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Review

Eukaryotic cells contain numerous membrane-bound 
organelles, necessary to accomplish and segregate specialized 
functions. However, this partitioning also raises the problem of 
how subcellular organelles communicate. One way is by vesicular 
traffic, typically working within the secretory/endocytic pathway. 
This kind of transport requires that the membranes of interacting 
organelles can fuse with each other, either directly or by means 
of intermediate compartments. For instance, the endoplasmic 
reticulum (ER) and the plasma membrane (PM) cannot fuse 
directly, but they are functionally connected through multiple 
membrane traffic steps, a time-consuming process. Alternatively, 
organelles may rapidly connect one to another by means of 

membrane contact sites (MCSs), where their membranes become 
closely juxtaposed (10–30 nm).1-3 In this way, even organelles 
belonging to “independent” compartments, such as the ER 
and mitochondria, can exchange or share molecules, functions, 
information. In recent years, MCSs have been shown to be 
required for a variety of functions on many organelles,2 emerging 
as a widespread mechanism operating in cell physiology and 
pathology.

The ER represents the largest membrane-bound compartment, 
and plays critical roles in protein and lipid synthesis and in the 
regulation of calcium signaling.4 Therefore, it is not surprising 
that this organelle, besides being functionally connected to the 
secretory/endocytic pathway via vesicular transport, is also able 
to directly interact by means of MCSs with virtually all other 
subcellular organelles, including Golgi apparatus, endosomes, 
lysosomes, plasma membrane, lipid droplets, mitochondria, and 
peroxisomes (Fig. 1). Although the main functions attributed 
to the interorganellar interactions regard the transfer and 
metabolism of lipids and the modulation of calcium fluxes and 
homeostasis, more recent evidence points to several additional 
roles, including sharing of enzymatic activities or control of 
organelle dynamics (Fig. 1).

We now identified a novel ER-independent interorganellar 
connection, involving mitochondria and melanosomes, 
lysosome-related organelles (LROs) of pigment cells devoted 
to the synthesis, transport, and transfer of melanin pigments.5 
Indeed, quantitative ultrastructural analysis and tomographic 
reconstruction showed that a significant fraction of melanosomes 
is located in direct contact with mitochondria, that these 
interorganellar connections are mediated by fibrillar bridges, and 
that they are labeled by and require Mitofusin (Mfn) 2, similarly 
to the ER-mitochondria juxtaposition. Moreover, melanosome-
mitochondrion contacts were associated to the melanogenesis 
process, since they were more abundant where and when active 
melanosome biogenesis takes place, while they were reduced in 
conditions of abnormal melanosome biogenesis.5 These findings 
reveal the presence of a physical and functional connection 
between mitochondria and the secretory/endocytic pathway that 
for the first time does not involve the ER and is implicated in 
physiological and pathological organelle biogenesis.
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Membrane contact sites (MCSs) allow the exchange of 
molecules and information between organelles, even when 
their membranes cannot fuse directly. in recent years, a 
number of functions have been attributed to these contacts, 
highlighting their critical role in cell homeostasis. Although 
inter-organellar connections typically involve the endoplasmic 
reticulum (eR), we recently reported the presence of a novel 
MCSs between melanosomes and mitochondria. Melanosome-
mitochondrion contacts appear mediated by fibrillar bridges 
resembling the protein tethers linking mitochondria and the 
eR, both for their ultrastructural features and the involvement 
of Mitofusin 2. The frequency of these connections correlates 
spatially and timely with melanosome biogenesis, suggesting 
a functional link between the 2 processes and in general 
that organelle biogenesis in the secretory pathway requires 
interorganellar crosstalks at multiple steps. Here, we summarize 
the different functions attributed to MCSs, and discuss their 
possible relevance for the newly identified melanosome-
mitochondrion liaison.
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Nevertheless, the molecular players and physiological 
function of melanosome-mitochondrion connections remain to 
be uncovered, and can be hypothesized based on the role of other 
better-characterized MCSs.

MCSs regulate calcium fluxes and signaling
Calcium concentrations in the millimolar range are found 

in the extracellular space and in the lumen of the ER, the 
Golgi apparatus, and acidic organelles, whereas the cytosolic 
concentration of the ion is kept low (typically 100 nM).6 
MCSs, in particular between the ER and PM, or the ER and 
mitochondria, have been implicated in the regulation of direct 
calcium transfer between organelles. This mechanism has the 
advantage of maximizing the efficiency of calcium signaling and 
interorganellar exchange, while avoiding excessive or prolonged 
changes in the overall concentration of cytosolic calcium, which 
in turn could be detrimental for the cell.2,7

In all cells, a store-operated calcium entry pathway (SOCE) 
functions at ER-PM MCSs to efficiently refill ER stores upon 
calcium release, typically caused by opening of inositol-1,4,5-
triphosphate receptors (Ins(1,4,5)P

3
Rs). The transmembrane 

ER proteins STIM sense the depletion of calcium in the ER and 
oligomerize, translocating to ER-PM contact sites and activating 
the CRAC/Orai1 Ca2+ channels on the PM.8-10 In this manner, 
calcium depletion in the ER recalls the ion available in the 
extracellular space, which enters the cytosol and can reload the 
ER stores via the Sarcoplasmic/Endoplasmic Reticulum Ca2+ 
ATPases. In muscle cells an additional ER-PM MCSs is found 
that comprises voltage-gated calcium channels on the PM, 
functionally connected with Ryanodine Receptors (RyRs) on the 
ER, so that opening of the former also results in activation of 
the latter to maximize cytosolic calcium influx during excitation-
contraction coupling.7,11

On the other hand, MCSs between the ER and mitochondria, 
also known as mitochondria-associated-membranes (MAMs)12 
are mainly implicated in spatially restricting and buffering the 
calcium fluxes triggered by opening of Ins(1,4,5)P

3
Rs or RyRs 

on the ER membrane. Indeed, close juxtaposition between the 
2 compartments generates cytosolic microdomains, where high 
calcium concentrations are achieved,13-15 and is required for 
the ability of mitochondria to efficiently uptake the calcium 
released from the ER by the low affinity mitochondrial calcium 
uniporter (MCU).16,17 The correct functioning of this system 
and the interorganellar distance are crucial for mitochondrial 
calcium homeostasis and appear necessary both to regulate ATP 
production, which depends on several Ca2+ dependent metabolic 
enzymes in the mitochondrial matrix, and to avoid Ca2+ overload 
in the mitochondria, which instead promotes apoptosis.18,19

A role in the modulation of calcium fluxes and/or signaling has 
also been postulated for MCSs between ER and late endosomes/
lysosomes (LE/LYS). Indeed, both lysosomes and LROs are 
acidic calcium stores and lysosomes have been shown to release 
calcium upon different stimuli, by means of Ca2+ permeable 
channels, including 2 pore channels (TPC), transient receptor 
potential mucolipin (TRPML) channels, and Ins(1,4,5)P

3
Rs/

RyRs.6,20-22 This in turn can evoke and/or amplify ER-dependent 
Ca2+ release, with implications for calcium oscillations in 

different systems.23,24 Moreover, defective lysosomal calcium 
homeostasis has been associated to endocytic and lysosomal 
dysfunction, abnormalities in membrane traffic, and lysosomal 
storage diseases.25,26 Among LROs, melanosomes contain high 
calcium concentrations and are thought to participate in calcium 
homeostasis and/or signaling, since melanin is able to bind and 
buffer the ion, likely functioning as an intracellular calcium 
reservoir.27-29 The melanosome-mitochondrion juxtaposition 
could be involved in buffering and/or sensing of calcium possibly 
released by melanosomes during maturation, controlling the local 
concentration of the ion and evoking further signals between the 
2 organelles, required for proper melanosome biogenesis.

MCSs mediate lipid transfer and metabolism
The synthesis of membrane lipids takes place primarily in 

the ER; however, specific biosynthetic reactions are performed 
on other organelles, such as the Golgi apparatus and the 
mitochondria.30,31 Thus, either vesicular or non-vesicular transport 
is necessary to appropriately distribute lipids to the different 
subcellular compartments. MCSs play an important role in the 
regulation of lipid homeostasis by their ability to mediate non-
vesicular lipid transfer among distinct compartments through 
the action of lipid-transport proteins (LTPs).1,2 A number of 
LTPs and their modes of action have being identified, including 
oxysterol-binding protein (OSBP) and OSBP-related proteins 
(ORP),32 operating at the ER-Golgi and ER-PM interface, 
and implicated in the exchange and metabolism of sterols and 
phosphoinositides;11,30,33 the ceramide-transfer protein CERT34,35 
and the glucosylceramide-transfer protein FAPP2,36,37 operating 
non-vesicular transport at the ER-Golgi and intra-Golgi (cis-
trans) contact sites, respectively; the extended synaptotagmins 
(known as tricalbins in yeast), functioning as ER–PM tethers 
and most likely implicated in (glycerophospho) lipid transfer;38,39 
and possibly in yeast the ER-mitochondria encounter structure 
(ERMES) complex, an ER–mitochondrial tether, comprising 
several subunits containing lipid-binding domains.2,40

Sterol-binding proteins have been identified on LE/LYS as 
well, however at this location they appear to function mostly 
as lipid sensors and scaffold proteins, rather than lipid transfer 
effectors (see below). Nevertheless, melanosome-mitochondrion 
contacts may serve to control the quality and quantity of lipids 
on maturing melanosomes, regulating physical properties and 
abundance of their membranes, and the formation of specialized 
domains necessary for membrane traffic processes, such as the 
intralumenal sorting and processing of the structural protein 
Pmel17.41,42 Along the same line, mitochondria have been 
reported to supply membranes to forming autophagosomes,43 
which could originate from the ER at MAMs.44 Melanosome 
biogenesis might share molecular mechanisms with autophagy, 
since genes involved in the autophagic process were identified in a 
screening for novel pathways involved in melanogenesis.45 Thus, 
by means of MCSs, mitochondria could provide melanosomes 
with membranes or other components required for the shape and 
size changes occurring during their maturation. Interestingly, 
the small GTPase Rab32, which localizes to both the ER and 
mitochondria, and regulates the properties of MAMs,46,47 is 
also involved in the formation of autophagosomes,48 and in 
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melanosome biogenesis and transport,49,50 thus 
representing a potential candidate regulator of 
this crosstalk.

MCSs promote protein-protein 
interactions and cell signaling

It is becoming evident that at least 
some MCSs function as signaling hubs, 
by facilitating the scaffolding of signaling 
protein complexes and allowing the carry 
out of catalytic reactions, either in cis or in 
trans, with enzyme and substrate located 
on the same or on juxtaposed organelles, 
respectively. For instance, some ORPs have 
been shown to act as protein scaffolds, 
coordinating lipid sensing and metabolism 
with cell signaling and membrane traffic 
events,51 and the protein kinase mTORC2 and 
the lipid/protein phosphatase PTEN localize 
to the ER and operate in cis at MAMs.52,53 
Moreover, internalized EGFR on endosomes, 
and in particular on the limiting membrane 
of multivesicular bodies (MVB), becomes 
dephosphorylated in trans, by means of the 
protein tyrosine phosphatase 1B (PTP1B) 
located on ER membranes at MCSs between 
the 2 compartments.54 Close juxtaposition 
between the ER and MVBs allows enzyme 
and substrate to interact and might also 
be implicated in the subsequent fate of the 
receptor, such as sequestration in intra-luminal vesicles (ILV) and 
lysosomal degradation.54,55 Likewise, the ER-PM juxtaposition 
may allow the regulation of phosphatidylinositol 4-phosphate 
(PI4P) levels at the cell surface, by means of the ER-localized 
PIP phosphatase Sac1, although recent evidence supports an 
alternative mechanism.11,33,56

Similarly, the melanosome-mitochondrion interaction might 
play a role in the assembly and modulation of signaling pathways 
and membrane traffic events necessary for melanogenesis. 
Of note, melanosomal membranes carry a peculiar type of 
intracellular G-protein-coupled receptor (GPCR), named OA1, 
which is involved in melanosome biogenesis and transport,57-59 and 
appears functionally associated to melanosome-mitochondrion 
contacts.5 Thus, the OA1 GPCR might promote the formation of 
MCSs between the 2 organelles, either directly acting as a tether 
or, most likely, indirectly by means of its signaling cascade or by 
its ability to stimulate the melanogenic process.

MCSs control organelle dynamics and distribution
ER-mitochondria MCSs have been shown to play a role in 

mitochondrial fusion-fission and overall motility.60 These 
processes are crucial for mitochondrial biogenesis, distribution, 
and function, and their alteration results in inherited or age-
related neurodegenerative diseases.61 Mitochondria continuously 
fuse and divide, by means of pro-fusion (Mfn 1 and 2, and OPA1, 
on the mitochondrial outer and inner membrane, respectively) 
and pro-fission (DRP1) proteins.61 They are also highly dynamic 
and move bidirectionally along microtubules, by exploiting the 

mitochondrial GTP-ase MIRO and its effector MILTON to 
recruit kinesin 1 and determine the prevalence of peripheral 
vs. centripetal organelle transport.62 The ER-mitochondria 
juxtaposition appears intertwined with these processes, since 
the pro-fission machinery is recruited and operates at sites where 
ER tubules contact mitochondria,63 and components of the pro-
fusion machinery, namely Mfn 1 or 2 on the mitochondrial side 
and Mfn 2 on the ER, have been implicated in the interorganellar 
tethering.64 Moreover, Mfn 2 appears directly required for 
transport of axonal mitochondria by interacting with the MIRO/
MILTON complex and affecting both kinesin and dynein-based 
transport.65

Despite both mitochondria and the ER are highly motile 
organelles, they remain linked even as they move along 
microtubules.66 The maintenance of interorganellar contacts 
during microtubule-based motility is also a feature of endosomes, 
which mature and move while they remain bound to the ER.66,67 
In the latter case, LTPs appear implicated in orchestrating 
membrane lipid content with organelle motility and connection 
with other compartments. On LE, the Rab7 effector ORPL1 
is required for dynein activity upon recruitment by the RILP/
dynactin complex.68 ORPL1 is also a cholesterol sensor, and in 
low cholesterol conditions it undergoes a conformational change 
that induces ER-LE MCSs, displacing the dynein/dynactin 
complex from RILP and leading to peripheral LE distribution.69 
Similarly, the endosomal cholesterol-transfer proteins STARD3 
and STARD3NL generate MCSs between LEs and the ER and 
appear implicated in endosome morphology and dynamics, 

Figure 1. Schematic representation of membrane contact sites and their functions. Organelle 
dynamics indicates both the shape and motility of involved organelles. For LD and Pex, which 
are believed to originate from the eR, the role of direct contacts observed with this compart-
ment remains unclear and may be implicated in lipid transfer between the eR and the mature 
form of the organelles.78,79 eR, endoplasmic reticulum; Pex, peroxisomes; LD, lipid droplets; 
Mito, mitochondria; Melano, melanosomes; Golgi, Golgi apparatus; ee, early endosomes; Le, 
late endosomes; MvBs, multivesicular bodies; Lyso, lysosomes; iLv, intraluminal vesicles.
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independently on ORPL1 and PTP1B.70 In either case, it is not 
known whether sterol exchange occurs at the interorganellar 
junctions.

As mitochondria, the ER, and endosomes, melanosomes 
are highly motile organelles, traveling along microtubules and 
actin filaments.71 Mitochondria and melanosomes might cope 
with their interactions during movement by means of dynamic, 
transient contacts, in a “stop-and-go” or in a “kiss-and-run” 
fashion. Alternatively, the organelles might be joint by more 
persistent and stable contacts, allowing coordinated motility and 
distribution. The latter possibility would be more compatible 
with the generation of cytosolic microdomains, allowing the 
localized exchange of small molecules between the 2 organelles, 
as in the case of calcium at the ER-mitochondria juxtaposition. 
In addition to the regulation of calcium fluxes, another main 
function of mitochondria is to produce ATP and both their 
abundance and distribution in tissues and cells correlates with 
energetic needs. Moreover, mitochondria are able to redistribute 
at sites of high-energy requirement, such as neuronal,72 and 
immunological synapses,73,74 regulating their motility in response 
to intrinsic and extrinsic calcium concentrations.75,76 Melanosome 
biogenesis and transport certainly represent other physiological 
processes requiring energy. Thus, mitochondria juxtaposition 
might be required to timely and locally supply melanosomes with 
the ATP needed either for their movement along microtubule 
and actin tracks, or for melanin synthesis, or for controlling the 
melanosomal pH and membrane composition.

The compartmentalization of biochemical functions requires 
the reciprocal crosstalk between organelles to maintain the 
cellular homeostasis and to guarantee an efficient and coordinated 
response to environmental changes. Interorganellar MCSs allow 
virtually any combination of membrane-bound compartments 
to establish a communication. The newly identified contacts 
between melanosomes and mitochondria demonstrate that the 
2 compartments not only are coordinated at the transcriptional 
level,77 but also interact at the physical level.5 Given the 
characteristics of melanosomes as models of secretory organelles, 
it is possible that secretory granules in neuroendocrine cells or 
other LROs in hematopoietic cells connect with mitochondria 
during their biogenesis and transport. Understanding the 
structural and functional features of these interactions is critical 
not only by a biological point of view, but also for the possibility 
that organelle biogenesis could be pharmacologically modulated 
by exploiting and targeting MCSs.
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