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Abstract: Negative Poisson’s ratio materials (called auxetics) reshape our centuries-long understand-
ing of the elastic properties of materials. Their vast set of potential applications drives us to search for
auxetic properties in real systems and to create new materials with those properties. One of the ways
to achieve the latter is to modify the elastic properties of existing materials. Studying the impact of
inclusions in a crystalline lattice on macroscopic elastic properties is one of such possibilities. This
article presents computer studies of elastic properties of f.c.c. hard sphere crystals with structural
modifications. The studies were performed with numerical methods, using Monte Carlo simulations.
Inclusions take the form of periodic arrays of nanochannels filled by hard spheres of another diameter.
The resulting system is made up of two types of particles that differ in size. Two different layouts of
mutually orthogonal nanochannels are considered. It is shown that with careful choice of inclusions,
not only can one impact elastic properties by eliminating auxetic properties while maintaining the
effective cubic symmetry, but also one can control the anisotropy of the cubic system.

Keywords: auxetics; negative Poisson’s ratio; nanolayers; hard sphere inclusions; Monte Carlo
simulations

1. Introduction

Negative Poisson’s ratio (PR) [1] materials, or auxetics [2], as they are commonly
referred to, are a relatively new class of materials exhibiting unusual elastic properties.
The phenomena occurring inside their structure are responsible for their radically different
deformation mechanisms during bending or stretching [3]. The ever growing interest in
auxetics was sparked by the early theoretical [4–7] and experimental [8] studies performed
in the 1980s. This interest is motivated by the vast potential applications [9–12] of materials
that expand their transverse dimensions when stretched longitudinally (to point only one
highly characteristic feature [13]). Since their discovery, auxetics have been extensively stud-
ied both theoretically [14–18] by computer simulations [19–21] and experimentally [22–24].
Auxetic properties, i.e., the existence of negative PR in at least some crystallographic di-
rections (such materials are called partial auxetics [25]), were reported not only in model
structures [13,26–29], but also in real cubic materials [30], polymers [31,32], composites [33],
and foams [34,35]. Today, novel structures [36,37], nanostructures [38], and metamateri-
als [39–41] with auxetic properties are being developed. This would not have been possible
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without extensive theoretical studies in the form of basic research [42–44] or analysis and
optimizations [45,46] of novel auxetic model structures and metamaterials. The study of
materials with inclusions at the structural level is one of the possible directions of such
optimizations [47–51].

Recently, inclusions in the form of periodic arrays of channels [49], layers [50], or their
combination [51] on elastic properties of hard sphere face centered cubic (f.c.c.) crystal, have
been investigated. The inclusions were formed by hard spheres with diameters different
from the remaining particles of the crystal. It was shown that inclusions significantly
impact the symmetry and elastic properties of the f.c.c. crystal. However, under the same
thermodynamic conditions, different forms of inclusions exert extremely different effects on
elastic properties. The inclusion in the form of an array of nanochannels oriented in [001]-
direction filled by particles with larger diameters resulted in a significant enhancement of
auxetic properties (e.g., PR in [111][112̄]-direction decreased from 0.065 to −0.365, and the
minimal value of PR decreased to −0.873 [49]), while the inclusion of similar particles
forming nanolayers orthogonal to the [001]-direction showed only a slight enhancement
of auxetic properties [50]. A surprising effect has been discovered while studying the
effects of hybrid (joined) nanolayer and nanochannel inclusions in one system [51]. It
was found that inclusion in such a form completely eliminated auxetic properties of the
system. Since the negative value of PR is one of the characteristic features of most cubic
systems [30], such a strong impact on the elastic properties of the f.c.c. crystal was not
expected. In all three described cases, the introduced inclusions were also responsible for
the change in symmetry from cubic to tetragonal one (the 422 symmetry class [52]). That
research showed not only that adding the inclusions constitute a method for modifying the
elastic properties of crystal systems, but more importantly that the shape and orientation of
the inclusions play an important role in the final elastic properties, and also that the role is
hard to predict. Thus, in this paper we study a triple inclusion in the form of nanochannels,
but in different (mutually orthogonal) orientations.

Although this work is a purely theoretical research, there are techniques that po-
tentially could be used to produce real systems similar to the models presented. One
of such techniques is the ion implantation, a process that is widely used in many areas,
e.g., semiconductor device fabrication or materials sciences in general [53,54]. It has re-
cently been shown that implanting nitrogen ions into a cemented tungsten carbide guide
pads for deep-hole drilling applications can substantially increase their hardness and
durability [55]. These are also characteristic features of auxetic materials; however, the com-
plicated mechanisms behind the changes of tribological, mechanical, and elastic properties
of ion-implanted materials are not yet fully understood and explained. Thus, the lack of
a theory describing these changes leaves the utility of this technique to produce auxetic
materials an open question.

The structure of the paper is as follows: the most important aspects of the studied
model are described in the following Section 2. In Section 3, essential information regarding
elastic properties in the isobaric-isothermal ensemble are briefly described, and the details
of computer simulations are provided. The results of the study and their discussion are
placed in Section 4, followed by the last Section 5 that contains summary and conclusions.

2. The Model

The basis structure for the model, considered in this work, is the f.c.c. crystal of N
hard spheres. Thus, the interaction between particles is of the form:

βuij =

{
∞, rij < σij,
0 , rij ≥ σij.

(1)

where rij is the distance between the centers of the interacting spheres i and j,
σij = (σi + σj)/2, with σi, σj being the diameters of the respective spheres, β = 1/(kBT),
kB [J/K] is the Boltzmann constant, and T [K] is the temperature. Despite its simplicity
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the hard sphere (HS) potential is one of the fundamental interactions in liquid theory [56]
and condensed matter physics [57], especially in regard to soft matter systems, e.g., liquid
crystalline phases and colloids [57]. The HS system provides a very good insight into
effects resulting from the relative particle dimensions. It constitutes the simplest approx-
imation which includes short-range correlations originating from the excluded volume
effects [57–59], and it is the simplest model that can exhibit melting. Moreover, the HS
interaction allows one to mimic many of the properties of real systems, in this case most
importantly, the existence of the negative PR [49–51,60].

The f.c.c. system, where all N particles have the same diameters equal to σ (which
constitutes the unit of length), was modified by an arbitrary selection and replacement of
the Ninc spheres with spheres with different diameters σ′ 6= σ. The clusters of replaced
spheres are regarded as an inclusion implanted into the f.c.c. crystal (constituting the
matrix for an inclusion). In this work, the inclusions are in the form of three nanochannels
with mutually orthogonal layout. The concentration c = Ninc/N of the included particles
depends on the selected size of the system N = 4Nx NyNz (where Nα are the numbers of
unit cells of f.c.c. crystal in the respective directions), as well as on the diameter of the
nanochannels and their layout in space.

An array of nanochannels is introduced into the structure with designated orientation
axis, its diameter, and a position in the model. In Figure 1, a single nanochannel is presented.
The channel axis is oriented in the [010]-direction. The circles on the left illustrate the
channel diameter. The inner circle (red) with diameter equal to 2σ, corresponds to the
smaller channel, including particles placed on the axis and their nearest neighbors, also
colored red. The outer (yellow) circle corresponds to the channel with diameter of 2

√
2σ,

containing all the red particles, plus the second nearest neighbors to the on-axis spheres,
colored yellow. Due to the diamond-like and square-like shapes of the cross-section of the
smaller and bigger nanochannels, we will refer to them as D-type and S-type, respectively,
(as introduced in [61]). The diameter of the nanochannel can be arbitrarily increased to
include particles in consecutive coordination zones; however, in this work we restrict
ourselves to study only the two indicated sizes.

Figure 1. Illustration of two channels sizes studied in this work. Depending on the desired diameters
(colored circles), the smaller channel incorporates the on-axis particles and their nearest neighbors
(D-type), marked in red. The larger channel (S-type) contains all the D-type particles plus the particles
from the second coordination zone around the channel axis, colored yellow. The yellow color has
been used only to highlight the differences between the two channel sizes. The circles represent the
diameters of the corresponding coordination zones. Inserts on the left and right present the D-type
and S-type channels, respectively, viewed from the y-direction (along the channels’ axis). For clarity,
part of the green (matrix) spheres located outside the channel have been removed from the image.

As mentioned above, the studied systems feature triple channel inclusions. The
nanochannels are mutually orthogonal and oriented in [100], [010], and [001]-directions.
There are several possible combinations as to how the three channels can be arranged in 3D
space. In this work, we selected two border cases where (i) all the channels are crossing
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each other and (ii) the channels are separated by matrix particles and do not come into
direct contact. In Figure 2, both channel layouts are presented, along with additional views
for full information on different arrangement of nanochannels. Detailed data on inclusions
in both layouts and sizes are given in Table 1. The layouts in the D-type variants have
been illustrated in Figure 3, where they have additionally been doubled in each direction.
The cylindrical translusive red shape marks the D-type nanochannel. After selected layouts
of nanochannels are introduced into the f.c.c. model, the latter can be regarded as periodic
repetitions of a single supercell. In the following part of this article, we will refer to the
modification described simply as “the inclusion”.

Figure 2. Illustration of the two different channel layouts (a) crossing nanochannels and (b) separate
nanochannels. The included inserts present projections from the indicated directions for a precise
presentation of the channel layouts. The yellow color has been used only to highlight the differences
between the D-type and S-type channels. The green dots represent the matrix spheres located outside
the nanochannels.
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Figure 3. Illustration of different channel layouts studied on the basis of a 6× 6× 6 f.c.c. supercell
periodically doubled in each direction. The left part of the image shows the layout with nanochannels
crossing each other. The right part presents the layout with separate nanochannels. The radii of the
nanochannels are equal to σ (D-type channels). The matrix particles (green spheres) were intentionally
reduced in size to show the structure of the inclusions.

Table 1. Detailed number of particles in nanochannels of different sizes and layouts. Differences
between layouts are due to the number of shared particles in the crossing channels. The values vary
with the total number of particles. The values presented are for the system of N = 864 particles,
which corresponds to 6× 6× 6 f.c.c. cells.

Crossing Channels Separate Channels

Label Diameter [σ] Ninc c [%] Ninc c [%]

D-type 2 76 8.8 90 10.42
S-type 2

√
2 136 15.74 162 18.75

The described models were studied under periodic boundary conditions. Results
obtained for the periodic box containing the single supercell agreed, within the limit of
an experimental error, with simulations of periodic box containing systems: doubled
in one selected x-, y-, or z-direction (doubled supercell), doubled in any two directions
(quadrupled supercell), and doubled in all three directions (octupled supercell) [50]. Thus,
it was reasonable to simulate single supercells.

3. The Method
3.1. Theory

To calculate the elastic properties of the described models, computer simulations based
on the idea of Parrinello and Rahman [62,63] were performed. The idea was implemented
using the Monte Carlo (MC) method in the isobaric-isothermal ensemble (NpT) [58,64].
It allows one to calculate the complete elastic compliance tensor S of 21 elements from
observations of shape fluctuations of a sample placed in the periodic box. All Sαβγδ elements
are obtained from these shape fluctuations by calculating the strain tensor ε for the system
under dimensionless pressure p∗ = pβσ3 as [58,63]:

ε =
1
2

(
h−1

p .h.h.h−1
p − I

)
, (2)

where I is a unit matrix, h is a symmetric matrix formed by vectors defining the edges of
a periodic parallelepiped, and hp is the reference matrix, i.e., the average value of the h
matrix at equilibrium under dimensionless pressure p∗, hp ≡ 〈h〉. It is worth noting that
in the case of the systems studied in this work, the periodic box typically contains a unit
supercell and the box matrix h defines its shape. The advantage of this approach is that it
allows the unit cell to optimize the shape and size under arbitrary applied thermodynamic
conditions. The symmetry of the h matrix allows one to avoid rotations of the system
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during simulation. In the next step, the elastic compliance tensor elements are related to
the strain tensor components by the formula [58]:

Sαβγδ = βVp
〈
∆εαβ∆εγδ

〉
, (3)

where Vp = |det(hp)| is the volume of the system at the dimensionless pressure p∗,
∆εαβ = εαβ − 〈εαβ〉, 〈εαβ〉 is the average in the NpT ensemble, and α, β, γ, δ = x, y or z.
An expression for PR based on the knowledge of the elastic compliance tensor can be given
in a general form [65]:

νnm = −mαmβSαβγδnγnδ

nζ nηSζηκλnκnλ
. (4)

It can be seen from the above formula that the PR depends on the choice of two
mutually orthogonal directions (represented as unit vectors): the one in which the external
stress is applied (represented by the~n vector), and the other in which PR is measured (~m).
The Einstein summation convention is used on Greek indexes. For the sake of clarity, in the
remaining part of the manuscript, we express the Sαβγδ tensor elements with the elastic
compliance matrix Sij elements using the Voigt representation [52]. The Latin indices for
the Sij elements of this symmetric square matrix take the values i, j = 1, . . . , 6. It should
also be stressed that all calculations in this work concern infinitesimally small deformations
(strains). In other cases, a different approach should be used, e.g., the one described in [4].
Such a case is outside the scope of this research. Further details on the applied method and
calculations of the elastic properties are provided in previous articles [50,51].

3.2. Simulations

The research was carried out using numerical methods. The MC simulations were per-
formed in the NpT ensemble. The size of the considered supercell matched 6× 6× 6 f.c.c.
cells, thus containing N = 864 spheres. The number of particles forming the inclusion
varied depending on its size and layout, and is summarized in Table 1. The studied systems
were subjected to dimensionless pressure p∗ = 50, 100, 250, and 1250. The values of
σ′/σ ranged between 0.95 and (depending on the pressure) 1.1. Twenty five independent
simulation runs were performed for each value of σ′/σ and p∗. Each simulation took at
least 107 MC cycles, from which the first 106 was treated as the period in which the system
reaches thermodynamic equilibrium and rejected from calculations. The remaining details
of the computer simulations can be found in [51], and references therein.

4. Results and Discussion

Early studies showed that periodic arrays of nanochannel inclusions of particles
with increased diameters, introduced in one of the principal crystallographic directions
(e.g., [001]), substantially decrease the PR, thus improving the auxetic properties of such
systems [49]. Later studies showed that, when nanochannels are combined with nanolayer
inclusions (oriented orthogonally to the channel axis), increasing diameters of inclusion
particles has the opposite effect. Such a hybrid inclusion completely removes the auxetic
properties from the system [51]. This indicates that not only the size of the inclusion
particles, but also the form of the inclusion, is one of the key factors influencing the elastic
properties of the model. Moreover, such nanochannels, nanolayers, or their combination
induced the change of the systems’ symmetry from cubic to tetragonal (422 symmetry
class [52]). In this regard, it is interesting to test the changes exerted on elastic properties
with a nanochannel inclusion designed to preserve the (effective) cubic symmetry of
the system.

For this reason, we designed inclusions based on three nanochannels oriented along
three main crystallographic directions: [100], [010], and [001]. There are several ways
in which one can arrange three orthogonal nanochannels in space. We consider two
border cases: (i) crossing nanochannels and (ii) separate nanochannels. Two sizes of the
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nanochannels were studied. All systems were subjected to four different values of external
reduced pressure p∗.

In Figure 4, the data concerning the shapes of the studied systems are presented.
Elements of the box matrix hp for all studied systems and pressures are plotted with respect
to the ratio σ′/σ (the data corresponding to systems under different values of external
pressure are indicated with different colors). The three diagonal components were plotted,
with different symbols, on subfigures in row (a)—it can be seen that they all follow the
same curve for the corresponding pressures. Apart from the fact that the volume of systems
with separate channels is slightly higher (at most ≈ 0.5%) compared to the models with
crossing channels (due to increased Ninc), all the systems exhibit similar behavior—they
preserve cubic shape. It is worth stressing that, in contrast to the crossing nanochannels,
the separate nanochannel systems do not have cubic symmetry (due to the missing 4-
fold symmetry axis). Thus, it was not obvious that they would preserve the perfectly
cubic shape. The ratios of h22/h11 and h33/h11 are equal to 1 for all the cases studied,
and the off-diagonal hp components are five orders of magnitude less than their diagonal
counterparts, thus, considered zero (row (b) of Figure 4). Row (c) of Figure 4 presents the
relations of hii components between different studied system variants. Namely, (from the
left) the relation between sizes of nanochannels in the same layouts, (i) crossing and (ii)
separate nanochannels (first two plots) and the relations between the two layouts of the
same size, (i) D-type and (ii) S-type systems (3rd and 4th plots). Subfigures corresponding
to cases (i) and (ii) present expected behavior where, along with an increase of σ′/σ,
wider S-type nanochannels extend the systems to higher values of hii than D-type systems
(regardless of the channel layout). A similar effect is observed for cases (iii) and (iv),
where the size of the systems with different channel layouts is compared for the same
channel diameter. The separate nanochannel layout systems extend more due to the higher
number of Ninc particles they contain. The differences in hii grow along with the increase
of channel diameter.

To confirm the symmetry of the system, one has to examine the matrixes of the
elastic compliance S or elastic constants B. The former were determined by the MC
simulations, from the fluctuations of the shape of periodic box (h), while the latter are
simply related to S (for details see Equation (7) in [58]). Both arepresented in Figures 5 and 6
for crossing and separate channels, respectively. The values of S (left part) and B (right
part)were organized in columns corresponding to different channel sizes D-type and S-
type. Subfigures for increasing pressures were placed in descending rows. In both cases,
the crossing nanochannels (Figure 5) and the separate nanochannels (Figure 6), we can see
that all the required relations between matrix elements (X11 = X22 = X33, X44 = X55 = X66,
X12 = X13 = X23 and all the other elements equal to zero, where X stands for S or B) are
met for both matrixes. Thus, all the studied systems with inclusions exhibit effective cubic
symmetry. However, it should be stressed again that the systems with separate channels
and with σ′/σ 6= 1 are not cubic, due to the missing 4-fold symmetry axis.

One can see that in the case of separate channels (Figure 6) the values of elastic
compliances increase substantially with the increase of σ′/σ (an increase of diameters of
channel spheres). It is clear that this difference cannot be attributed to the difference in
concentrations, c, between both layouts, as the differences in c are just too small. Moreover,
the c value for S-type channels in the crossing layout is higher than the c value of D-type
systems with separate channels (see Table 1).
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Figure 4. Box matrix components hij for all the systems studied, plotted with respect to the scaling
factor σ′/σ (row a), off-diagonal components divided by h11 (row b). Row (c) presents the ratios of
the diagonal components of the box matrix h∗ii = hX

ii /hY
ii from the left: X, Y are D-type and S-type,

respectively, for (i) crossing “Cr” and (ii) separate “Sep” nanochannels, and X, Y are crossing and
separate nanochannels, respectively, for (iii) D-type and (iv) S-type systems. Data for different values
of reduced external pressure p∗ are colored. In the case of figures (a,c), the simulation errors of the
values are below 0.1% and the are considerably smaller than the symbols representing them. In the
case of figures (b), the zero value is within the error bars.

The PR can be calculated based on either of the above (S or B) matrixes, but here we
present the formulas for the PR for cubic symmetry expressed in terms of the B11, B12 and
B44 elastic constants, for the main, isotropic ([100], [111]) [66]:

ν[100] =
B12

B11 + B12
, (5)

ν[111] =
B11 + 2B12 − 2B44

2(B11 + 2B12 + B44)
, (6)

and anisotropic ([110]) crystallographic directions [66]:

ν[110][11̄0] =
B2

11 − 2B2
12 + B11(B12 − 2B44)

B2
11 − 2B2

12 + B11(B12 + 2B44)
, (7)

ν[110][001] =
4B12B44

B2
11 − 2B2

12 + B11(B12 + 2B44)
. (8)
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Figure 5. Components of the elastic compliance matrix S (left) and matrix of elastic constants B
(right) for systems with crossing D-type and S-type nanochannels. Corresponding values of reduced
external pressure p∗ are indicated in the figure. The simulation errors of the values are below 3% and
they are considerably smaller than the symbols representing them. The quantities represented by
cross and plus symbols (x and +) are equal to zero within the computational error.

Figure 6. Components of the elastic compliance matrix S (left) and matrix of elastic constants B
(right) for systems with separate D-type and S-type nanochannels. Corresponding values of reduced
external pressure p∗ have been indicated in the figure. The simulation errors of the values are below
3% and they are considerably smaller than the symbols representing them. The quantities represented
by cross and plus symbols (x and +) are equal to zero within the computational error.

To examine the impact of inclusions on PR of the studied systems, we begin the analysis
by plotting the averaged PR in selected (main) crystallographic directions, described by
Equations (5) and (6), and the average of ν[110]. Figures 7 and 8 (for crossing and separate
nanochannel systems, respectively) present these PRs with~n-direction set as: [100], [110],
and [111] (organized in respective columns). The values are averaged over all possible
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~m-directions, and arranged in rows corresponding to the respective nanochannel sizes,
D-type (top) and S-type (bottom)—also indicated by the miniature structure inserts. One
can see that changing the value of inclusion sphere diameters is always accompanied by an
increase of the average PR. This increase is more dominant when σ′/σ > 1, especially in
the case of separate nanochannels (Figure 8), where at higher pressures PR approaches 1/2
(the limit for 3D isotropic systems). The external pressure p, indicated in different colors, is
also responsible for the increase of average PR, especially for separate channel layouts.

Figure 7. PR for selected~n-directions, indicated in the top right of their respective columns, averaged
over all possible ~m-directions. Different symbols (circles, triangles, and squares) correspond to
PR in the directions [100], [110], and [111], respectively. The figure contains data for models with
crossing nanochannels. Plots for the respective size of the nanochannel have been arranged in rows,
as indicated by the miniature structure inserts. The values of the reduced external pressure p∗ have
been indicated in colors.

Figure 8. PR for selected~n-directions, indicated in the top left of their respective columns, averaged
over all possible ~m-directions. Different symbols (circles, triangles, and squares) correspond to
PR in the direction [100], [110], and [111], respectively. The figure contains data for models with
separate nanochannels. Plots for the respective size of the nanochannel have been arranged in rows,
as indicated by the miniature structure inserts. The values of the reduced external pressure p∗ have
been indicated in colors.

The average PR is good for an initial assessment of effects an inclusion exerted on the
system. However, it does not provide the reader with the necessary insight into the changes
in elastic properties. Thus, one should examine the changes in extreme values of PR caused
by changing values of inclusions’ sphere diameters. Figures 9 and 10 present maximal and
minimal PRs found for any pair of (~n, ~m)-directions in all the studied models. The maximal
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and minimal values are represented by circles and squares, respectively. As with previous
plots, different values of the reduced external pressure p∗ are indicated by different colors.
To find the global extreme of the PR, the studied systems were sampled in 106 different
~n-directions. As could be expected for cubic systems, presented extremes correspond
to [110]-direction, or equivalent (e.g., [11̄0], [101], [011], etc). One can see that typically
maximal PR increases, especially with increasing values of the inclusion sphere diameters.
With the exception of S-type nanochannels in separate layout (Figure 10b), the maximal
PR reaches values around 0.6. A notable difference between channel layouts can be seen
in minimal PR. In the case of crossing channels, the minimal (negative) PR increases only
slightly and approaches 0, whereas in the case of separate nanochannels the minimal PR
becomes positive. The increase is faster at higher pressures. It is worth noting that all
possible PR values, at a given σ′/σ, lie between the plotted curves for the given pressure.
Thus, one can see that the models of separate D-type nanochannels exhibit the most narrow
range of possible PR values. This range narrows along with an increase of σ′/σ and p∗.
Another important note is that models with separate nanochannels effectively eliminate
auxeticity from the system. This stands in contrast to single nanochannel inclusion that
greatly enhances auxetic properties [49]. In the studied case of separate nanochannel
systems, PR turns positive when σ′/σ > 1.045 (σ′/σ > 1.055 for S-type channels) under
p∗ = 50. This threshold lowers along with the increasing pressure, and drops to σ′/σ > 1.02
(σ′/σ > 1.025 for S-type channels) under p∗ = 100 and to σ′/σ > 1.01 for p∗ = 250 (for
both channel sizes). In the case of the highest studied value of pressure (p∗ = 1250),
every studied system for σ′/σ > 1 is non-auxetic. A similar effect of canceling the auxetic
properties of the system was observed earlier in hybrids of layer and channel inclusions [51],
but the effect was also accompanied by the change of system’s symmetry from cubic to
tetragonal. In the case of current, three-channel inclusion, we observe a complete lack of
auxetic properties while preserving the effective cubic symmetry. Thus, cubic-like systems
can be obtained without one of the characteristic features of most cubic systems [30], namely
the negative value of PR in the [110][11̄0]-direction.

−0.2

0

0.2

0.4

0.6

0.8

0.95 0.975 1 1.025 1.05 1.075 1.1

p∗ = 50
p∗ = 100
p∗ = 250
p∗ = 1250

ν e
x
tr
em

e

σ′/σ

−0.2

0

0.2

0.4

0.6

0.8

0.95 0.975 1 1.025 1.05 1.075 1.1

ν e
x
tr
em

e

σ′/σ

νmax
νmin

(a) (b)

Figure 9. Extreme PR values for systems with (a) D-type and (b) S-type crossing nanochannels,
plotted with respect to scaling factor σ′/σ. Values for maximal and minimal PR have been marked
with sphere and square symbols, respectively. Results obtained for different values of the reduced
external pressure p∗ have been indicated in colors.

Another thing to note is that for separate nanochannel systems, the values of average
PR (presented in Figure 8) in the three presented directions are very close (for high values
of σ′/σ). One might have the impression that the value of averaged PR does not depend
on the choice of the (loading)~n-direction, meaning that the system becomes (on average)
elastically isotropic. To verify this, we must examine whether the relation required for
isotropic systems if fulfilled:

B44 =
1
2
(B11 − B12). (9)
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Figure 10. Extreme PR values for systems with (a) D-type and (b) S-type separate nanochannels,
plotted with respect to scaling factor σ′/σ. Values for maximal and minimal PR are marked with
sphere and square symbols, respectively. Results obtained for different values of the reduced external
pressure p∗ have been indicated in colors.

Figure 11 shows that the impact on the anisotropy of the system is qualitatively differ-
ent for both crossing (Figure 11a) and separate (Figure 11b) inclusion layouts. The plots
indicate that the crossing nanochannel systems are less isotropic when σ′/σ 6= 1. In the case
of separate nanochannels, numerical data show that increasing the diameters of channel
particles significantly reduces the anisotropy of the D-type system (Figure 11b). However,
the inserts in Figure 11, which present the average PR plotted in spherical coordinate
system for the highest presented values of σ′/σ, for each system and each pressure, show
that even for S-type channels in the separate channel layout an average PR does not de-
pend (considerably) on~n-direction, especially at higher pressures. It can be seen that it is
almost a perfect sphere for the case of separate nanochannel systems at p∗ = 250 and 1250,
whereas the crossing nanochannel systems exhibit anisotropic behavior, characteristic to
monodisperse systems with hard spheres.

Figure 11. Calculated relative isotropy criterion (Equation (9)) for studied systems with (a) crossing
and (b) separate nanochannel inclusions. The inserts present the average PR, plotted in the spherical
coordinate system, for, respectively, the marked values of σ′/σ (corresponding to the maximal studied
values of σ′/σ), for all systems studied and under all pressures (indicated in colors). The open and
closed symbols correspond to the D-type and S-type systems, respectively.
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However, it should be noted that Figure 11 can be misleading. One could expect that
systems with anisotropy parameters closer to 1 are more isotropic. As one can see, this
is not the case for separate S-type nanochannel systems. The reason for the difference in
isotropy of different systems is explained in Figure 12. PR has been plotted as a function of
the ~m-direction (here parametrized by an angle α), for the three previously discussed cases
of the applied strain directions. The data are presented for systems at pressure p∗ = 250
and the highest σ′/σ value that is common both D-type and S-type systems, respectively,
for a given layout. As expected, for cubic symmetry, the directions [111] and [100] are
isotropic (the PR value does not depend on α), whereas the [110]-direction depends on the
choice of the measurement direction (~m). The presented values can be easily calculated
based on the knowledge of the elastic constants B11, B12 and B44, using Equations (5)–(8).
The last two formulas correspond to minimal and maximal values of the ν[110] curves,
respectively, in Figure 12. One can see that the data for crossing channels are qualitatively
the same as in the case of regular, monodisperse system. Introduced D-type and S-type
inclusions merely increased the values of presented PRs and changed the amplitude of
ν[110], compared to the system without inclusions. On the other hand, one can see that
the average PR in the [110]-direction for the separate nanochannel system is very close to
the remaining two, as opposed to the pristine cubic and crossing nanochannel systems.
In the case of the D-type system it differs only by 0.4%. For the presented case, the values
of the average νnm are equal to 0.486, 0.484 and 0.483 for [100], [110], and [111] directions,
respectively. It would seem that PR could be considered to be an indicator of the system’s
anisotropy. Figures 11 and 12 show that this is not the case for the average PR. The 3D plots
show almost identical sphere-like shapes obtained for systems with anisotropy parameter
equal to 0.4 and 0.8.

Figure 12. PR as a function of an angle α (designating ~m-direction), plotted when loading is applied
in the main crystallographic directions (indicated in different colors) for the systems studied at a
reduced external pressure p∗ = 250 and common maximal σ′/σ values for D-type and S-type systems,
respectively. The values can be easily compared to a monodisperse system without inclusions (at
the top).
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To further aid in the visualization of the elastic properties of studied models, the data
from Figure 12 have been extended to include more than the three main crystallographic
directions. Figure 13 presents data for systems at p∗ = 250, namely the minimum and
maximum PR in 5× 104 different~n-directions presented in the form of 3D surfaces with
respect to polar and azimuth angles θ, ϕ. The directions presented in the previous figures
are marked with arrows pointing at the corresponding pairs of θ, ϕ angles. The data for the
respective systems is organized in rows, starting from the monodisperse system, followed
by D-type and S-type systems for crossing and separate layouts. The columns contain
surfaces of maximal, minimal, their difference, and the average PR. The contours on the
horizontal θ-ϕ plane indicate the pairs of angles, for which PR is negative. It can be seen
that for separate channels (the two bottom rows) the average PR is qualitatively different
than for crossing channels. In the former case, despite the differences in extreme values,
the average PR changes only by a small amount between directions. For D-type channels,
it is almost a flat surface. However, it can be seen that differences between maximal and
minimal PR are not small.

Figure 13. Surfaces composed of: maximal, minimal, their difference and the average PR (in respective
columns) as a function of~n-direction expressed by the polar and azimuth angles (θ, ϕ), presented for
the cubic system and all the inclusion variants studied. The cases presented correspond to the data in
Figure 12, for pressure p∗ = 250.

5. Conclusions

It was shown that even small modifications of the crystal structure can exert a consid-
erable impact on the macroscopic properties of the system. The inclusion of hard particles
with only a few percent difference in their diameters can significantly modify their elastic
properties. The two layouts of inclusions composed of identical nanochannels resulted in
substantially different elastic behavior in the final systems. This indicates that besides the
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properties of particles forming the inclusions, their shape, size, and orientation also have a
key influence on elastic properties of the model material. It was found that periodic arrays
of three nanochannels, oriented orthogonally to each other, either crossing or remaining
separate, cause the overall increase of PRs. This unexpected result (keeping in mind that
similar arrays composed of a single nanochannel greatly enhance auxetic properties) shows
how difficult it is to predict the macroscopic impact of such microscopic modifications. It is
worth noting that the studied three-channel inclusions were preserved the cubic shape of
the simulated samples, which exhibit effective cubic symmetry (described by only three
independent elastic constants). The different impact of inclusion layouts is also reflected
in the anisotropy of the models. In the case of the separate D-type nanochannel layouts,
the systems are effectively more isotropic at higher pressures and higher values of diame-
ters of inclusion spheres. However, S-type nanochannels in the same layout also show only
little changes of the average PRs in different directions.

This article presents the potential of structural modifications as a tool for altering the
macroscopic elastic properties of materials. With a better understanding of how micro-
scopic modifications to the crystalline structure influence its macroscopic elastic properties,
it should be possible to design systems with tailored elastic properties and PR to given ap-
plications. One of the ways to reach this understanding is to perform extensive simulations
of model systems. In particular, for systems with cubic symmetry, studies of the impact of
channels on the elastic properties should include other diameters of the channels, various
distances between their axes, and their different orientations.

We hope that the results presented in this article will constitute a starting point for real
experiments in the areas of material engineering and metamaterials.
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