. The remaining neurons appear in more con-

strained path sets (such as SP) and they only cover a small fraction of additional paths (1%-

3%).

If we focus on those first 10-11 core neurons, we observe that, first, they are included in the

90%-core of all path sets we consider (with few exceptions).

To simplify the presentation of the results, in the rest of this paper we will focus on the

“SP+2” path set. This path set results in the largest number of paths and a core of 10 neurons

when τ = 90%.

That set of core neurons includes bilateral pairs of interneurons (namely: AVA, AVB, PVC,

AVE, and AVD)—the DVA stretch sensitive core neuron does not appear bilaterally. Seven of

the core neurons are located in the head region (AVAR/L, AVBR/L, AVER/L, AVDR) and

three are in the tail region (PVCR/L, DVA). The original ten core neurons contain nine com-

mand interneurons that play a pivotal role in forward and backward locomotion [44]. The

other non-command interneuron of the core, DVA, is a proprioceptive interneuron modulat-

ing the locomotion circuit [44].

Table 2. The identified core neurons when the path coverage threshold is τ = 90% for each path set. For each core neuron, we show the fraction of paths that the corre-

sponding neuron contributes to the core. The neurons are ranked in decreasing order in terms of their contribution to the core (considering the SP set of paths), grouping

bilateral neurons together. The last column shows the 11 “rich-club” neurons, as identified in [44].

Core Neuron SP SP4 SP5 SPþ1
4

SPþ2
4

P4 SPþ1
5

SPþ2
5

P5 SP+1 SP+2 Rich-club

AVAL 0.25 0.24 0.25 0.24 0.24 0.24 0.26 0.25 0.25 0.26 0.27 ✓

AVAR 0.23 0.22 0.23 0.30 0.34 0.34 0.32 0.40 0.43 0.32 0.41 ✓

AVBL 0.08 0.07 0.08 0.10 0.09 0.09 0.09 0.10 0.10 0.09 0.10 ✓

AVBR 0.04 0.04 0.04 0.04 0.03 0.03 0.04 0.03 0.03 0.04 0.03 ✓

AVEL 0.06 0.06 0.06 0.05 0.04 0.04 0.05 0.04 0.03 0.05 0.03 ✓

AVER 0.06 0.06 0.06 0.06 0.05 0.05 0.06 0.05 0.04 0.05 0.04 ✓

DVA 0.05 0.05 0.04 0.02 0.03 0.03 0.03 0.03 0.02 0.04 0.01 ✓

PVCL 0.05 0.05 0.05 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 ✓

PVCR 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.03 0.04 ✓

AVDR 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.02 0.02 0.03 0.01 ✓

AVDL 0.02 0.02 0.02 0.02 0.01 0.01 ✓

HSNR 0.02 0.03 0.03 0.02 0.02 0.01 0.01 0.01 0.02

HSNL 0.01 0.01

RIAL 0.01 0.02 0.01 0.01 0.02 0.02 0.01 0.01 0.01

RIAR 0.01 0.02 0.01 0.01

RIMR 0.01 0.01 0.01 0.01 0.01 0.02

RMGL 0.01 0.01 0.01

PVR 0.01 0.01 0.01

AIBR 0.01 0.01 0.01

AIZL 0.01

H-score 0.79 0.79 0.79 0.82 0.84 0.74 0.85 0.86 0.81 0.84 0.87

https://doi.org/10.1371/journal.pcbi.1007526.t002
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If we want to extend the set of core neurons slightly by covering τ = 95% of all paths instead

of 90%, we need to add four more neurons into the core (HSNR, AVDL, RIAL, RIMR).

Comparison with rich-club effect

The existence of a set of densely interconnected nodes in the C. elegans connectome, termed as

rich-club, has been previously established by Towlson et al. [44]. A rich-club is a subgraph of

high-degree nodes that are much more densely interconnected with each other than what

would be expected based only on their degrees [55]. In other words, the rich-club concept is

based on the analysis of local connectivity in a network—rather than the analysis of (shortest

or other) network paths. Further, the rich-club analysis does not consider whether some nodes

act as inputs (sensory neurons) or outputs (motor neurons) in the network. The hourglass

analysis, on the other hand, analyzes the set of feedforward paths from inputs to outputs. So,

these two methods are significantly different.

Are these two network properties, rich-club and hourglass effect, equivalent? We can see

that this is not the case through simple counter-examples (see Fig 8).

An important observation, however, is that the core neurons that we identify through the

hourglass analysis highly overlap with the rich-club neurons of [44]. The first ten core neurons

identified by all routing methods we consider also appear in the eleven rich-club neurons

reported in [44]. The AVDL interneuron is the 11th rich-club member but it appears in the

hourglass core only in half of the routing methods we consider (for τ = 90%). The fact that two

very different methods highlight almost the same set of interneurons as the most important in

the system adds confidence in the results of both studies.

The fact that a small set of interneurons act as both the hourglass core and rich-club, even

though these two network properties are qualitatively different, raises an interesting hypothesis

about the functional role of these interneurons: In the hourglass network of Fig 8A, the core

nodes m, n, o are not connected with each other—such an architecture can compress different

input information streams but without integrating them. On the contrary, the core interneu-

rons of C. elegans are densely interconnected and so they form an information processing bottle-
neck that integrates the compressed information from different sensory modalities, before

driving any higher-level neural circuits.

Comparison with randomized networks

Is the hourglass effect a genuine property of the C. elegans connectome or would it also be

present in similar but randomly connected networks? We generate 1000 random networks

using the algorithm described in Section “Randomization Method”. The randomization pro-

cess preserves the in-degree of each neuron and the hierarchical ordering between neurons

(i.e., if neuron v depends on neuron u but u does not depend on v in the original connectome,

it cannot be that u depends on v in a randomized network). Fig 9 shows the H-score distribu-

tion of the randomized networks. The H-score of the random networks is significantly less

than the corresponding original network (p< 10−3), suggesting that the hourglass effect we

observe in the C. elegans connectome is not a statistical artifact.

Is the hourglass effect a consequence of the dense connectivity between core neurons? The

latter is the defining characteristic of rich-club neurons. Would we still observe the hourglass

effect if the core neurons were not so densely interconnected with each other, forming a rich-

club?

To answer this question, we perform a second randomization experiment in which every

connection between two core neurons X and Y is rewired so that X connects instead to a ran-

domly chosen neuron Z that is not in the set of core neurons. We experimented with two

The hourglass organization of the C. elegans connectome
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variations of this method: one in which Z is an interneuron and another in which Z can be any

neuron, including sensory and motor neurons.

Both approaches fail to destroy the hourglass property. As shown in Fig 10, the H-score dis-

tribution of the randomized networks (100 instances) includes the H-score of the original net-

work (0.87). This means that the hourglass property is not due to the dense connectivity

between core neurons. When we remove the connections between core neurons, we reduce

the number of core nodes that a typical sensory-to-motor path traverses—but it is still the case

Fig 8. (A) A toy network in which two nodes (m and o) cover more than 90% of all source-target paths (H-

score = 0.67). This network does not contain a rich-club. (B) A toy network that is not an hourglass (H-score = 0) but it

has a rich-club (nodes p, q, r, s—the rich-club coefficient is 2.60 [56]).

https://doi.org/10.1371/journal.pcbi.1007526.g008
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that almost all such paths traverse at least one core node, and this is what creates the hourglass

property.

Hourglass organization based on location metric

The location metric associates each neuron v with a value between 0 and 1, depending on the

number of paths from sensory neurons to v and from v to motor neurons.

Fig 11 shows the location of each neuron in a vertical orientation. Most sensory neurons

have zero incoming connections (and thus no incoming paths), and so their location is 0. Sim-

ilarly most motor neurons have zero outgoing connections and so their location is 1. The loca-

tion of the ten core neurons is shown with dotted rectangles—they are concentrated close to

the middle of the location range, meaning that their number of paths from sensory neurons is

roughly the same with their number of paths to motor neurons. This visualization has been

produced with the SP+2 path set but other path sets give similar results.

C. elegans as an encoder-decoder architecture

We can think of C. elegans as an information processing system that transforms input informa-

tion, collected and encoded by sensory neurons, to output information that is represented by

the activity of motor neurons. The analysis of the previous sections has identified a number of

core neurons that most of the sensory-to-motor neural pathways go through. The exact number

of core neurons depends on the fraction τ of all sensory-to-motor paths covered by the core.

Fig 9. Distribution of H-score for randomized networks in which we preserve the in-degree of each neuron and

the hierarchical ordering between neurons. The probability of observing the H-score value of the original network in

randomized networks is less than 10−3.

https://doi.org/10.1371/journal.pcbi.1007526.g009
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Suppose that a given set of core neurons forms the intermediate set Z, defined in Section

“Encoder-Decoder Architecture”. We can then compute the number of paths PS(Z) from the

set S of all sensory neurons to the neurons in Z as a proxy for the information processing cost

of an encoding operation that transforms S to Z. Similarly, the number of paths PS(Z) from the

neurons in Z to the set T of all motor neurons can be thought of as a proxy for the information

Fig 10. H-score distribution of randomized networks in which every connection X-Y between two core neurons X
and Y is rewired. In (A), Y is replaced with a randomly chosen interneuron Z that is not in the core. In (B), Y is

replaced with a randomly chosen neuron Z (including sensory and motor neurons) that is not in the core. The red dot

shows the H-score of the original connectome.

https://doi.org/10.1371/journal.pcbi.1007526.g010
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processing cost of a decoding operation that transforms Z to T. We also need to consider any

sensory-to-motor paths PS,b(T) that bypass the core neurons in Z—this is a proxy for the cost

of any additional information processing that is specific to each motor neuron and that is not

provided by the encoding-decoding function of Z.

These three cost terms are shown in Fig 12 as we increase the number of core neurons

included in Z (i.e., as we increase the threshold τ). The bypass-Z cost is the dominant cost term

until we include about 15 neurons in Z. This suggests that the information provided by sensory

neurons cannot be captured well with fewer neurons. On the other hand, the costs of the

encoding and decoding operations (PS(Z) and PS(Z), respectively) increase with the number of

neurons in Z, as expected.

The encoder-decoder gain ratio FZ (see Eq 6) shows that the maximum cost reduction

takes place when we consider the first 16 core neurons (corresponds to τ = 95% for the SP+2

set of paths). In that case, the encoder-decoder architecture achieves an eight-fold decrease

(FZ = 8.2) in terms of information processing cost relative to a hypothetical architecture in

which the information processing cost of each motor neuron is computed separately, based on

the number of paths from sensory neurons to that motor neuron.

An important question is whether the hourglass architecture achieves this cost reduction by

increasing the path length between sensory and motor neurons (in terms of the number of

neurons in each path). This trade-off between network efficiency (associated with the distribu-

tion of path lengths in a network) and network cost has received significant attention in net-

work neuroscience [48, 57, 49]. Networks that minimize the length of every processing path

connect every source to every target with a direct link—a costly design approach. On the other

hand, networks that attempt to reduce the number of intermediate links typically need longer

source-to-target paths (for the same reason that flying between two cities often requires one or

more intermediate stops).

Here, we examine whether the hourglass architecture introduces a significant increase in

the average path length from sensory to motor neurons relative to the ensemble of randomized

networks. Recall that those networks do not follow the hourglass architecture (see Fig 9) but

Fig 11. Visualization of the C. elegans connectome based on the location metric. We discretize the location metric

in 10 bins (each bin accounting for 1/10 of the 0–1 range). The path centrality of each node is represented by its color

intensity (darker for higher path centrality). Nodes with higher centrality are placed closer to the vertical mid-line. The

core nodes are marked with an orange outline. The location of all core neurons falls between 0.3-0.6, close to the

middle of the hourglass.

https://doi.org/10.1371/journal.pcbi.1007526.g011
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they maintain the in-degree of each neuron and the hierarchical ordering between neurons.

Given that each neuron selects randomly its inputs from any neuron that is “lower” in the hier-

archy (closer to the sensory neurons), we expect that such randomized non-hourglass net-

works will be more efficient (i.e., they will have shorter paths). In the extreme case that every

motor neuron receives connections only from sensory neurons, the average path length will be

minimized.

Fig 13 shows that the randomized networks are not as cost-efficient as the original C. ele-
gans connectome, (their encoder-decoder gain ratio is around 2 even though the original net-

work’s is 8.2). However, the randomized networks provide shorter path lengths. Their average

sensory-to-motor path length is 3.9, according to the SP+2 set of paths, while the same metric

for the original connectome is 5.4 hops. In other words, the hourglass organization of the C.
elegans connectome trades off the reuse of intermediate-level neurons and connections with a

modest increase in the length of sensory-to-motor path lengths. We should mention that this

reduction in path-length efficiency is smaller for other path sets; for instance, with the set of

shortest paths (SP) the average path length of the original connectome is 3.4 hops while the

randomized connectomes have a mean of 3.0.

Including gap junctions: The complete network

Gap junctions provide a different type of connectivity between neurons than chemical synap-

ses. Chemical synapses use neurotransmitters to transfer information from the presynaptic to

the postsynaptic neuron, while gap junctions work by creating undirected electrical channels

and they provide faster (but typically weaker) neuronal coupling. The directionality of the cur-

rent flow in gap junctions cannot be detected from electron micrographs. Hence they are

treated as bidirectional in the C. elegans connectome.

Fig 12. The encoder-decoder gain ratioFZ as the number of core neurons in the encoding set Z increases (yellow

curve). The maximum value ofFZ is about 8.2 when Z includes the first 16 core neurons. Based on the cost framework

of Section “Encoder-Decoder Architecture”, this means that the hourglass organization of the C. elegans connectome

reduces the sensory-to-motor information processing cost eight-fold. The figure also shows the three relevant cost

terms: cost of encoding the information provided by sensory neuron using neurons in Z (magenta), cost of decoding

that information to drive all motor neurons (green), and cost of processing pathways that bypass the core (blue).

https://doi.org/10.1371/journal.pcbi.1007526.g012
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In this section, we consider both gap junctions and chemical synapses, forming what we

refer to as the complete network. Gap junctions connect 253 (out of 279) neurons through 514

undirected connections (that we treat as 1028 directional connections). Recall that the number

of (directed) chemical connections is 2194. 64% of the gap junction connections do not co-

Fig 13. The ensemble of randomized networks have much lower encoding-decoding gain F than the original C. elegans
connectome (A)—But not significantly lower average path length (B).

https://doi.org/10.1371/journal.pcbi.1007526.g013
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occur with chemical connections between the same pair of neurons, while 83% of the synaptic

connections do not co-occur with gap junction connections. In other words, the inclusion of

gap junctions changes significantly the connectivity between neurons.

The complete network has 1180 FF, 1468 LT and 574 FB connections. If we remove feed-

back connections, as we did for the synaptic network, we end up with a total of 2648 directed

connections.

The inclusion of gap junctions also increases significantly the number of paths between sen-

sory and motor neurons, independent of the routing method. If we focus on SP+2, the number

of paths increases by a factor of 2.3 (about 7.7 millions).

Fig 14A shows the cumulative path coverage as a function of the number of nodes in the

core. Fig 14B examines the effect of the path coverage threshold τ on the resulting H-score.

Both curves are quite similar to the corresponding results for the synaptic network.

With τ = 90%, the resulting core nodes are shown in Table 3. The H-score for the complete

network is 0.83 (compared to 0.87 for the synaptic network).

The two additional core neurons that appear in the hourglass waist of the complete network

but not in the synaptic network are:

• AIBR: related to locomotion, food and odor evoked behaviors, local search, lifespan and star-

vation response.

• VD01: related to motor—Sinusoidal body movement-locomotion.

The encoder-decoder gain analysis for the complete network appears in S4 Fig. Qualita-

tively the encoder-decoder gain ratio follows the same trend with the network of only chemical

synapses (see Fig 12) but the maximum value of FZ is slightly less (7.4 instead of 8.2).

Discussion

In this Section, we discuss in more detail prior studies that relate to the hourglass effect in C.
elegans or more broadly in neuroscience. Varshney et al. [43] analyzed the structural properties

of the C. elegans connectome and found that several central neurons (based on closeness cen-

trality) play a key role in information processing. Among them are command inter-neurons

such as AVA, AVB, AVE that are responsible for locomotion control. On the other hand, neu-

rons such as DVA or ADE have high out-closeness centrality and a good position to propagate

a signal to the rest of the network. Most of the “central” neurons in that study are also included

in the hourglass core.

The modular organization of the C. elegans connectome has been discovered by Sohn et al.

[58] through cluster analysis. Their analysis showed that communities correspond well to

known functional circuits and it helped uncover the role of a few previously unknown neu-

rons. They also identified a hierarchical organization among five key clusters that form a back-

bone for higher-order complex behaviors.

The fact that the rich-club interneurons are almost identical with the hourglass core, even

though these two network properties are qualitatively different, suggests that these 10-15 neu-

rons form a information processing bottleneck that does not simply compress but also inte-
grates the information from different sensory modalities, before driving any higher-level

neural circuits.

This hypothesis is also supported by the analysis of functional modules in the C. elegans
connectome, by Pan et al. [59], which showed that neurons in the same module are located

close and contribute in the same task. That study identified 23 connector hub neurons, i.e.,

high-connectivity neurons that connect to most or all functional modules. The eleven core

neurons that we identified with the SP+2 paths also belong in that set of connector hubs. The
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Fig 14. Hourglass analysis for complete network with the SP+2 set of paths. (A) compares the cumulative path

coverage of top core neurons between synaptic and complete network. (B) compares the progression of H-score

between synaptic and complete network as τ varies.

https://doi.org/10.1371/journal.pcbi.1007526.g014

Table 3. The identified 12 core neurons in the complete network. The 10 neurons shown in italic were also the core of the synaptic network.

Neuron AVAL AVAR AVBL AVBR AVEL AVER PVCL AIBR AVDR DVA PVCR VD01

Fraction of new paths covered 0.29 0.23 0.16 0.11 0.05 0.04 0.03 0.03 0.02 0.02 0.01 0.01

https://doi.org/10.1371/journal.pcbi.1007526.t003
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fact that all hourglass core neurons are also connector hubs between functional modules sup-

ports the idea that these neurons integrate multimodal information, rather than simply com-

press the sensory information in a segregated manner. Note that the distinction between

connector hubs, non-hub connectors, etc, depends on certain thresholds and so it is not sur-

prising that some connector hubs such as AVKL or SMBVL do not appear in the hourglass

core.

The posterior nervous system of the male C. elegans connectome was analyzed by Jarrell

et al. [60] (recall that we analyze the hermaphrodite C. elegans connectome). One of their con-

clusions was that the nervous system has a mostly feedforward architecture that runs from sen-

sory to motor neurons via interneurons. There is also some feedback circuitry in the nervous

system and the actual physical output of the worm (i.e. motion etc.) feeds back to sensory neu-

rons to allow closed-loop control. There are however many more feedforward loops (termed

lateral connections in our analysis) that provide localized coordination most notably visible

within interneurons. More recently, the same research group has mapped the complete con-

nectome of the male nematode, focusing on its differences with the hermaphrodite [61].

Yan et al. have applied a controllability framework to analyze the C. elegans connectome,

aiming to identify essential neurons for locomotion [62]. Some of those neurons also appear in

the hourglass core (AVAL/R, AVBL/R, AVDL/R, PVCL/R)—but there are also several neurons

(such as the six neurons of the DD class) that do not stand out in the hourglass analysis. This is

not surprising given that the two studies ask very different questions: Yan et al. ask which neu-

rons are essential to control every motor neuron or muscle, while we ask which neurons form

a bottleneck in the feedforward flow of information from sensory to motor neurons.

The physical placement of neurons in C. elegans has been thought to be not exclusively opti-

mized for global minimum wiring but rather for a variety of other factors of which the minimi-

zation of pair-wise processing steps is important. For example, Kaiser and Hilgetag [49]

showed that the total wiring length can be reduced by 48% by optimally placing the neurons.

However that would significantly increase the number of processing nodes along shortest

paths between components as well. Similar findings were also revealed by Chen et al. [57], con-

cluding that the placement of neurons does not globally minimize wiring length. These studies

emphasize the notion of choosing shorter communication paths between neuron pairs and

supports our approach of choosing paths that are shortest, or close to shortest, in terms of pro-

cessing steps.

Analysis by Csoma et al. [63] challenged the well rooted notion of shortest path based com-

munication routing in the human brain network. They collected empirical data through diffu-

sion MRI and concluded that although a large number of paths conform to the shortest path

assumption, a significant fraction (20-40%) are inflated up to 4-5 hops.

Research by Avena-Koenigsberger et al. [47, 64] analyzed in depth the communication

strategies in the human brain and also challenged the shortest path assumption. They dis-

cussed how the computation of shortest path routing is not feasible in the brain circuitry, and

the shortest path routes would leave out around 80% of neural connections. They examined

the spectrum of routing strategies hinging upon the amount of global information and com-

munication required. At one end of the spectrum, there are random-walk routing mechanisms

that are wasteful and often fail to achieve efficient routes but require no knowledge. On the

other end there is shortest-path routing requiring global wiring knowledge at each neuron. As

a more realistic choice, they studied the k-shortest path based approach (with k being 100).

Their findings show that this strategy increases the utilization of connections. We have used a

more relaxed constraint to choose paths between any two nodes by allowing all possible paths

that are up to 2 hops longer than the shortest path between the corresponding pair.
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Markov et al. have shown that the macaque cortical network includes a highly interconnec-

ted “bow-tie core” [42]. At first, this may seem relevant to the hourglass effect. We should note

however that the network of Markov et al. considers 29 cortical regions and 17 of them are in

the bow-tie core. On the contrary, a defining characteristic of the hourglass effect is that the

number of core nodes at the waist is a small fraction of the total network size.

In some earlier studies, the hourglass effect is defined for layered networks, based on on the

number of nodes at each layer. A network is referred to as an hourglass if the width of the

intermediate layers is much smaller relative to the width of the input and output layers [24, 35,

65]. In this work, we generalize the definition of the hourglass effect to include networks that

do not have clearly defined layers and that include feedback or lateral connections.

What is the biological significance of the hourglass architecture in the C. elegans connec-

tome? Is it just an interesting graph-theoretic property or does this architecture provide an

adaptive advantage that could be selected by evolution?

First, it is important to set appropriate expectations for any study that analyzes the connec-

tome attempting to learn something valuable about the underlying biology. It has been argued

by several authors, including C. Bargmann and E. Marder [66], that mechanisms such as neu-

romodulators, parallel and antagonistic pathways and circuits, and complex neuronal dynam-

ics can completely change the function of a given neural circuit. We believe that a connectome

should be viewed as an architectural constraint that limits the scope of possible functions that a
neural circuit can perform—rather than as the unique determinant of those functions.

The earlier C. elegans literature has attributed specific functions to the “command interneu-

rons” or it has associated those interneurons with one or more functional circuits (for instance,

see [67, 68]). The main contribution of our study is to propose a different way to think about

the role of those interneurons in the C. elegans connectome: the interneurons between sensory

and motor neurons can be thought of as forming an encoder-decoder network. This network

reduces the intrinsic dimensionality of the low-level sensory information, and then integrates

the compressed information from different sensory modalities to compute few intermediate-

level sub-functions. The latter are then combined and re-used in higher-level behavioral cir-

cuits and tasks. Those few sub-functions are encoded in the activity of 10-15 core interneurons

in the hourglass waist.

So, instead of trying to identify the function of each neuron in the connectome, or instead

of focusing on individual functional circuits ignoring all others behaviors and circuits, we can

focus on that smaller set of 10-15 core interneurons and attempt, through a combination of

experiments and modeling, to reverse engineer the sub-functions they “compute”. These sub-

functions will probably be much simpler than the observable behaviors of the organism (e.g.,

escape response or social feeding)—they can be viewed as re-usable functional modules. Then,

for each of the observable behaviors of the organism, we can try to find out how that task is

accomplished by combining in different ways those functional modules. We firmly believe

that such a research agenda will be more tractable because it depends on a smaller number of

components (10-15) that need to be “reverse engineered”, compared to the number of all neu-

rons in C. elegans.
The core neurons at the hourglass waist create a “bottleneck” in the flow of information

from sensory to motor neurons. Such bottleneck effects have been studied in the literature

under different names. The most relevant such framework is the information bottleneck
method developed based on information theory results: given a joint probability distribution

between an input vector X and an output vector Y, the goal of that method is to compute an

optimal intermediate-level representation T that is both compact (i.e., a highly compressed

version of X) and able to predict Y accurately [69, 70]. It appears that the C. elegans
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connectome has evolved to “compute” such a compact and integrated intermediate-level

representation of its sensory inputs, represented by the 10-15 core interneurons at the hour-

glass waist.

Supporting information

S1 Fig. (A) Weight distribution of FF, LT and FB connections. (B) Considering only pairs of

neurons with reciprocal FF and FB connections, this histogram shows the difference of the FF

weight minus the FB weight.

(TIFF)

S2 Fig. (A) The length distribution for all shortest paths from sensory to motor neurons.

Almost all shortest paths are shorter than 6 hops. (B) Distribution of the number of distinct

shortest paths from a sensory neuron to a motor neuron. For about 50% of S-M pairs, there

are more than two shortest paths.

(TIFF)

S3 Fig. All paths for the routing scheme P4. The model network is the same one depicted in

Fig 3.

(TIF)

S4 Fig. The encoder-decoder gain ratio FZ for the combined network containing both chemi-

cal synapses and gap junctions (contrast with Fig 12). The maximum value of FZ is 7.4 when Z
includes the first 20 core neurons. Recall that the maximum value of FZ in the network of

chemical synapses is 8.2.

(TIF)

S1 Table. In the synaptic network, the top-5% strongest connections are dominated by FF

connections from S neurons to I or M neurons, and by LT connections between I neurons and

M neurons. On the other hand, none of the FB connections appear in this set.

(TIF)

S2 Table. Functional circuits associated with core neurons based on the C. elegans literature.

The core neurons appear in several circuits, mostly related to spontaneous or planned move-

ment. Many of the adaptive behaviors of the organism such as feeding, egg-laying, escape and

navigation require a common set of underlying simpler tasks. Some of the circuits shown (e.g.

thermotaxis, chemosensation, olfactory behavior) perform tasks that start with activity in

some sensory neurons, followed by a locomotory response that is modulated by certain core

interneurons.

(TIF)
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