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Introduction
Chagas Disease (CD), also known as the American trypanoso-
miasis, is a neglected tropical disease recognized by the World 
Health Organization. It is characterized by symptoms such as 
swelling at the site of infection and fever, and if left untreated, 
it can lead to congestive heart failure. The disease is caused by 
exposure to the feces of the triatomine bug, a vector that carries 
the parasite Trypanosoma cruzi. The name “Kissing Bug” origi-
nates from the bug’s tendency to bite people’s faces during 
feeding. Chagas Disease is endemic to Latin American coun-
tries, spanning from Southern United States to Mexico and 
Argentina.1 The triatomine bug thrives in poor housing condi-
tions, putting individuals in rural areas at a higher risk of infec-
tion. While vector-borne transmission has historically been the 
primary mode of infection, CD can also be transmitted through 
blood transfusion and from mother to child during 
pregnancy.2

In recent years, significant progress has been made in reduc-
ing the transmission of T cruzi through extensive vector control 
and donor screening programs implemented in many endemic 
countries. However, several barriers continue to hinder the 
effective management of the disease. These barriers include 
challenges related to healthcare financing and payment, 

limitations in screening and diagnosis methods, suboptimal 
effectiveness of available treatments, and insufficient awareness 
among healthcare providers, as well as the general public 
regarding CD.2,3 Benznidazole and nifurtimox are Food and 
Drug Administration-approved drugs commonly used to treat 
CD. However, both drugs have their limitations. Benznidazole, 
for instance, exhibits a mechanism of action that involves the 
preferential oxidation of the nucleotide pool, resulting in the 
incorporation of oxidized nucleotides during DNA replication. 
This process leads to the formation of potentially lethal dou-
ble-stranded DNA breaks in the DNA of T cruzi, the parasite 
causing CD.4 Despite its effectiveness, benznidazole has cer-
tain drawbacks. It is primarily prescribed for children aged 2 to 
12 years and has been associated with side effects such as infer-
tility in men and potential harm to unborn babies.5 In addition, 
individuals taking benznidazole may experience severe skin 
reactions, including sore throat, fever, and skin rash.6 These 
factors highlight the need for alternative treatment options 
that can reduce the occurrence of such side effects.

Sterol-14-demethylase is a crucial enzyme belonging to the 
heme-containing cytochrome P450 family, and it plays a sig-
nificant role in the synthesis of sterols in eukaryotes.7,8 In pro-
tozoa like T cruzi, ergosterol is synthesized as the final product 
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of sterol biosynthesis, contrasting with the production of cho-
lesterol in mammals. The synthesis of ergosterol involves the 
elimination of the 14α-methyl group from sterol precursors, a 
process catalyzed by sterol-14-demethylase.9 In Trypano
somatidae, a family of parasites that includes T cruzi, the causa-
tive agent of CD, the synthesis of endogenous sterols is of 
utmost importance. These sterols not only serve as structural 
components of the parasites’ membranes but also function as 
hormonal molecules that regulate various cellular processes, 
including cell development, multiplication, and morphological 
transformation, at remarkably low concentrations.10

While T cruzi can incorporate sterols, primarily cholesterol, 
from its mammalian host into its membranes, it also relies on 
de novo sterol synthesis for its survival in all stages of its life 
cycle. Consequently, the parasite is highly vulnerable to sterol 
biosynthesis inhibitors.9 Inhibiting sterol-14-demethylase, the 
enzyme responsible for a critical step in sterol biosynthesis, has 
been explored as a potential therapeutic approach against T 
cruzi and other related parasites.11-13 By targeting this enzyme, 
it is possible to disrupt the synthesis of essential sterols, which 
can ultimately lead to the inhibition of parasite growth and 
survival.

The utilization of plant-derived inhibitors holds great prom-
ise in terms of their suitability for oral administration, afforda-
bility, and accessibility. One such plant of interest is Cananga 
odorata, commonly known as “ylang-ylang,” which has a rich 
history as a traditional medicinal plant in South-Eastern Asian 
countries like the Philippines and Malaysia.14 C odorata is a 
medium-sized tree that can reach heights of up to 15 m. 
Extensive research has highlighted the diverse therapeutic 
properties of C odorata. It has been recognized for its antimicro-
bial, antibiofilm, antioxidant, insecticidal, anti-inflammatory, 
and antibacterial effects.14,15 In a study, three compounds 
extracted from C odorata, namely O-methylmoschatoline, liri-
odenine, and 3,4-dihydroxybenzoic acid, exhibited notable anti-
bacterial and antifungal activities.16 Furthermore, another 
constituent from C odorata, N-trans-feruloyltyramine, identi-
fied in the methanolic extract of the seeds, was found to poten-
tially contribute to the suppression of melanogenesis by 
inhibiting the expression of the tyrosinase enzyme.17

These bioactive properties make C odorata a valuable 
resource for potential drug discovery and development. By har-
nessing the beneficial compounds present in C odorata, it may 
be possible to develop novel oral treatments that are cost effec-
tive and readily available.

This study utilized computational techniques to identify 
potential inhibitors of sterol-14-demethylase from C odorata. 
The objective was to find phytoconstituents with anti- 
trypanosomal activity. The workflow included structure-based 
screening, molecular docking, quantitative structure-activity 
relationship (QSAR) analysis, pharmacophore modeling, and 
pharmacokinetic assessments. The findings could contribute to 
the development of novel drugs for treating trypanosomal 
infections using compounds from C odorata.

Materials and Method
Protein selection and preparation

The sterol-14-alpha demethylase enzyme, with a Protein Data 
Bank (PDB) ID of 4CKA, was obtained from the official web-
site of the PDB (https://www.rcsb.org/). Before its use in this 
study, the protein underwent thorough preprocessing and was 
subjected to modifications aimed at optimizing the assignment 
of hydrogen bonds and minimizing its structure using the 
OPLS3e force field.18 The resulting minimized protein was 
then utilized for further analyses and investigations.

Ligand generation and preparation

A compound library for C odorata was generated in SDF for-
mat by retrieving relevant compounds from the PubChem web 
database (Supplemental Table 1). The retrieved compounds 
underwent further processing using the LigPrep tool. This tool 
facilitated the conversion of the initially available two-dimen-
sional molecules into three-dimensional structures. The pro-
cess involved ionizing the molecules at a pH of 7.2 ± 0.2 and 
eliminating any salts present using Epik. The OPLS3 force 
field was applied to ensure accurate ionization and tautomeric 
state representation of the compounds.19

Receptor grid generation

To identify the specific region of interaction between the ligand 
and protein, a receptor grid was created. This grid, known as 
the Glide Grid, was constructed using the Receptor Grid 
Generation tool and focused on the binding domain of the 
protein.20 By selecting the co-crystallized ligand situated at the 
active site of 4CKA, the binding location was determined. To 
facilitate the subsequent process of molecular docking, a grid 
box was automatically generated for the protein. The dimen-
sions of the grid box were defined as follows: X = 0.86, Y = 27.49, 
and Z = 456.75.

Pharmacophore modeling and screening

The receptor-ligand complex was extensively studied, and a 
hypothesis (E-pharmacophore) was generated using the phase 
interface within the Schrödinger suite. This pharmacophore 
was designed to highlight the key properties that play a crucial 
role in the specific binding of the ligand to the active sites of 
the target protein.21 Subsequently, the hypothesis was employed 
as a filtering criterion to eliminate compounds that did not 
exhibit at least two out of the five essential features identified 
by the pharmacophore analysis.

Molecular docking

The molecular docking process was performed using the Glide 
tool, utilizing Maestro 11.1 software. The compound library, 
which had already been filtered down to 28 compounds, was 

https://www.rcsb.org/
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docked into the prepared grid of protein targets. Two docking 
algorithms were employed: Standard Precision (SP) and the 
more rigorous Extra Precision (XP) algorithms. Initially, com-
pounds with a docking score of less than −5.0 kcal/mol using 
the SP algorithm were filtered out, resulting in the exclusion of 
four compounds. The remaining selected compounds (24) were 
then subjected to XP docking. During the docking process, the 
protein was considered a rigid body, while the ligand’s rotatable 
bonds were allowed to freely move and adopt different 
conformations.22

Molecular mechanics grown born surface area

Molecular mechanics-generalized Born surface area 
(MM-GBSA) is a computational method used to calculate the 
energy of various components involved in a molecular system, 
including optimized free receptors, free ligands, and the com-
plex formed by the ligand binding to the receptor. In addition, 
it enables the evaluation of ligand strain energy by placing the 
ligand in a solvent environment generated by the VSGB 2.0 
suite. In this study, Prime rotamer search techniques available 
in Maestro were employed in conjunction with the OPLS3 
force field and the VSGB solvent model. These tools and mod-
els were utilized to perform the necessary calculations and 
simulations. The binding free energy, which quantifies the 
strength of the interaction between the ligand and receptor, 
was determined using the following equation:

	 ∆ = − +G G X G Gbind complex protein Ligand( ) � (1)

This equation takes into account various energy contributions 
from the molecular system and provides valuable insights into 
the binding affinity between the ligand and receptor.21

Development of AutoQSAR Model
To gather information about sterol-14-alpha demethylase 
inhibitors’ activity, a total of 38 inhibitors were retrieved from 
the CHEMBL database. The protein’s FASTA sequence, 
obtained from the PDB, was used as a query to extract these 
compounds. To facilitate further analysis, the extracted com-
pounds were converted into the “.SDF” file format using Data 
Warrior software.18 Using the AutoQSAR module, a QSAR 
model was constructed utilizing these compounds. Multiple 
models were generated, and among them, the kpls_radial_44 
model was identified as the best-performing model based on its 
rank and predictive capability. Subsequently, this selected model, 
kpls_radial_44, was employed to predict the pIC50 values of the 
top-ranked compounds as well as a standard compound. This 
QSAR model allowed for the estimation of the inhibitory activ-
ity of these compounds, providing valuable insights into their 
potential as sterol-14-alpha demethylase inhibitors.

Absorption Distribution Metabolism  
Excretion/Toxicity screening

To assess the absorption, distribution, metabolism, and excre-
tion (ADME) characteristics of the top five compounds, as 
well as the standard drug, their efficacy was predicted using the 
admetSAR server. The admetSAR server (http://lmmd.ecust.
edu.cn/admetsar2/) provides valuable predictions regarding the 
ADME properties of compounds. These properties play a vital 
role in drug development as they help evaluate the potential of 
a compound to become an effective drug. By analyzing these 
characteristics, valuable insights can be gained regarding the 
compound’s ADME, contributing to the decision-making 
process in drug discovery and development.22

Result and Discussion
Before molecular docking, a pharmacophore hypothesis was 
developed based on the complex formed by the protein and co-
crystallized ligand. The PHASE module in Schrödinger suite 
was employed to extract essential information regarding the 
molecular orientation of crucial functional groups involved in 
the high-affinity binding of ligands to the protein target.

The resulting E-pharmacophore hypothesis (Figure 1) con-
sisted of two hydrophobic groups and three aromatic rings. The 
pharmacophore hypothesis was used to filter the library of 

Figure 1.  Pharmacophore hypothesis generated.

http://lmmd.ecust.edu.cn/admetsar2/
http://lmmd.ecust.edu.cn/admetsar2/
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compounds, allowing for the identification of ligands that pos-
sess similar key features important for binding to the target 
protein.

The molecular docking analysis identified five compounds 
from C odorata that demonstrated strong inhibitory potential 
against the target enzyme, with docking scores comparable to 
the standard compound benznidazole (Supplemental Figure 
1). A more negative docking score indicates a higher inhibitory 
potential. The compounds benzyl salicylate, calamenene, ben-
zyl benzoate, 5-indanol, and p-cymene exhibited excellent 
inhibitory potential, with docking scores of −7.627, –7.453, 
–6.305, –6.151, and −6.058 kcal/mol, respectively, compared to 
the docking score of −6.817 kcal/mol for benznidazole, which 
is a standard drug used to treat CD (Table 1).

Structural-based drug design focuses primarily on the 
interaction between the protein and ligand, as the extent of 
inhibition is largely determined by the ligand’s interaction 
with specific amino acid residues at the active site of the target 
enzyme.23 Table 2 and Figure 2 present the key interactions 
contributing significantly to the inhibition of 

sterol-14-demethylase in this study. Benzyl salicylate formed a 
single hydrogen bond with LYS 421, while calamenene formed 
a single PI-PI stacking bond with TYR 103. Benzyl benzoate 
also formed a single PI-PI stacking bond with PHE 290. 
5-Indanol made a single H-bond interaction with ALA 287. 
Benznidazole, the standard, made two H-bonds with TYR 
116.

In addition, the MM-GBSA technique provides a more 
accurate estimation of the binding free energies (dG) for pro-
tein-ligand complexes. Negative values indicate stable com-
plexes in the target’s binding pocket. In this study, all lead 
compounds exhibit negative values, indicating their stability 
within the target’s binding pocket. The binding free energies 
for the docked complexes were −;43.729, –30.424, –38.262, 
–31.948, and −31.003 kcal/mol for benzyl salicylate, calame-
nene, benzyl benzoate, 5-indanol, and p-cymene, respectively. 
This suggests that all the hit compounds are more stable in the 
target’s binding pocket. Benznidazole, the standard, exhibits a 
binding free energy of −41.157 kcal/mol. The utilization of the 
MM-GBSA technique enhances the accuracy of virtual screen-
ing results and provides valuable insights into the stability of 
protein-ligand complexes within the binding pocket. The neg-
ative binding free energy values obtained for the lead com-
pounds indicate their favorable binding characteristics, further 
supporting their potential as effective inhibitors.

AutoQSAR
Quantitative structure-activity relationship analysis is a crucial 
computational tool in drug discovery that explores the relation-
ship between the structural characteristics of small molecules 
and their biological activities.24

In this study, the AutoQSAR module within the Schrodinger 
suite was employed, utilizing various topological descriptors to 
construct independent variable models based on experimental 
data generated for the target.

Table 1.  Docking scores of the top-scoring compounds and standard 
against sterol-14-alpha demethylase.

PubChem ID Compound name Docking 
scores

MM-GBSA

8363 Benzyl salicylate –7.627 –43.729

518975 Calamenene –7.453 –30.424

2345 Benzyl benzoate –6.305 –38.262

15118 5-Indanol –6.151 –31.948

7463 p-Cymene –6.048 –31.003

31593 Benznidazole 
(reference drug)

–6.817 –41.157

Abbreviation: MM-GBSA, molecular mechanics-generalized Born surface area.

Table 2.  Interaction profile of top-ranked compounds including the standard within the active site of sterol-14-alpha demethylase.

Compound name H-bond Hydrophobic amino acid Other interactions

Benzyl salicylate LYS 421 MET 284, ALA 287, MET 123, VAL 114, ALA 115, TYR 116, LEU 
127, LEU 130, ALA 291, ILE 423, CYS 422

None

Calamenene None MET 460, MET 106, ILE 105, TYR 103, VAL 102, VAL 213, PHE 
290, PHE 110, LEU 356, MET 358, VAL 359, MET 360

PI-PI stacking: TYR 103

Benzyl benzoate None TYR 116, PHE 110, ALA 291, PHE 290, LEU 208, MET 106, ILE 
105, TYR 103, VAL 102, VAL 213, MET 360, VAL 359, MET 358, 
LEU 356, MET 460, VAL 461

PI-PI stacking: PHE 290

5-Indanol ALA 287 MET 123, LEU 127, VAL 114, ALA 115, TYR 116, LEU 130, MET 
284, ALA 287, ALA 288, ALA 291, ILE 423

None

p-Cymene None TYR 116, PHE 110, VAL 102, TYR 103, ILE 105, MET 106, VAL 
213, MET 460, ALA 291, PHE 290

PI-PI stacking: TYR 103

Benznidazole TYR 116 PHE 110, ALA 115, TYR 116, MET 123, LEU 127, LEU 130, MET 
284, ALA 287, ALA 288, ILE 423, CYS 422

None
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Among the generated QSAR models, the kpls_radial_44 
model (Figure 3) emerged as the best-performing model, 
trained using machine learning techniques. The model’s per-
formance was evaluated using key parameters such as SD 
(0.4412), coefficient of determination (0.8581), root mean 
squared error (0.695), and cross-validation (0.6087; Table 3). 
Table 4 shows the test and training set utilized in generating 
the model.

Subsequently, the QSAR model was employed to predict 
the pIC50 values of the hit compounds listed in Table 5. The 

obtained pIC50 values for the hit compounds are also pre-
sented in Table 5. Notably, only benzyl benzoate demonstrated 
a superior pIC50 value (5.349 nM) compared to the standard 
drug (5.331 nM).

ADMET and Drug Likeness
The analysis of ADME is a crucial aspect of the drug discovery 
process, providing valuable insights into the behavior of drugs 
within a biological system.25 In this study, we employed the 
admetSAR server to predict the drug-like properties and 
potential toxicity of the selected lead compounds and the 
standard compound.

To evaluate the drug likeness of the compounds, we 
employed the Lipinski rule, which encompasses five key crite-
ria for determining oral activity.26 The results, presented in 
Table 6, demonstrate that all of the selected compounds exhibit 
favorable physicochemical properties, including low molecular 
weight, a desirable bioavailability score, and good solubility. 
Notably, these properties position the lead compounds as top 

Figure 2.  Two-dimensional interaction of the hits and the standard. Benznidazole in the active site of the enzyme. (A) Benzyl salicylate, (B) calamenene, 

(C) benzyl benzoate, (D) 5-indanol, (E) p-cymene, (F) benznidazole (standard).

Figure 3.  Scatter plot for the best AutoQSAR model (kpls_radial_44).

Table 3.  Parameters of the QSAR model.

SD R2 RMSE Q2

0.4412 0.8581 0.695 0.6087

Abbreviations: QSAR, quantitative structure-activity relationship; RMSE, root 
mean squared error.



6	 Bioinformatics and Biology Insights ﻿

Table 4.  Train and test set for the QSAR model.

ID Molecule CHEMBL ID Set Y(Observed) Y(Predicted) Error

1 CHEMBL106 Train 6.06 5.7052 –0.3548

2 CHEMBL1397 Test 7.32 6.0042 –1.3158

3 CHEMBL3431444 Train 4.4 4.5544 0.1544

4 CHEMBL4208391 Train 7 6.4239 –0.5761

5 CHEMBL3431178 Test 4.6 5.1088 0.5088

6 CHEMBL3431173 Train 4.8 4.4249 –0.3751

7 CHEMBL1731664 Train 4.5 4.2013 –0.2987

8 CHEMBL3431374 Train 6.9 7.1254 0.2254

9 CHEMBL3430913 Train 4.4 4.5206 0.1206

10 CHEMBL1535535 Train 7.4 7.7529 0.3529

11 CHEMBL3431283 Train 4 4.2952 0.2952

12 CHEMBL3431128 Train 4.6 4.6983 0.0983

13 CHEMBL3431361 Train 5.1 4.5195 –0.5805

14 CHEMBL3431357 Train 4.8 5.2313 0.4313

15 CHEMBL3431261 Train 7.2 7.607 0.407

16 CHEMBL3431334 Test 4.5 4.7851 0.2851

17 CHEMBL3431264 Test 6.1 5.6039 –0.4961

18 CHEMBL3431263 Train 7.2 6.6093 –0.5907

19 CHEMBL3430988 Train 4.6 4.6178 0.0178

20 CHEMBL3431347 Train 4.4 4.5353 0.1353

21 CHEMBL530358 Train 5.2 5.2533 0.0533

22 CHEMBL3431331 Test 6.9 5.9036 –0.9964

23 CHEMBL2165401 Test 4.1 4.829 0.729

24 CHEMBL3430943 Train 4.6 4.7152 0.1152

25 CHEMBL3430944 Train 4.4 4.6171 0.2171

26 CHEMBL3431341 Train 5.1 4.8857 –0.2143

27 CHEMBL3431358 Train 5.9 5.8619 –0.0381

28 CHEMBL3430976 Train 4.2 5.5247 1.3247

29 CHEMBL3431279 Test 4.4 4.6889 0.2889

30 CHEMBL3430915 Train 7.1 6.6605 –0.4395

31 CHEMBL3431387 Train 4.5 4.3918 –0.1082

32 CHEMBL3431309 Train 4.5 4.055 –0.445

33 CHEMBL3431021 Train 5.9 5.9178 0.0178

34 CHEMBL3431177 Train 4.7 5.0342 0.3342

35 CHEMBL3431020 Train 7.4 6.6348 –0.7652

36 CHEMBL3431101 Train 4.5 4.9855 0.4855

37 CHEMBL3431119 Test 5 5.0655 0.0655

38 CHEMBL3431410 Test 4.7 5.3462 0.6462

Abbreviation: QSAR, quantitative structure-activity relationship.
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drug-like candidates based on their physicochemical profiles. 
In addition, none of the compounds violated more than one of 
the Lipinski rule criteria. The implicit log P (iLogP) value is 
utilized to measure the n-octanol/water partition coefficient of 
compounds, measuring their lipophilicity. Lipophilicity 
impacts a drug’s solubility and permeability across membranes, 
with iLogP being a predictive method used for this purpose.27 
All compounds, including the standard, were predicted to 
exhibit lipophilic characteristics, as their values were below five. 
Veber’s rule says that compounds with a polar surface area 
(TPSA) <140 Å2 tend to have favorable oral bioavailability. In 
this case, all compounds displayed TPSA scores below 140. 
The logKp values, measured in cm/s, for the compounds, 
including the standard, were predicted to range from −3.96 to 
−7.24. A more negative logKp value suggests a lower ability for 
the molecule to pass through the skin.28 Benznidazole, the 
standard drug, was predicted to have the lowest skin permea-
bility score (–7.24 cm/s).

In terms of blood-brain barrier (BBB) permeability, all test 
compounds, except benzyl salicylate, were predicted to cross the 
BBB. The BBB serves as a crucial barrier that regulates the entry 
of molecules into the central nervous system from the blood-
stream, controlling access to the brain.29 P-glycoprotein (P-gp), 
a transmembrane efflux pump, plays a role in expelling drugs out 
of cells, which can potentially lead to poor drug efficacy or thera-
peutic failure.30 However, the results indicate that the hit com-
pounds, including the standard, are non-substrates and 

non-inhibitors of P-gp. This suggests that these compounds are 
less likely to be affected by P-gp-mediated efflux and may exhibit 
improved drug effectiveness.

The cytochrome P450 (CYP450) enzymes are responsi-
ble for metabolizing therapeutic drugs and play a crucial 
role in drug clearance within the liver.31 Inhibition of 
CYP450 isoforms can lead to drug-drug interactions and 
impact drug toxicity profiles. In our assessment, we found 
that none of the hit compounds, including the standard, 
were predicted to be substrates or inhibitors of CYP3A4, a 
commonly studied CYP450 isoform. Similar results were 
observed for the CYP2C9 isoform, indicating a lower likeli-
hood of drug interactions mediated by these enzymes. 
Furthermore, none of the compounds were predicted to 
inhibit CYP2D6 (Figure 4).

Toxicity analysis revealed that all compounds, including the 
standard drug, demonstrated non-carcinogenic and non-eye 
corrosive properties. However, it is important to note that only 
the standard drug was predicted to have mutagenic potential 
based on the results of the Ames mutagenesis test, which 
assesses the likelihood of a chemical causing mutagenic or car-
cinogenic effects.32

Various studies have explored the inhibition of sterol-
14-demethylase through different approaches. Kulactone and 
gallocatechin emerged as potent inhibitors in an in silico study, 
as determined by extensive molecular dynamics simulations.22 
Alternatively, a study focused on synthesizing potential antimi-
crobial compounds, specifically 1,3-phenylene-based symmet-
rical bis(urea-1,2,3-triazole) hybrids, demonstrated inhibitory 
effects on the sterol-14-demethylase enzyme. Benzyl salicylate, 
identified as a hit compound in this study, demonstrated anti-
inflammatory activity by inhibiting the expression of inducible 
nitric oxide synthase and cyclooxygenase-2.33 In addition, 
calamenene (also identified as a hit compound in this study) 
and its analogs, Cala 1 and Cala 2, reported in another study, 
exhibited antibacterial properties.34

Conclusion
In conclusion, this study focused on identifying potential thera-
peutics for CD through a comparative analysis with the 

Table 5.  Predicted pIC50 values of hit compounds and standard.

PubChem ID Compound name Predicted 
pIC50

8363 Benzyl salicylate 5.264

518975 Calamenene 4.940

2345 Benzyl benzoate 5.349

15118 5-Indanol 4.873

7463 p-Cymene 4.890

31593 Benznidazole (reference drug) 5.331

Table 6.  Drug likeness prediction of the hit compounds and standard.

Entry name MW HBA HBD iLogP PSA LogKp ROV

Benzyl salicylate 228.24 3 1 2.63 46.53 –5.43 0

Calamenene 202.34 0 0 3.24 0.0 –3.96 1

Benzyl benzoate 212.24 2 0 2.68 26.30 –4.78 0

5-Indanol 134.18 1 1 1.80 20.23 –5.44 0

p-Cymene 134.22 0 0 2.51 0.00 –4.21 1

Benznidazole (reference drug) 260.25 4 1 1.15 92.74 –7.24 0

Abbreviations: iLogP, implicit log P; PSA, polar surface area; MW, Molecular weight; HBA, number of Hydrogen bond acceptor; HBD, number of Hydrogen bond donor; 
ROV, rule of five (Lipinski’s).
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standard drug, benznidazole. I employed a computational 
approach, utilizing various tools and models to screen a library 
of compounds derived from C odorata. Through pharmacoph-
ore modeling and structure-based screening, I successfully iden-
tified several hit compounds that showed promising bioactivity 
against the target enzyme, sterol-14-alpha demethylase. In 
addition, the QSAR model predicted one of the hits to exhibit 
superior bioactivity compared to benznidazole. Furthermore, I 
conducted a comprehensive evaluation of the physicochemical, 
pharmacokinetic, toxicity, and medicinal chemistry properties 
of the identified lead compounds. The results indicated that 
these compounds possess drug-like characteristics, are orally 
bioavailable, are easily synthesizable, and exhibit reduced toxic-
ity profiles, making them potential candidates for further 
development.

While these findings provide valuable insights and initial 
evidence of the efficacy of these compounds, further in vitro 
and in vivo studies are necessary to confirm their therapeutic 
potential. Continued research and evaluation of these com-
pounds will contribute to the development of alternative and 
safer treatments for CD, addressing the limitations associated 
with the current standard therapy.
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