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Abstract

Background: Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive tumors which originate from
Schwann cells and develop in about 10% of neurofibromatosis type 1 (NF1) patients. The five year survival rate is poor and
more effective therapies are needed. Sunitinib is a drug targeting receptor tyrosine kinases (RTK) like PDGFRa, c-Kit and
VEGFR-2. These genes are structurally related and cluster on chromosomal segment 4q12.

Methodology/Principal Findings: Here we characterize this region by multiplex ligation-dependent probe amplification
(MLPA) in MPNST. Our probe set encompasses the 3 adjacent RTK genes (PDGFRA, KIT, KDR) and 6 flanking genes. We found
amplification of several genes within this region in a subset of MPNST and MPNST cell lines. Transcript and protein
expression of PDGFRA matched well with its increased copy number suggesting a central role of PDGFRA within the
amplicon. Studying the effect of sunitinib on 5 MPNST cell lines revealed that cell line S462 harboring the 4q12 amplicon
was extremely sensitive to the drug with an IC50 below 1.0mM. Moreover, sunitinib induced apoptosis and prevented PDGF-
AA induced signaling via PDGFRa as determined by western blotting. Co-expression of VEGF and its receptor VEGFR-2 (KDR)
was present in MPNST cell lines suggesting an autocrine loop. We show that VEGF triggered signal transduction via the
MAPK pathway, which could be blocked by sunitinib.

Conclusions/Significance: Since multiple receptors targeted by sunitinib are expressed or over-expressed by MPNST cells
sunitinib appears as an attractive drug for treatment of MPNST patients. Presence of the 4q12 amplicon and subsequent
over-expression of PDGFRA might serve as predictive markers for efficacy of sunitinib.
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Introduction

Neurofibromatosis type 1 (NF1) is a genetic disorder that affects

about one in 3000 individuals and manifests with a broad range of

clinical symptoms [1]. Neurofibromas are a hallmark of the disease

and develop in virtually all NF1 patients. Plexiform neurofibromas

(pNF) can undergo malignant progression and form malignant

peripheral nerve sheath tumors (MPNST). In contrast, dermal

neurofibromas (dNF) show no tendency towards malignant

transformation. For the time being, surgical intervention is the

most effective treatment for patients with MPNST. However, due

to the invasive growth pattern complete tumor removal is

frequently not possible. MPNST respond only poorly to conven-

tional chemo- and radiotherapies and effective alternative

therapies are not available yet. In order to develop novel strategies

for target directed therapy a better knowledge on molecules

contributing to malignant progression is needed.

Recently, we demonstrated gene amplification of adjacent genes

encoding platelet-derived growth factor receptor alpha (PDGFRa)

and c-Kit in a subset (19%) of MPNST [2]. To determine whether

more genes are amplified on chromosomal segment 4q12 we

analyzed 9 genes distributed over 5 Mb by multiplex ligation-

dependent probe amplification (MLPA). A similar study was

performed recently with gliomas [3]. The examined region

contains a cluster of 3 adjacent receptor tyrosine kinase (RTK)

genes (PDGFRA, KIT and KDR). The corresponding proteins,

namely PDGFRa, c-Kit and vascular endothelial growth factor 2

(VEGFR-2), play a central role in cancer biology and have been

reported with genetic alterations and strong expression in a

number of tumor entities [4,5,6]. Novel drugs target multiple of

these RTKs. Among them is the tyrosine kinase inhibitor sunitinib

malate (Sutent) which was recently approved for treatment of

gastrointestinal stromal tumors (GIST) and renal cell carcinoma.

Sunitinib targets structurally related RTKs including PDGFRa, c-

Kit and VEGFR-2. Here we evaluated the effect of sunitinib on

MPNST cell lines with characterized 4q12 amplification status,

protein and transcript levels. Since gene amplification is a

common mechanism to increase expression of oncogenes, we
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aimed to identify likely target genes of the amplicon. Identification

of genes involved in tumor progression and development provides

the molecular basis for targeted therapy.

Materials and Methods

Tumor tissue, DNA and RNA extraction
Tumor samples were collected from University Hospital Eppen-

dorf (Hamburg, Germany) and Charité – Universitätsmedizin

Berlin (Germany). DNA of 10 MPNST from 9 patients (MPNST

21852 and 22318 belong to the same patient), 4 MPNST cell

lines (S462, ST88-14, NSF-1, S805), low passage MPNST

culture (31002) and dermal fibroblasts was examined. DNA

extraction was carried out with QIAamp DNA Mini Kit from

Qiagen (Hilden, Germany). With the exception of 31002 cells all

other samples originated from NF1 patients. Tumors 22318,

21914, 24472, 24626 and cell line S462 have been analyzed

previously by real time PCR and had increased gene dosage of

PDGFRA and KIT [2]. Before extracting nucleic acids and

protein lysates a slice of each frozen tumor piece was examined

histologically after hematoxylin-eosin staining to exclude con-

taminating non tumorous portions or necrosis. RNA was

extracted using Trizol reagent from Invitrogen (Karlsruhe,

Germany) whenever snap frozen samples were available. The

Figure 1. Amplification and expression of genes located on chromosomal segment 4q12. A) Amplification pattern of 9 genes in an
MPNST and its corresponding cell line S462. Sunitinib targets are highlighted in grey. B) Transcript and protein levels in 5 MPNST cell lines, dermal
fibroblasts and neurofibroma derived Schwann cells (SC).
doi:10.1371/journal.pone.0011858.g001
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quality of all RNAs was examined with a Bioanalyzer (Agilent,

Böblingen, Germany). Samples with an RNA integrity number

(RIN) below 7 were not included. RIN of cell lines was .9. RNA

of nervous tissue and temporal lobe from a patient with

pharmacoresistant epilepsy served as control for RT-PCR.

Ethics Statement
This project was approved by the Charité ethics committee.

Investigations were carried out with written consent of the

patients.

MLPA analysis
We designed a set of 36 half probes in order to examine 9 genes

on 4q12 and 4 control genes mapping to other regions: 8q12-13

(IL7), 3q28 (FXR1), 2q35 (DES), 4q13 (EPHA5). Fourteen probe

pairs were designed to bind to genes on the chromosomal segment

4q12. The genes KIT, PDGFRA, KDR, IGFBP7 and CHIC2 were

each recognized by 2 different probe pairs. A detailed description

of the analysis has been described elsewhere [3]. Ratios of .1.5

were scored as gene amplification because lymphocyte DNAs

never yielded values higher than 1.3.

Real time RT-PCR
Elimination of genomic DNA and reverse transcription was

achieved with the Quantitect reverse transcription kit (Qiagen).

Subsequent PCR reactions were performed with the Quantitect

Sybr Green PCR kit in a volume of 12.5ml containing cDNA

equivalents of 10–20ng RNA. PCRs were performed in triplicates

Table 1. Copy numbers of MPNST and MPNST cell lines on chromosomal segment 4q12.

Tumor ID UPS46 RASL11B LNX1 CHIC2 PDGFRA KIT KDR SEC3L1 IGFBP7

21852* 2,3 2,4 3,4 2,5 2,7 3,1 2,8 2,6 2,9

22318* 0,9 4,5 2,7 3,9 3,1 2,7 3,1 3,0 3,1

21914 5,6 5,8 5,8 5,0 5,0 5,2 6,0 5,2 6,0

24626 2,1 2,0 1,9 1,6 1,7 1,4 2,1 1,8 1,4

24472# 2,9 6,2 17,8 17,4 13,3 6,9 6,9 0,9 1,2

24772 1,1 1,3 1,1 1,2 1,2 0,9 1,2 1,2 1,0

29250 1,0 0,8 1,0 0,9 1,2 1,0 0,9 0,7 0,8

24484 1,1 1,2 1,1 1,2 1,1 1,1 1,2 1,1 1,1

31472 1,1 1,3 1,3 1,1 1,2 1,3 1,0 1,2 1,1

31474 1,1 1,0 1,4 1,0 1,1 1,2 1,0 1,0 1,1

S462# 3,0 3,2 12,7 11,4 8,9 5,8 5,4 0,5 0,8

ST88-14 0,5 0,7 0,6 0,6 0,7 0,5 0,7 0,6 0,6

S805 1,2 1,2 1,4 1,1 1,3 1,3 1,2 0,7 0,8

NSF-1 1,0 0,8 0,9 0,9 1,0 1,2 1,0 0,8 0,9

31002 1,0 0,9 1,0 1,1 1,2 1,0 1,3 1,0 1,0

Fibrobl 0,8 1,0 1,0 1,1 1,0 0,9 1,0 1,0 1,0

Tumor ID EPHA5 (4q13) FXR1 (3q28) DES (2q35) IL7 (8q12-13)

21852* 2,1 1,3 0,7 3,0

22318* 1,9 1,1 0,8 2,3

21914 0,8 1,2 1,2 4,1

24626 1,7 1,3 1,7 0,6

24472# 1,2 1,2 0,8 1,9

24772 1,1 1,3 1,1 1,2

29250 1,0 0,8 1,0 0,9

24484 1,1 1,0 1,0 1,0

31472 0,6 0,9 0,8 1,4

31474 1,2 1,2 1,1 1,1

S462# 0,6 1,1 0,8 1,4

ST88-14 0,5 0,9 1,0 0,9

S805 0,54 1,1 1,2 1,0

NSF-1 0,8 1,0 1,0 1,0

31002 1,0 0,9 1,0 1,0

Fibrobl 1,1, 1,0 1,0 0,9

Genes are listed in their physical order. Numbers indicate fold increase of gene dosage relative to the normal gene dosage. Tumors retrieved from an identical patient
are marked with the same symbol and cell lines and fibroblasts are printed in bold. Control probes on other chromosomal segments than 4q12 are listed in the lower
parts of the table.
doi:10.1371/journal.pone.0011858.t001
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using the 7900HT Fast Real-time PCR System (Applied

Biosystems, Weiterstadt, Germany). Data were accepted as valid

if standard deviation of Ct values was ,0.5 cycle. Intron spanning

primers were designed and melting curves analysis was performed

to ensure specific signals. Primer sequences and amplification

conditions are given in Table S1. Ct values of the target genes

PDGFRA (171bp), KDR (191bp), KIT (180bp), LNX1 (105bp) and

CHIC2 (209bp) were compared to the reference gene RPS3

(188bp). RPS3 was shown to be expressed with similar levels in

benign and malignant nerve sheath tumors [2]. PCR efficiency

determined by serial dilution of cDNA demonstrated similar

results for target and reference genes. DCt was defined as Ct

(target)2Ct (reference). The value for n-fold amplification of

targets in relation to the reference was calculated by n = 2(DCt).

Western blot
Cell cultures were washed with PBS and scraped from the dishes

in ice cold PBS. After centrifugation the cell pellet was

homogenized in ice cold lysis buffer (1% Triton 6100, 100mM

NaCl, 50mM Tris-HCl pH 7.5, 5mM EDTA) containing protease

and phosphatase inhibitor cocktail for 30min. After another

centrifugation step the supernatants were collected and protein

content was measured. Approximately 20mg of the lysates were

heat denaturated and loaded on 4–12% gradient gels (Invitrogen)

for subsequent protein separation. MagicMark XP from Invitro-

gen was applied as size standard. After transfer of proteins to

nitrocellulose membranes (Invitrogen), the membranes were

blocked in 3% non fat dry milk with 0.05% Tween-TBS for 1h

and incubated overnight at 4uC with antibodies to PDGFR-b (sc-

339), PDGFR-a (sc-338), VEGF (sc-152) and FLK-1 (VEGFR-2,

sc-6251) which were diluted 1:200 and obtained from Santa Cruz

Biotechnology, Heidelberg, Germany. The total- and phospho-

MAP-Kinase 1/2 antibodies were from Upstate (USA) and diluted

1:2000. After washing, the membranes were incubated for 1h with

a secondary peroxidase labeled secondary antibody. Visualization

was performed with advanced ECL (Amersham Biosciences,

Freiburg, Germany). To ensure equal loading the membranes

were stained with ponceau S (Sigma-Aldrich, Germany) after

blotting and rehybridized with antibodies to total MAP-Kinase 1/

2 or beta actin (dilution 1:6.000, AC-15) from Sigma for 2h.

Cell culture and apoptosis assays
MPNST cell lines, low passage culture 31002 and dermal

fibroblasts were maintained in DMEM Glutamax-I (1000mg/L

glucose) with 10% FBS and 5mg/mL gentamycin from Invitro-

gen. NF12/2 Schwann cells were cultured as described [7].

Human umbelical vein endothelial cells (HUVECS) were from

Lonza und cultured in HUVEC medium. Sunitinib malate

Figure 2. PDGFRA and CHIC2 transcript levels in MPNST, plexiform neurofibromas (pNF) and dermal neurofibromas (dNF) as
determined by real time PCR. Normal nervous tissue and brain served as control. PCR was performed in triplicates and accepted when Ct value
variation was less than 0.5 cycles. MPNST with gene amplification are marked with *.
doi:10.1371/journal.pone.0011858.g002
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(kindly provided by Pfizer Inc) was dissolved in dimethylsulfoxid

(DMSO) and 10mM stocks were stored at 280uC. During the

drug assays the cells were maintained in DMEM containing 5%

FBS. 105 cells were seeded in 300mL medium into 24 well plates

and allowed to adhere over night. Sunitinib was added in 100mL

to obtain the indicated concentrations. Negative controls

contained vehicle only. Cell proliferation was evaluated on day

4 post treatment with the CellTiter 96 AQueous One Solution

Cell Proliferation Assay (Promega, Mannheim, Germany). The

experiments were performed in triplicates and repeated at least

thrice. The standard error of different assays was calculated. The

effect of growth factors on downstream signaling was determined

in cell culture dishes with a diameter of 10cm. Semiconfluent cells

were serum starved for 24h. Cells were then stimulated with

50ng/mL PDGF-AA (Calbiochem, Schwalbach/Ts., Germany),

100ng/mL VEGF-165 (R&D system) or 100ng/mL EGF (Santa

Cruz Biotechnology) for 10min at 37uC. To check if sunitinib

blocks signaling one dish was incubated with sunitinib for 1h

before growth factors were added. Cell lysates were analyzed by

western blot.

Apoptosis assay was performed with the Apoptag Peroxidase in

situ Oligo Ligation Apoptosis detection kit from Chemicon.

Detached cells from the supernatant were collected by using

cytospin processing. Cells detached by trypsin treatment served as

negative control. The staining procedure was performed according

to the instruction of the manufacturer. DAPI I (Vysis, Inc., IL,

USA) was utilized to detect apoptotic nuclei.

Immunocytochemistry
26104 MPNST cells/well were seeded on Permanox chamber-

slides (Nunc, Wiesbaden, Germany). Cells were fixed with

methanol the following day. The antibodies to VEGFR-2 (dilution

1:50) and VEGF (dilution 1:50) from Santa Cruz Biotechnology

(see western blot) were incubated for 2h. Visualization was

performed with Cy3- (Dianova, Hamburg, Germany) or

Alexa488- (Invitrogen) conjugated antibodies (dilution 1:100).

Negative controls without primary antibodies did not produce

signals.

Determination of VEGF expression
VEGF concentration was measured in lysates of cells and tissues

(20–30mg/well) with the Multi-array 96-well plate from Meso

Scale discovery (Maryland, USA). As positive controls lysates of

glioma cell lines were employed. The assay was performed

according to the manufacturer’s recommendation.

Results

Characterization of the chromosomal segment 4q12 in
MPNST

We analyzed 10 MPNST from 9 patients, 4 MPNST cell lines

and low passage culture 31002 by MLPA. Figure 1A depicts the

amplification patterns of MPNST 24472 and cell line S462, which

was cultivated from this MPNST. The amplicon was maintained

at least for 15 passages in the cell line. All samples with altered

gene dosage are summarized in Table 1. Cell line ST88-14 was the

only sample which had a reduced gene dosage (compatible with

allelic loss). MPNST 21852, 22318 and 24626 show increased

values in control gene EPHA5 on chromosomal segment 4q13,

8Mb distal from IGFBP7. This observation suggests either

chromosome 4 polysomy or an amplicon extending to 4q13.

Expression levels of genes on chromosomal segment
4q12

To determine consequences of gene amplification and to

identify a possible target gene of the amplicon we performed real

time RT-PCR. Five MPNST cell lines were analyzed. Human

fibroblasts and NF12/2 Schwann cells served as controls. We

examined expression of the 3 receptor genes PDGFRA, KIT, and

KDR, because of their central function in tumor biology and their

significance as therapeutic targets. In addition, we determined

CHIC2 and LNX1 expression because of their high copy numbers

(Fig. 1A). PDGFRA and CHIC2 expression correlated significantly

with gene dosage found in S462 cells (Fig. 1A and B). Pearson

correlation revealed a p-value of 0.05 for PDGFRA and ,0.01 for

CHIC2. Correlation coefficients were 0.75 and 0.99, respectively.

Expression levels of KIT and LNX1 (Fig. S1) and KDR (Fig. 4A),

did not correlate with increased copy number found in S462 cells.

In a next step we analyzed expression of PDGFRA and CHIC2 in 7

MPNST, 3 pNF and 5 dNF (Fig. 2). MPNST 21914 and 21852

with increased gene dosage, 5.0 and 2.7 respectively, displayed

strong PDGFRA expression. CHIC2 expression was particularly

strong in MPNST 21914. The data indicate that gene amplifica-

tion can result in elevated levels of CHIC2 and PDGFRA.

Protein expression levels of RTKs
Levels of PDGFRa, c-Kit and VEGFR-2 were determined in 5

MPNST cell lines. Weak signals were detected for c-Kit (data not

shown) and VEGFR-2 but did not correlate with amplification

status of respective cell lines. By contrast, PDGFRa expression

showed strong differences between the cell lines (Fig. 1B). Its strong

expression in S462 cells matched well with the increased PDGFRA

copy number in this cell line. Moreover, weak signal in ST88-14

cells correspond to a PDGFRA gene dosage of 0.7. PDGFRA

transcript and protein levels were also in accordance.

Sunitinib inhibits MPNST cell proliferation, signal
transduction and induces apoptosis

The effect of sunitinib was determined on our characterized

MPNST cell lines. By testing 4 different concentrations (range 0.1–

10mM) we observed a dose dependant inhibition (Fig. 3A B). Cell

lines ST88-14 and S462 showed highest sensitivity to the drug.

The dose that inhibited cell proliferation by 50% (IC50) was 0.5mM

for these cell lines. In order to test if sunitinib can induce apoptosis

we treated S462 cells for 3 days with 10mM sunitinib.

Morphologically, we observed typical signs of apoptosis like cell

shrinkage and detachment from culture dishes (data not shown).

Detached cells contained blunt end double strand DNA breaks, a

typical feature of cells undergoing apoptotis (Fig. 3C). Cells that

still adhered to the dish had already formed apoptotic bodies

(Fig. 3C). In order to determine the effect of sunitinib on PDGFRa
we investigated if the drug would inhibit PDGF-AA induced

downstream signaling via PDGFRa. PDGF-AA dimers exclusively

bind to PDGFRa homodimers [8]. Thus contributions of other

Figure 3. Effect of sunitinib on MPNST cell lines and fibroblasts. A) Dose dependent inhibition of MPNST cell lines after 4 days of treatment.
B) For better comparability of cell lines treatment with 1.0 mM sunitinib is depicted in the bar chart. The dashed line marks IC50. C) Detection of
apoptosis in S462 cells treated for 3 days with 10mM sunitinib. Note formation of apoptotic bodies by DAPI staining (upper panel) and DNA
fragmentation as detected by the Apoptag assay (lower panel).
doi:10.1371/journal.pone.0011858.g003
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Figure 4. Expression of VEGF and VEGFR-2 in MPNST cell lines and inhibition of growth factor induced signaling by sunitinib. A)
Transcript levels of KDR (VEGFR-2) and VEGF. Corresponding concentrations of VEGF in cell lysates is shown below the bar chart (nt: not tested; ND:
not detected). On the right side cytochemistry of VEGF and VEGFR-2 in S462 cells is shown. B) Serum starved MPNST cell lines ST88-14 and S462 were
stimulated with PDGF-AA (50ng/ml). Where indicated cells were pre-incubated with 5mM sunitinib for 1h to block signaling. C) Serum starved HUVECs
were stimulated with VEGF-165 (100ng/ml) or HUVEC medium (HM). D) VEGF-165 (100ng/ml) was used to stimulate serum starved NSF1 cells.

4q12 Amplicon in MPNST
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receptors can be excluded. Stimulation with PDGF-AA led to

elevated levels of phosphorylated MAP kinase (pMAPK) in both

cell lines tested (Fig. 4B). Increase in pMAPK was totally blocked

by pre-incubation of 5mM sunitinib.

In a next step we wanted to find out whether the VEGF/

VEGFR-2 signaling loop is functional in MPNST cells and might

play a role in tumor biology. With different methods we provide

evidence for co-expression of VEGF and its receptor (Fig. 1B und

4A). Moreover, we show that VEGF is expressed in solid nerve

sheath tumors (Table 2). In order to test if VEGF triggers signal

transduction we stimulated MPNST cells with VEGF-165 (100ng/

ml). HUVECs served as positive control and showed proper

induction of pMAPK upon stimulation with either VEGF or

HUVEC medium (Fig. 4C).

The effect of VEGF was then tested on MPNST cell lines S462

and NSF1. EGF (100ng/ml) was used as positive control. EGF is

an important growth factor for MPNST and induced a strong

pMAPK signal (Fig. 4D & E). Although less pronounced, addition

of VEGF also led reproducibly to elevated pMAPK in S462 and

NSF1 cells (Fig. 4D & E). Pre-incubation with sunitinib blocked

VEGF induced activation completely in both cell lines. Because

growth factors like PDGF and VEGF are produced by MPNST

cells we tested serum-free DMEM cultivated for 48h with sub-

confluent S462 cells for its ability to induce pMAPK. Conditioned

medium (CM) failed to pMAPK increase, which is likely to be

explained by low growth factor concentrations.

Discussion

We show here that multiple genes on chromosomal segment

4q12 are amplified in a subset of MPNST and one MPNST cell

line. Taking into account previously analyzed tumors [2] the

amplicon is present in about 15% of MPNST and encompasses

numerous genes. Previous studies on chromosomal imbalances

found chromosomal gains more frequently than losses [9,10]. This

finding supports the idea that oncogenes are more frequently

affected in MPNST than tumor suppressor genes, at least in the

later stage of the disease. Moreover, both studies found gains of

chromosomal arm 4q in MPNST.

Although gene alterations typical for a certain entity are often

overrepresented in cell lines as compared to solid tumors they can

also be lost during in vitro expansion. This phenomenon has been

consistently reported for glioblastoma, which frequently carry

amplified EGFR. Pandita et al. studied in vitro and in vivo fate of

amplified EGFR in glioma cells. They could show that the in vivo

environment selected for EGFR amplification, whereas in vitro

expansion selected against this alteration [11]. Here we show that

the amplification pattern in cell line S462 reflects the pattern of the

corresponding MPNST. Thus, the tumor bulk and the cell

population growing in culture are alike concerning the 4q12

amplicon. Cell line S462 appears therefore as a good model, for

example for testing drugs that target proteins encoded by genes

within the amplicon.

Concerning novel therapeutic approaches the most attractive

genes within the amplicon are the 3 structurally related RTKs. In

our previous study we showed that PDGFRa is expressed in 75%

of MPNST and in MPNST cell lines [2]. This result suggests that

PDGFRA is an important player in MPNST biology and may be

the target gene of the amplicon. By contrast, c-Kit expression,

which was also analyzed, showed infrequent and weak expression

and was not present in cases that revealed to harbor increased KIT

copy numbers. These results argue against a prominent role of KIT

within the amplicon. PDGFRa, a well known oncogene, displays

increased copy numbers in different tumor entities including

glioblastoma [3,12]. Glioblastoma and MPNST originate both

from a neuroectodermal cell type. Thus, one may speculate that

tumorigenesis follows a similar molecular pathogenesis. PDGF is a

strong mitogenic factor for glia cells and thought to play a key role

in astrocytoma genesis [13]. Since the PDGF/PDGFR system is of

major importance in formation of glial tumors it is very likely that

gene amplification contributes to increased expression of PDGFRA.

However, we cannot exclude that other genes within the amplicon

contribute to tumor formation or progression. At least CHIC2

expression was upregulated in some of the samples with underlying

gene amplification. Notably, cases of acute myeloid leukemia with

a CHIC2-ETV6 fusion gene have been reported indicating a

possible role of CHIC2 in cancer [14]. However, its function

remains largely unknown.

Self-sufficiency in growth signals is among the hallmarks of

cancer [15]. Multiple mechanisms can lead to a higher grade of

independence from exogenous growth stimuli, for example,

increased expression of receptors and ligands or mutated

constitutive active receptors. In the context of NF1 such

mechanisms are likely to be extra-ordinary effective because

prolonged signal transduction takes place in NF1 deficient cells

[16]. Moreover, NF1 deficient cells express elevated levels of tumor

supporting growth factors [17,18]. Interference with growth factor

signaling appears thus attractive in NF1, in particular when the

tumors also express high levels of respective receptors. Previously,

we have shown that imatinib inhibits proliferation of MPNST cells

[2]. Sunitinib and imatinib have an overlapping range of target

molecules (PDGFRa, PDGFRb, c-Kit). However, sunitinib has an

even broader spectrum of structurally related receptors including

VEGFR1–VEGFR3, and fms-related tyrosine kinase 3 (FLT3)

and colony-stimulating factor-1 receptor (CSF-1R) [19,20,21]. By

targeting a multitude of receptors sunitinib affects different

pathways, which mediate angiogenesis, proliferation and invasion

of tumor cells. While 10mM of imatinib was necessary to reduce

proliferation of S462 cells by 50% only 0.5mM of sunitinib was

needed. One reason for more effective inhibition by sunitinib

might be its broader target spectrum. Most sensitive to sunitinib

were cell lines S462 and ST88-14 although the latter one

expressed only little amounts of PDGFRa. However, western blot

Sunitinib blocked VEGF induced signaling. E) VEGF-165 and conditioned S462 medium (CM) was used to stimulate serum starved S462 cells. EGF
(100ng/ml) served as positive control. Cells were pre-incubated with 5mM sunitinib where indicated. Densidometric analysis of pMAPK/total MAPK is
shown in the bar chart.
doi:10.1371/journal.pone.0011858.g004

Table 2. VEGF (ng/mL) expression in solid nerve sheath
tumors.

sample MPNST pNF dNF

1 1150 (613) 14 (61.6) 3 (61.6)

2 74 (611) 3 (60.8) 8 (61.2)

3 26 (60.8) 42 (60)

4 19 (61.2) 5 (63.6)

5 15 (63.7)

Values given represent the mean of duplicates.
doi:10.1371/journal.pone.0011858.t002
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analysis showed that ST88-14 cells express high levels of the

sunitinib target PDGFRb (data not shown), which may explain the

sensitivity of this cell line. Moreover, ST88-14 cells harbor wild

type TP53 making them more sensitive in general. In contrast,

S462 cells carry mutant TP53 [22]. It is well known that the TP53

status can modulate the effect of receptor targeting drugs [23].

Up to now no clinical studies on sunitinib are available for

MPNST patients. However, few MPNST patients have been

treated with imatinib [24]. The clinical response was not

convincing with only one patient showing stable disease and 4

patients with progressive disease. Mutation or expression data of

imatinib targets were not available. We assume that imatinib as

single treatment may not be sufficient for most MPNST, because

these tumors accumulate multiple alterations during the course of

progression. However, molecular analysis of MPNST prior to

treatment may help to identify subgroups of patients, which may

profit from imatinib or suntinib treatment. Moreover, the

combination with other drugs could also improve clinical response.

Inhibition of the tumor promoting effect of mast cells mediated by

imatinib may be sufficient for pNF [25] but not enough for

MPNST.

Besides being a key regulator of angiogenesis VEGF acts also as

neuroprotective factor. Protective and mitogenic effects have been

reported for neuronal and glial cells in vitro and in vivo [26]. Here

we show that VEGF and VEGFR-2 are co-expressed in MPNST

cells and that VEGF triggers signal transduction suggesting a

functional significance. In an ovarian carcinoma model the

VEGF/VEGFR-2 loop protected tumor cells from anoikis [27].

Another study showed a pro-mitogenic autocrine loop in

glioblastoma cells which protected from ionizing radiation [28].

Thus, in addition to its pro-angiogenic potential VEGF may have

supportive and/or protective effects on tumor cells. Reagents

blocking the VEGF/VEGFR-2 loop could thus inhibit tumor

growth by two mechanisms: blockage of vessel formation and

interference with autocrine signalling.

It is well known that peripheral nerve sheath tumors are highly

vascular and can stimulate angiogenesis in vivo [29]. Moreover,

tumor derived human Schwann cells from NF1 patients can

stimulate angiogenesis and there is evidence for enhanced

expression of angiogenic factors in NF1 deficient cells [17] A

recent study showed VEGF expression in all MPNST analyzed

(n = 22). VEGF expression and micro vessel density was

significantly higher in MPNST than in neurofibromas and

schwannomas [30] suggesting a role in tumor progression. Our

results confirm higher expression of VEGF in MPNST than in

neurofibroma (table 2) and provide first evidence for a functional

VEGF/VEGFR-2 loop in MPNST. However, further analysis is

needed to assess the exact role of VEGF in nerve sheath tumor

biology.

Taken together, our data support the idea that sunitinib may be

used for treatment of MPNST patients. We show that the drug is

effective on MPNST cell lines within the low micro molar range, a

concentration that is achieved in patients plasma [31] (An AUC at

steady state of 1mg*h/ml corresponds to 1.9mM sunitinib). Because

sunitinib targets multiple receptors expressed or over-expressed in

MPNST the drug undermines several ‘‘survival strategies’’ of the

tumor. Finally, presence of the 4q12 amplicon might serve as a

predictive marker for sunitinib response.

Supporting Information

Figure S1 Transcript expression levels of KIT and LNX1
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