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Abstract

Topoisomerase I (TopA) is an essential enzyme that is required to remove excess negative supercoils from chromosomal DNA. 
Actinobacteria encode unusual TopA homologues with a unique C-terminal domain that contains lysine repeats and confers 
high enzyme processivity. Interestingly, the longest stretch of lysine repeats was identified in TopA from Streptomyces, envi-
ronmental bacteria that undergo complex differentiation and produce a plethora of secondary metabolites. In this review, we 
aim to discuss potential advantages of the lysine repeats in Streptomyces TopA. We speculate that the chromosome organiza-
tion, transcriptional regulation and lifestyle of these species demand a highly processive but also fine-tuneable relaxase. We 
hypothesize that the unique TopA provides flexible control of chromosomal topology and globally regulates gene expression.

Introduction
Actinobacteria are the largest (130 genera) and most phylo-
genetically distinct group of bacteria, exhibiting remarkably 
diverse environmental niches, life cycles and cell morpholo-
gies, varying from unicellular rods to multicellular hyphae 
[1]. The actinobacteria that attract the most research interest 
include pathogenic Mycobacteria and antibiotic-producing 
Streptomyces [2]. Streptomyces not only produce a plethora 
of pharmacologically valuable secondary metabolites, but 
also, because of their complex morphological differentiation, 
they are interesting model organisms in studies on bacterial 
development and gene regulation [3–7]. Complex regulatory 
cascades govern crucial switches during Streptomyces sporula-
tion, e.g. the emergence of aerial hyphae or the cessation of 
their growth followed by the generation of spore chains [8–10]. 
Interestingly, the differentiation of Streptomyces is accompa-
nied by the activation of secondary metabolite gene clusters 
that are also controlled by multi-layered regulatory pathways 
[8–11]. While it is recognized that chromosome topology acts 
as a global transcriptional regulator in various eukaryotes and 
prokaryotes [12, 13], the impact of chromosome spatial struc-
ture on gene regulation and secondary metabolite production 
in Streptomyces has just been established [5, 14–18].

Interestingly, Streptomyces undergo profound changes in their 
chromosome organization during their complex life cycle 
[19, 20]. Moreover, they are distinct among bacteria due to 
the presence of multiple copies of linear chromosomes in their 
elongated hyphal cells. While throughout vegetative growth, 
chromosomes remain uncondensed and visibly unseparated 
in hyphal cells, they become highly compacted during 
the formation of unigenomic spores. As in other bacteria, 
Streptomyces’ chromosome topology is controlled by several 
proteins, including nucleoid-associated proteins (NAPs) 
[15, 21, 22], condensins [23, 24] and topoisomerases [14]. 
Interestingly, topoisomerase I (TopA), Streptomyces’ major 
DNA relaxase, exhibits unusually high processivity [25, 26]. It 
is intriguing that Streptomyces require an extremely processive 
DNA relaxase and in this review we discuss the properties of 
this unique enzyme in relation to Streptomyces’ environment, 
growth features and chromosome topology.

Bacterial topoisomerases
The discovery of topoisomerases in the early 1970s answered 
a question that had been open for almost 2 decades – how 
do cells deal with chromosomal topological problems that 
occur during the unwinding of the DNA double helix and are 
manifested by an accumulation of DNA supercoils [27, 28]. 
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While appropriate DNA supercoiling compacts chromo-
somes and contributes to packaging of genetic material in 
the limited intracellular space, it also facilitates the unwinding 
of the DNA double helix that is required for the initiation of 
transcription and replication [29, 30]. On the other hand, an 
excess of DNA supercoils inhibits the progress of replication 
and transcription and therefore is detrimental to cell growth 
[31, 32]. Thus, the appropriate level of negative DNA super-
coiling, also named topological homeostasis or supercoiling 
balance, needs to be preserved to allow for the progression 
of the DNA transactions, while maintaining chromosome 
compaction.

The supercoiling balance is controlled by topoisomerases, the 
enzymes that transiently break and re-join DNA strands to 
remove and add supercoils to the DNA double helix. Based 
on structural differences and the mechanism of action, the 
topoisomerases are classified into two types [33, 34]. Type I 
topoisomerases primarily function as monomers (with the 
exception of heterodimeric reverse gyrase [35]) that cut a 
single DNA strand and re-ligate it in an ATP-independent 
manner. By contrast, type II topoisomerases, which function 
as dimers or heterotetramers, cut both DNA strands and 
hydrolyze ATP to induce conformational changes that allow 
the transfer of the intact DNA duplex throughout the cleaved 
DNA double helix [35–37]. In general, the predominant func-
tion of bacterial type I topoisomerases is to remove negative 
supercoils (although some type I enzymes are also able to 
remove positive supercoils), while bacterial type II enzymes 
are responsible for the removal of the positive supercoils 
[34, 38]. Thus, due to their opposing activities, both types of 
enzymes are required for the survival of every bacterial cell. 
Although the minimal set of topoisomerases in bacteria is 
limited to just two topoisomerases, TopA and gyrase, most 
species possess more than one topoisomerase of each type, 

such as an additional type I enzyme [topoisomerase III 
(TopB)] and/or type II enzyme [topoisomerase IV (ParCE)]. 
These additional enzymes are involved in distinct DNA 
transaction processes (DNA repair and recombination, sister 
chromosome decatenation, DNA relaxation and compaction), 
but are still able to partially complement the cellular functions 
of the main topoisomerases [38–41].

As in other bacteria, actinobacterial assortment of topoi-
somerases varies between particular groups and even differs 
between closely related species. Although some mycobacteria 
encode only the minimal set of enzymes, encompassing TopA 
and gyrase (e.g. Mycobacterium tuberculosis and Mycobacte-
rium leprae), other species genomes (e.g. Mycobacterium smeg-
matis and Mycobacterium avium) contain genes encoding the 
additional topoisomerases. They include a poxvirus-like type 
I topoisomerase, which was presumably acquired as a result of 
horizontal gene transfer, and a type II topoisomerase distinct 
from topoisomerase IV, which is not essential but supports 
the decatenation of newly replicated chromosomes [42–44]. 
Interestingly, Streptomyces also encode topoisomerase IV, but, 
due to the linearity of their chromosomes, its activity is not 
required for chromosome separation [45]. The majority of 
Streptomyces species possess only one topoisomerase of type 
I; however, a gene encoding additional poxvirus-like type 
I topoisomerase is present in the genomes of some species 
(e.g. Streptomyces venezuelae). Although exhibiting a highly 
diverged assortment of topoisomerases, all actinobacteria 
contain characteristic TopA proteins (Fig. 1).

Unique features of actinobacterial TopA
Actinobacterial TopAs possess two distinct features that 
distinguish them from other bacterial topoisomerase I 
homologues: a unique C-terminal domain and high supercoil 

Fig. 1. Comparison of the primary structures of TopA homologues. (a) A phylogenetic tree (constructed using ClustalW in the R msa 
package [97]) of TopA homologues in selected bacteria species. (b) The primary structures of bacterial TopA with N-terminal domain, 
C-terminal domain, TOPRIM motif, zinc fingers and lysine repeats indicated.
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removal processivity [25, 46]. Additionally, these enzymes 
exhibit other unusual species-specific properties. For instance, 
unlike most type I topoisomerases, M. smegmatis TopA was 
shown to have a DNA sequence preference, exhibiting strong 
topoisomerase site (STS) recognition [47]. On the other hand, 
Bao and Cohen identified Streptomyces coelicolor TopA as a 
part of a large nucleoprotein complex associated with the ends 
of linear chromosomes. Moreover, the same studies showed 
that TopA exhibited in vitro reverse transcriptase activity 
that was dependent on two conserved aspartic acid residues 
located within the N-terminal domain [48]. While the clas-
sical topoisomerase activity studies on M. smegmatis TopA 
demonstrated its high processivity, single-molecule analysis 
also reconfirmed this observation for S. coelicolor TopA. 
Application of a magnetic trap and a DNA fragment that 
was up to 51 kb long made it possible to measure the number 
of supercoils removed in a single reaction burst (up to 150 
compared to approximately 20 for Escherichia coli enzymes), 
as well as the supercoil removal velocity (the number of super-
coils removed per second, which for S. coelicolor TopA and 
E. coli TopA were within the same range, 8.0 and 3.3 Lk s−1, 
respectively) [25, 49, 50]. Thus, the processivity of S. coelicolor 
TopA exceeds that of any other studied type I topoisomerase. 
Studies on truncated M. smegmatis and S. coelicolor TopA 
homologues revealed that their high processivity is conferred 
by their unique C-terminal domains [25, 26, 46].

Similarly to all other TopA homologues, actinobacterial 
enzymes consist of two domains: the N-terminal domain 
(NTD), which contains the catalytical tyrosine residue and 
topoisomerase/primase (TOPRIM) motif, and the shorter 
C-terminal domain (CTD) [25, 46]. Importantly, unlike 
other TopA homologues (but similarly to TopB enzymes), 
the actinobacterial TopA CTD lacks zinc finger motifs, 
which in E. coli TopA were shown to be responsible for 
binding single-stranded DNA [51]. The distinctive feature 
of the actinobacterial TopA CTD is the presence of multiple 
degenerate repeats enriched in lysine residues [lysine repeats 
(LRs)], which resemble sequences that are present in eukary-
otic histone H1 [25, 26, 52] (Fig. 1). Interestingly, sequence 
analyses identified LRs that were also in TopA homologues 
from Caulobacter crescentus and Bordetella pertussis, which, 
similarly to actinobacteria, possess GC-rich genomes (GC 
content 67 %) [26]. Nevertheless, Streptomyces TopA homo-
logues contain the longest (approximately 12 repeats within 
the 70 amino acid fragment) stretch of LRs among TopAs, 
which is followed by two conserved acidic amino acids [26]. 
In M. smegmatis, apart from the LRs at the C-terminus, two 
additional, shorter fragments rich in basic amino acids were 
also identified in TopA CTD [46]. Although partial crystal 
structure is available for M. tuberculosis TopA, it only deliv-
ered information on a fragment of CTD that did not include 
LRs, thus the structure of Streptomyces’ LR-rich fragment 
is based solely on prediction, which suggests the formation 
of an alpha helix [25, 53]. Interestingly, our search for LR 
motifs in Streptomyces’ proteome indicated that similar LRs 
are present in several DNA-binding proteins, i.e. sigma factor 
HrdB, DNA repair Ku protein or nucleoid-associated protein 

HupS (E. coli HU homologue) [21, 26]. In fact, the lysine-rich 
C-terminal domains of Ku protein and mycobacterial HupS 
homologue (HupB) were shown to be required for its interac-
tion with DNA [54, 55].

Although C-terminally truncated M. smegmatis TopA (NTD) 
was shown to bind, cut and religate DNA strands, it was not 
capable of promoting DNA relaxation. Like M. smegmatis’s 
truncated enzyme, S. coelicolor TopA NTD was demonstrated 
to be insufficient for supercoil removal [25, 56]. Notably, for 
both enzymes, M. smegmatis and S. coelicolor TopA, it was 
shown that CTDs and NTDs could be separated and mixed 
to restore enzyme activity, suggesting a direct interaction 
between these domains [26, 56]. M. smegmatis TopA with 
truncations of CTD exhibited diminished DNA binding 
and decreased DNA relaxation activity due to the impaired 
strand passage, which is a critical step of catalyzed reac-
tion. Thus CTD was demonstrated to provide an additional 
DNA-binding domain, performing a similar function to zinc 
finger motifs in E. coli [46]. Studies of S. coelicolor TopA–DNA 
binding showed that although the enzyme lacking LRs exhib-
ited high DNA-binding affinity, it was more likely to disas-
sociate from DNA [26]. Moreover, single-molecule analysis 
revealed that the processivity (the number of supercoils 
removed in one enzymatic burst) of the LR-truncated TopA 
decreased dramatically. However, in the case of S. coelicolor 
TopA, the velocity of reaction, calculated as the number of 
the supercoils removed per second, was unchanged by the 
LR truncation, suggesting that in Streptomyces TopA LRs 
are not involved in the reaction itself [26]. Consequently, it 
was suggested that the LRs in Streptomyces TopAs stabilize 
enzyme–DNA complexes during reactions [26]. The stability 
of the enzyme–DNA complex was hypothesized to result 
from the interaction between the NTD and CTD with LRs 
and terminal acidic amino acids potentially involved in the 
binding of NTD. Such an interaction is supposed to lead to 
the formation of a clamp around the DNA that ensures high 
TopA processivity [26].

What were the evolutionary pressures that selected for the 
unique properties in actinobacterial TopA and promoted 
the increased number of LRs in Streptomyces topoisomerase, 
conferring unusual enzyme processivity? Although the actin-
obacteria are a remarkably broad and varied group of bacteria, 
they all have GC-rich genomes. While LRs are a common 
feature of actinobacterial TopAs, their presence in the topoi-
somerases of other GC-rich bacteria and in other DNA-
binding proteins [26] suggests their particular significance 
for the stabilization of protein complexes on GC-rich DNA. 
This hypothesis raises the question of why GC-rich bacteria 
require increased stability of the TopA–DNA complex. For 
type I topoisomerases, the explanation may be their preference 
for ssDNA as a binding site [26, 57]. Since DNA unwinding in 
GC-rich genomes is limited and the binding sites for TopA are 
scarce, the increased TopA–DNA complex stability would be 
highly advantageous. However, a question that remains unan-
swered is why there are an increased number of LR motifs in 
Streptomyces TopA compared to other actinobacterial TopA 
homologues.
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Topological homeostasis in Streptomyces
The stabilization of the TopA–DNA complex may not be 
the only function of the enzyme unique CTD. We hypoth-
esize that the LRs positioned within CTD that increase the 
stability of the enzyme complex on DNA and its processivity 
are likely to be involved in regulation of the enzyme activity. 
Speculatively, the high number of LRs that could be modified 
to diminish the DNA binding might possibly allow the fine-
tuning of Streptomyces TopA processivity and enable the rapid 
control of chromosome supercoiling. This notion is supported 
by the fact that, while, in most bacteria, the major mechanism 
for chromosome supercoiling maintenance is based on the 
transcriptional regulation of the topA and gyrAB genes, in 
Streptomyces the transcriptional regulation of topoisomerase 
genes seems to be limited [58–60]. The sensitivity of Strep-
tomyces topoisomerase genes to topological changes differs 
from the transcriptional regulation observed in other bacteria, 
suggesting the presence of additional regulatory mechanisms.

The susceptibility of gyrase-encoding genes to supercoiling 
imbalance is highly conserved among bacteria, even though 
the gyrA and gyrB genes may be arranged as a single dicis-
tronic operon (M. smegmatis [61], S. coelicolor [62] and 
Borrelia burgdorferi [63]) or as the two separately tran-
scribed genes (E. coli [64] and Bacillus subtilis [65]). Similar 
to mycobacteria, the Streptomyces gyrA and gyrB genes are 
arranged in a tandem, with gyrB positioned upstream of gyrA, 
suggesting their potential dicistronic transcription, although 
the organization of their promoter region is unknown. In S. 
coelicolor, gyrBA transcription is stimulated by chromosome 
relaxation, which may result from the inhibition of gyrase 
with novobiocin (Fig. 2). Surprisingly, the S. coelicolor gyrBA 
operon is insensitive to the increased DNA supercoiling, 
which in other bacteria typically leads to the reduction of 
gyrase transcription [58, 59].

In contrast to relaxation-induced gyrase gene regulation, 
topA transcription is induced by increased supercoiling 
(Fig. 2). Importantly, chromosome relaxation resulting from 
gyrase inhibition only slightly affects topA transcription. 
This situation is different from the transcriptional regulation 
observed in the other bacteria, where topA transcription is 
decreased under such conditions [59, 66]. In E. coli, topA gene 

transcription is controlled by four promoters, the activities of 
which change at different growth stages as well as in response 
to stress conditions, e.g. heat shock. Moreover, at least three 
topA promoters in E. coli are sensitive to changes in the overall 
negative chromosome supercoiling [66]. In contrast to E. 
coli, the number of promoters controlling topA transcrip-
tion in actinobacteria is limited to only two. Whereas both 
M. smegmatis topA promoters are sensitive to supercoiling 
changes in S. coelicolor, only one of the two topA promoters 
(named topAp1) is sensitive to alterations in negative DNA 
supercoiling [58, 67]. A comparative analysis of the topAp1 
promoter revealed that its −10 and −35 nucleotide sequences 
resemble those recognized by the housekeeping sigma factor 
HrdB; however, the spacer region was much shorter (13 bp) 
than the typical 17–18 bp for hrdB-dependent promoters 
[68]. Interestingly, such a decrease in the sequence length 
of the spacer has been shown to be a common feature of 
supercoiling-sensitive promoters [66, 67, 69]. Thus, in actino-
bacteria, and particularly in Streptomyces, although they are 
more likely exposed to environmental factors that affect chro-
mosome supercoiling, the transcriptional regulation of TopA 
level appears to be surprisingly less complex than in E. coli. 
Moreover, the topA gene is constitutively transcribed during 
the entire S. coelicolor life cycle, suggesting the existence of 
different mechanisms of TopA activity regulation.

The circumstantial evidence suggests that the activity of 
TopA homologues may be regulated posttranslationally 
by direct interaction with other proteins or by reversible 
posttranslational modifications (PTMs) (Fig. 3). In various 
bacteria TopA activity can also be modulated by direct 
protein–protein interactions or by changes in DNA struc-
ture induced by DNA-binding proteins. For example, TopA 
activity was demonstrated to be affected by RecA in E. coli, 
while in M. smegmatis and S. coelicolor it is affected by the 
nucleoid-associated proteins HupB and sIHF, respectively, as 
well as by a component of a toxin–antitoxin system, MazF, 
in M. smegmatis [15, 70–74]. On the other hand, both E. coli 
and M. smegmatis TopA are recruited by RNA polymerase 
during transcription via a direct interaction mediated by their 
C-terminal domains, thus promoting TopA activity at specific 
chromosomal loci [75–77].

Fig. 2. Scheme of the regulation of chromosome supercoiling in S. coelicolor by modifications to topoisomerase gene transcription [58].
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Recent proteomic studies suggest that Streptomyces TopA may 
also be a target for a posttranslational modification called 
pupylation, which is the covalent attachment of prokaryotic 
ubiquitin-like protein (Pup) [78]. Pupylation is a PTM that 
is limited to actinobacteria and targets modified proteins 
for subsequent proteasome degradation [79]. Moreover, the 
activity of E. coli TopA was shown to be affected by revers-
ible lysine acetylation [72]. Importantly, this PTM was also 
identified in mycobacterial Ku and HupB proteins, in which 
stretches of lysine residues similar to the LRs present in TopA 
are targets for modification [80, 81]. The LR acetylation in the 
M. tuberculosis HupB CTD affects the HupB DNA binding 
[81, 82]. Moreover, modulation of HupB binding to DNA by 
acetylation/deacetylation was suggested to remodel the myco-
bacterial chromosome in response to changes in environ-
mental conditions or antibiotic treatments. Our preliminary 
studies suggest that the LRs in Streptomyces TopA are also 
the likely targets for lysine acetylation (M. Szafran, unpub-
lished). Thus, we speculate that since the high processivity of 
actinobacterial TopA is dependent on LRs in the C-terminal 
domain, the protein–protein interactions or PTMs that 
occur within CTD may constitute a regulatory mechanism 
that could fine tune enzyme processivity in response to 
physiological demands or environmental conditions. Since 
Streptomyces are exposed to a variety of stress factors that may 
affect chromosome topology and require a rapid response, 
and because the transcriptional regulation of their topoi-
somerase genes is limited, the other mechanisms are likely to 

modulate TopA activity. The idea that TopA activity is subject 
to regulation by posttranscriptional or interaction with other 
proteins is reinforced by its presence at a constant level during 
Streptomyces’ complex life cycle.

Requirement for TopA during Streptomyces’ life 
cycle
During Streptomyces sporulation their chromosomes 
undergo profound changes of topology, from being visibly 
uncondensed in hyphal cells to highly compacted in spores 
[9, 19, 20]. Chromosome compaction was shown to be 
assisted by condensin (SMC) and nucleoid-associated 
proteins, namely, the sporulation-specific HU homologues 
HupS, sIHF and DpsA [15, 21, 23, 83]. Analysis of S. coelicolor 
and S. venezuelae TopA-depleted strains showed that sporula-
tion also requires TopA activity. Severe depletion of TopA 
not only slowed Streptomyces growth, but also led to a ‘white’ 
phenotype (indicating the absence of pigmented spores) and 
inhibition of sporulation cell division [14, 84]. Interestingly, 
lowering TopA processivity did not disturb growth rate but 
rather delayed the formation of spores and affected the length 
of spore chains [26]. This result shows that although the level 
of TopA appears to be constant throughout the life cycle [58], 
sporulation requires increased TopA processivity.

The rapid extension of aerial hyphae at the onset of sporula-
tion is accompanied by intensive chromosome replication. 
Tens of chromosome are required in the elongated hyphal 

Fig. 3. Scheme of S. coelicolor TopA domains with important catalytic and putative regulatory residues and regions indicated. The black 
arrows indicate the conserved topoisomerase I features, the grey arrows indicate characteristic actinobacterial features and the blue 
arrows indicate S. coelicolor TopA-specific features, *** indicates possibly conserved in Mycobacteria and the white arrows refer to TopA 
CTD protein–protein interactions identified in M. tuberculosis (*) or M. smegmatis (**); see the detailed description in the text.
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cell to produce a chain of unigenomic spores, generated by 
synchronized multiple divisions [8, 85, 86] (Fig. 4). The short-
ened spore chains produced by an S. coelicolor strain with an 
LR-truncated TopA suggest that intensive chromosome repli-
cation requires particularly high TopA processivity. Before 
aerial hyphae septation, chromosomes are evenly distributed 
along the hyphal cell by the segregation proteins ParA and 
ParB [19, 87, 88]. As in other bacterial species that use ParABS 
system for chromosome segregation, the ParB protein in 
Streptomyces forms segregation complexes (segrosomes) by 
interacting with numerous DNA sequences called parS sites, 
which are located in proximity to the chromosomal origin 
of replication (oriC) [88]. Remarkably, the distribution and 
separation of the ParB complexes in Streptomyces sporogenic 
hyphae were found to be impaired by TopA depletion [14, 89]. 
Taking into account the fact that the S. coelicolor chromosome 
contains an unusually high number of parS sites and ParB 
binding was shown to lead to bridging of distant binding sites, 
we hypothesize that segrosome formation generates topolog-
ical tension. Consequently, to enable segrosome separation, 
this topological tension must be released by TopA [14, 84]. 
The recruitment of TopA to ParB complexes may be the 
mechanism by which TopA activity is stimulated, although 
a direct interaction between TopA and ParB has not been 
detected. The proposed explanation for the observed inhi-
bition of sporogenic cell division in a TopA-depleted strain 
may be at least partially due to unsegregated chromosomes. 
This would indicate the existence of a nucleoid occlusion-like 
mechanism, which has been previously reported for several 
bacterial species (e.g. B. subtilis and E. coli) [84, 87, 90–92]. 
However, another possible explanation for the impact of TopA 
depletion on cell division may be changes in the transcription 
of supercoiling-sensitive genes (SSGs).

In S. coelicolor, as in other bacterial species (E. coli, Strepto-
coccus pneumoniae and Haemophilus influenzae), chromo-
some supercoiling has been shown to function as a global 
transcriptional regulator [16, 93–95]. The changes in chromo-
some supercoiling induced by either gyrase or TopA inhibi-
tion affects a substantial fraction of genes (7–37 %), which 
varies among species and assay conditions. Nevertheless, sets 
of SSGs consistently include those encoding topoisomerases 
and other proteins involved in DNA transactions [96]. In 
Streptomyces, changes in chromosome supercoiling in a 

TopA-depleted strain have a profound effect on global gene 
expression, including sporulation specific regulators such 
as whiG (but not ftsZ, as reported for mycobacteria) and 
genes encoding DNA repair proteins [16]. Interestingly, in 
S. coelicolor, the impact of DNA supercoiling on global gene 
transcription also encompasses genes involved in secondary 
metabolite production. TopA depletion was observed to affect 
the transcription of a large number of genes encoding regula-
tory protein, which may explain the high overproduction of 
actinorhodin observed in a TopA-depleted strain [14, 16]. On 
the other hand, the rapid chromosome relaxation in S. coeli-
color results in the induction of several secondary metabolite 
gene clusters, including those involved in the synthesis of 
coelibactin, as well as the induction of the actII-4-encoding 
actinorhodin cluster activation protein [16]. These observa-
tions suggest that manipulation of DNA supercoiling may 
potentially be used to induce secondary metabolite produc-
tion in Streptomyces, although the mechanisms by which 
changes in DNA topology affect secondary metabolism have 
not yet been fully explored.

Concluding remarks
Actinobacteria have primarily been studied with respect 
to M. tuberculosis pathogenicity and secondary metabolite 
production by Streptomyces. Recently, mycobacterial unique 
topoisomerase I has attracted attention due to its potential 
use as a target for novel anti-tuberculosis antibiotics, while 
its Streptomyces homologue was shown to be required for the 
progression of the cell cycle and to be involved in global gene 
regulation [14, 16, 44].

The high enzyme processivity of actinobacterial TopA 
homologues is believed to be conferred by the LR-enriched 
C-terminal domain via stabilization of the enzyme–DNA 
complex. This increased complex stability appears to be advan-
tageous for GC-rich organisms. The elongated C-terminal 
domains containing LRs are a hallmark of actinobacterial 
TopAs, although the Streptomyces TopA CTD contains more 
LRs than its homologues in other Actinobacteria. One possible 
reason why Streptomyces TopA may require an increased 
number of LRs and enhanced processivity is that it has a 
complex life cycle that demands the processing of multiple 
copies of chromosomes, especially during sporulation. The 

Fig. 4. Stages of the S. coelicolor life cycle affected by modifications in the level and processivity of TopA
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formation of segregation complexes by ParB was suggested to 
generate the topological tension that is presumably relieved 
by the recruitment of TopA. However, the constitutive level of 
TopA expression observed during the S. coelicolor differentia-
tion reinforces the potential involvement of posttranslational 
regulation via PTMs or direct protein–protein interactions. 
Such regulation could be beneficial during changes in chro-
mosome topology and during the complex life cycle, as well 
as in response to environmental stress.

The rapid changes in chromosome topology impact on 
global gene transcription, potentially indicating that 
targeted changes in chromosome supercoiling may be used 
to optimize secondary metabolite production. However, 
the industrial application of supercoiling-modified strains 
requires a better understanding of the complex mechanisms 
that restore and maintain the optimal level of chromosome 
supercoiling.
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