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Abstract

Auricularia cornea (E.) polysaccharide is an important component of A. cornea Ehrenb, a

white mutant strain of Auricularia with biological activities, such as enhancement of human

immune function and cancer prevention. The hyaluronic acids (HAs) are important compo-

nents of the A. cornea polysaccharide and have extremely high medicinal value. In this

study, we used HA to search the target protein sucrase-isomaltase (SI). In addition, we also

performed molecular dynamics (MD) simulations to explore the binding of three inhibitors

(HA, acarbose and kotalanol) to SI. The MD simulations indicated that the binding of the

three inhibitors may induce the partial disappearance of α helix in residues 530–580. Hence,

the hydrogen bond for Gly570-Asn572, which was near the catalytic base Asp471 in SI, was

broken during the binding of the three inhibitors. We reveal a new inhibitor for SI and provide

reasonable theoretical clues for inhibitor binding to SI.

Introduction

Auricularia auricula is an edible and medicinal fungus ranking fourth in production among

the worldwide [1–4]. Scientific research is extensive on this species because of the abundant

resources of A. auricula in China [5, 6]. In 2005, Lin et al. found a new a kind of white variant

Auricularia fungus named as A. fucosuccinea. In 2017, Dai et al. named this white variant as A.

cornea Ehrenb [7]; the variant is highly nutritious and has high economic value [8].

In 2018, Li Yu et al. pointed out that A. cornea Ehrenb suppressed the levels of total choles-

terol and triglyceride and enhanced levels of hepatic glycogen and high-density lipoprotein

cholesterol, which may be involved in diabetes mellitus (DM) [7], which is a progressive meta-

bolic disease [9].

The polysaccharide of A. cornea Ehrenb has been widely studied; it is an important chemical

component for regulating human life activities. The polysaccharide content of A. cornea
Ehrenb is reportedly better than other Auricularia species [7]. A. cornea Ehrenb polysaccharide
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is widely used in medicine, food science and other fields. However, we still do not know which

components in the polysaccharide of A. cornea Ehrenb are involved in metabolic disease.

Hyaluronic acid (HA) is the important compound of polysaccharide of A. cornea Ehrenb.

HA belongs to the glycosamino glycans connected with β 1,4 glycosidic bond. Considering its

unique physical and chemical properties, HA is widely used in medicine [10–12]. So, in this

study, HA was used to search the target protein in metabolic disease. Sucrase-isomaltase (SI)

functioned as an attractive target for inhibition by α-glucosidase inhibitors as a means of con-

trolling blood glucose levels in individuals with type 2 diabetes [13, 14]. In addition, we also

used molecular dynamics (MD) simulations to explore the binding mode of the three inhibi-

tors (HA, acarbose and kotalanol) to SI. Our results will provide useful clues for further A. cor-
nea Ehrenb study.

Methods

Reverse docking

The 2D structure of HA was used for SwissTargetPrediction [15] to search for the target

protein.

Protein preparation

The 3D structure of the SI was obtained from the RCSB Protein Data Bank (www.rcsb.org)

(PDB ID: 3LPO) [13]. The 3D structures of HA, acarbose and kotalanol were downloaded

from the Chemspider database (www.chemspider.com). In this study, AutoDock Vina [16]

was used to construct protein-inhibitor complexes. In the AutoDock Vina configuration files,

the parameter num_modes was set to 9 Å. We identified the receptor binding pocket based on

the point of the substrate binding to the SI. Hence, we kept all the rotatable bonds in ligands

flexible during the docking procedure, and we kept all the protein residues inside the binding

pockets rigid. The Kollman charges were used to convert all receptors and ligands to the

PDBQT format using the AutoDockTools package [17]. The search spaces were 30 × 30 × 30

Å. The docking results were clustered automatically.

Molecular dynamics simulations

All MD simulation courses were conducted by using the Amber 16 package [18]. The AMBER

ff99SB forcefield [19] was applied to the SI-inhibitor complexes. Then, they were solvated

using the TIP3P water model [20] with the box at 12 Å. The Counter ions (Na+ and Cl-) were

assigned to neutralise the three systems. Based on each of the prepared systems, energy mini-

mization was used for the solvent complexes. Then, the constraints were used on protein back-

bone atoms. During the energy minimisation, the steepest descent algorithm [20] and

conjugate gradient algorithm [21] were used successively. Subsequently, each system under-

went a gradual heating process for 500 ps from 0 to 300 K and then was equilibrated for at 300

K for another 500 ps. Finally, the whole system was performed 100 ns MD simulation at 1 atm

constant pressure and 300K constant temperature conditions. We used the Langevin Nosé–

Hoover thermostat [22, 23] and the Parrinello–Rahman method [24, 25] to maintain a con-

stant temperature and a constant pressure of 1 atm in each system. The LINCS algorithm were

constrained by all bonds [26]. The long-range electrostatic interactions were performed with

the particle mesh Ewald method [27] with a grid size of 1.2 Å. The periodic boundary condi-

tions were implemented in all directions along the simulation box.
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Data analyses

PCA was performed using Bio3D version 2.3.0 to study the collective motions in 100 ns of pro-

tein-ligand complex [28, 29]. This method used the calculation and diagonalisation of the

covariance matrix. The covariance matrix was calculated as follows:

Cij ¼ <ðxi� <xi>Þðxj� <xj>Þ> ð1Þ

where xi/xj is the coordinate of the ith/jth atom of the systems. Free energy landscape (FEL) is

a map of all possible conformations of molecular entities [30] and can be used to understand

the stability, folding and function of the protein. The FEL can be constructed as follows:

DGðXÞ ¼ � KBTlnPðXÞ ð2Þ

where KB is Boltzmann constant, T is the temperature of simulation systems, and 300 K is set

in the current calculations. P(X) is the probability distribution of the molecular system along

the PCs.

MM-PBSA calculations

Molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) is a popular method to cal-

culate the binding free energy between protein and ligands. It is more accurate than most scor-

ing functions of molecular docking and less computationally demanding than alchemical free

energy methods with Amber 16 package [18].

The Molecular Mechanics-Generalised Born Surface Area (MM/GBSA) method in

AMBER16 package [18] was used to calculate the binding free energies. A total of 200 snap-

shots were chosen evenly from the MD trajectory.

Results and discussion

Reverse docking

Firstly, HA was used to search for target protein with SwissTargetPrediction [15]. Among

these results, the possibility of binding score between the target proteins and HA is not very

different. SI is an attractive target for inhibition by α-glucosidase inhibitors to control blood

glucose levels related to type 2 diabetes [14]. In 2018, Li Yu et al. pointed out that A. cornea
Ehrenb was involved in DM [7], a progressive metabolic disease [9]. In addition, HA is a disac-

charide; so, SI was selected for further study.

Binding pose of the inhibitors to SI

SI is composed of the N- and C-terminal duplicated catalytic domains (Fig 1A). The N-termi-

nal catalytic domain of N-terminal SI has a broader specificity for both 1,4- and 1,6-oligosac-

charides [13]. Acarbose and kotalanol (the known α-glucosidase inhibitors) [13] and HA in

Fig 1B–1D are docked with AutoDock Vina. The complex with SI bound with kotalanol were

upload from PDB (PDB code 3LPP). The SI- kotalanol interaction was shown in S1A Fig. We

also docked kotalanol to SI (S1B Fig). It can been seen that the docked kotalanol was similar to

the crystal kotalanol, which indicated the docking software, AutoDock Vina, was reliable.

According to Fig 2A–2C, it can be concluded that the disaccharide base of acarbose, kotala-

nol and HA was located at an active site. According to the SI-acarbose complex in Fig 2A, the

residues Asp632, Trp327, Arg555, Trp435, Asp231, Phe479, Met473, Leu233, Asp571, Phe604

and Ser631 were related to acarbose binding. In particular, Asp632, Srer631, Asp571, Arg555

and Asp231 made a hydrogen bond with acarbose, and hence, they are possibly important resi-

dues for acarbose binding to SI. Fig 2B shows that residues Glu232, Leu233, Phe604, Phe479,
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Trp327, Asp355, Trp435, Ile356, Ile392, His629, Asp472, Trp470, Arg555, Asp571, Asp231 and

Met473 were important residues for kotalanol binding. His629, Asp355, Asp571, Arg555,

Asp231 and Lys509 formed hydrogen bonds with kotalanol. Fig 2C shows that Gln481,Ser508,

Asp503, Arg230, Asp632, Tyr634, Trp327, Ser631, Val605, Phe604, Gln232, Asp231, Lys509,

Phe429 and Leu233 were around HA binding. In particular, Gln481, Ser508, Asp503, Arg230,

Lys509,Glu232, Phe429, Asp632 and Ser631 were anchor residues, because they made a hydro-

gen bond with HA. The three inhibitors were all in the catalytic (α/β)8 barrel subdomain (resi-

dues 297–681). Seen from S1B–S1D Fig, the docked kotalanol and acarbose had similar pose

with crystal kotalanol. They are all in the same active pocket. So, the three complexes were reli-

able and can be used for further study.

Conformational changes for the inhibitors binding to SI

To explore the conformational changes for the inhibitors binding to SI, MD simulations for

the four systems (SI, SI-acarbose, SI-kotalanol and SI-HA) were performed with Amber 16

software [18]. The parameters of MD simulations are listed in Table 1. According to Fig 3A

(RMSD plot), all four complexes were stable. MD simulation for free SI at a trajectory of 100

ns and with RMSD value of 2.4 Å was used as a reference. According to the curves where SI

combined with any inhibitor, the value of RMSD became lower than that in free protein in the

catalytic domain (residues 297–681). SI with kotalanol had a more drastic score that other

inhibitor-enzyme complexes either in the full protein or in the catalytic domain (residues 297–

681). Our results indicated that the conformational changes in a protein were more than those

that occurred in a protein with inhibitors. When SI combined with an inhibitor, the

Fig 1. (A) The 3D structure of SI (PDB code 3LPO). (B) the disaccharide base of kotalanol. (C) The disaccharide base

of acarbose. (D) The disaccharide base of HA.

https://doi.org/10.1371/journal.pone.0255351.g001
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conformation became stable. Kotalanol is a better inhibitor with lower Ki compared with the

others, and so, it may induce larger conformational changes in SI [13].

The rigidity of the protein system was examined using Rg values. The Rg plot of the α-car-

bon atoms versus time was obtained and presented in Fig 3B. The Rg values retained their sta-

bility throughout the 100 ns time of the MD simulation, which corresponded to the

Fig 2. (A) The docking pose of SI-acarbose. (B) The docking pose of SI-kotalanol. (C) The docking pose of SI-HA.

https://doi.org/10.1371/journal.pone.0255351.g002

Table 1. The number of atoms in different systems.

non-ligand kotalanol acarbose HA

protein 13740 13740 13740 13740

ligand 0 50 87 97

ions(Na+) 25 25 25 25

water 93408 93399 93351 93318

total 107173 107214 107203 107180

https://doi.org/10.1371/journal.pone.0255351.t001
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Fig 3. (A) The RMSD plot during MD simulations. (B) The Rg plot during MD simulations. (C) The SASA score.

https://doi.org/10.1371/journal.pone.0255351.g003
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simulation. These values were used to facilitate the interpretation of the secondary structure.

The Rg value for four systems (in full protein) was stable at about 28 Å, whereas the four sys-

tems, i.e., the catalytic domain (residues 297–681), were stable at about 21 Å. The three inhibi-

tors made the secondary structure of the catalytic domain (residues 297–681) more stable and

compact.

The overall conformational changes were further validated by the SASA graph, which was

plotted against the MD simulation time, as shown in Fig 3C. The probabilities based on the

SASA plots indicated that the four complexes had similar values. However, in Fig 3D, the

SASA score of Tyr299, Trp327 and Lys480 were shown to be lower than that in the free SI. At

the same time, Asp443, Asp542 and His600 had higher SASA score than SI. All six residues

were located at the active site. These changes may cause some movement for inhibitor

binding.

Fig 4A shows the RMSF plot, which was calculated to evaluate the protein flexibilities when

it combined with the inhibitor or without inhibitors. The observed fluctuations were local and

limited to the modification sites. The Fig 4A indicated that free protein amino acid residues at

the positions of 406, 480 and 542–576 fluctuated relative to the others and in comparison with

the other curves. The amino acid residue fluctuations for combined inhibitor protein were

Fig 4. (A) RMSF plot during MD simulations. (B) the active residues for inhibitors binding.

https://doi.org/10.1371/journal.pone.0255351.g004
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stable and similar during the MD simulation. Fig 4B shows the active residues Trp406, Lys480,

Ala576 and Asp542.

To explore the secondary structural changes related to the binding of three inhibitors, sec-

ondary structures during MD simulations were calculated, as shown in Fig 5A–5D. Fig 5A–5D

shows the location of residue Gly530 to Glu580. The conformational changes caused by the

three inhibitors were investigated and compared with those caused by the free SI. To investi-

gate the conformational changes, we obtained the difference in the secondary structure

(DSSP). The DSSP of residues Gly530 to Glu580 differed from that in the SI-inhibitor. The α
helix of residues Gly530 to Glu580 in SI-inhibitors partly disappeared.

Among them, we truncated the most different parts, as presented in Table 2. In residues

Gly530 to Glu580, free SI had a probability of 86.50%–100.00%, whereas the probabilities of

the other systems were almost decreased. As Gly530 to Glu580 belongs to the catalytic domain

(residues 297–681), so the conformation change on the 530–580 domain induced by inhibitors

binding may be the main factor affecting the efficiency of enzyme catalysis.

According to Fig 6A, 6C and 6E, free SI stayed stable within the 1.5 Å RMSD value. How-

ever, the RMSD value of the three inhibitor-enzymes were kept at a high level, showing that

Fig 5. Differences in the secondary structures of residues Gly530 to Glu580 of (A) SI. (B) SI-kotalanol. (C) SI-HA. (D)

SI-acarbose.

https://doi.org/10.1371/journal.pone.0255351.g005

Table 2. The probability (%) for alpha (residue 530–580) of the four systems during MD simulations.

W547 E548 Q549 M550 E551 G556 M557 L558 E559 F560

non-ligand 86.50 87.00 93.00 95.00 89.50 100.0 100.0 100.0 99.50 99.50

kotalanol 39.00 39.00 44.00 44.00 43.00 14.00 24.50 26.50 47.50 65.50

hyaluronic acid 27.00 30.50 62.50 63.00 62.00 98.50 99.50 86.00 86.00 94.50

acarbose 40.00 40.50 43.00 50.00 60.00 98.00 99.50 99.50 98.00 98.00

https://doi.org/10.1371/journal.pone.0255351.t002
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the three inhibitors binding to SI induced Gly530 to Glu580 domain flexibly. Fig 6B, 6D and

6F show the relative frequency of RMSD plot of Gly530 to Glu580 domain for the free SI with

the SI-inhibitor complex. Thus, the three inhibitors binding to SI caused drastic changes in the

Gly530 to Glu580 domain. Residues Gly530 to Glu580 contained the acid/base catalyst,

Asp571.

Seen from Fig 7A, Asn572 made hydrogen bonds with Gly570. The relative frequency

of distance between Asn572 and the O atom of Gly570 of the four complexes are shown

in Fig 7B. The hydrogen bond between Asn572 and Gly570 contained all the MD simula-

tions (about 2 Å), whereas this may become weak in the inhibitor-SI complexes (SI-HA,

about 3 Å), or it disappeared. Residues Gly530 to Glu580 contained acid/base catalyst,

Asp571. The hydrogen bond weakened and disappeared, which may be useful to inhibi-

tor binding.

Principal component and free energy landscape analysis

We probed the internal dynamics of different system, and the results were depicted in the fig-

ure. The four systems exhibited obvious differences in the correlated extents of protein

motion. The Gibbs free energy landscape (FEL) was calculated using the first two principal

components as reaction coordinates. Using principal component analysis (PCA), Helmoltz

free energy change was calculated. The sum percentage of PC1 and PC2 for four systems were

shown in Table 3, and the FELs obtained from the simulations were plotted, as shown in Fig

8A–8D. The FEL can provide remarkable information about the different conformational

states accessible to the protein in the simulation. As shown in the figure, the inhibitor-protein

was significantly different from the free protein. This energy minimum corresponded to a

structure with some loss of irregular secondary structures, such as coils and turns. The struc-

tures of the two most stable conformations of SI revealed that the conformational changes in

the α helix in residues 530–580 domain (partly disappeared) existed all SI-inhibitor complexes.

This finding was consistent with the previous analysis.

Fig 6. (A) RMSD plot of residue 530–580 between free SI and SI-kotalanol. (B) the relative frequency of RMSD plot of

residue 530–580 between free SI and SI- kotalanol. (C) RMSD plot of residue 530–580 of free SI and SI-HA. (D) the

relative frequency of RMSD plot of residue 530–580 between free SI and SI- HA. (E) RMSD plot of residue 530–580

between free SI and SI-acarbose. (F) the relative frequency of RMSD plot of residue 530–580 between free SI and SI-

acarbose.

https://doi.org/10.1371/journal.pone.0255351.g006
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Interaction of ligand and protein during the stable time and the structural

motion

Several frames were picked to obtain prospective ligand-protein interactions to compare with

the binding affinities of different ligands. Nodes were coloured according to the secondary

structure of the residue. For SI-kotalanol in Fig 9A, Trp470, Arg555, Asp231, Trp568, Asn232,

Asp571, His629, Leu233, Phe604, Trp327, Asp355, trp455, Lys509, Ile292 and Asp472 had an

interaction with kotalanol. For SI-HA in Fig 9B, Asp503, Asn232, Leu233, Val605, Ser631,

Asp632, Trp327, Phe470, Lys509, Asn481, Ser508, Asp231 and Arg230 had an interaction with

HA. For SI-acarbose in Fig 9C, Val434, Phe479, Met473, Arg555, Asp231, Asp571, Leu233,

Ser631, Asp632, Trp327, Lys327, Lys362 and Trp435 had an interaction with acarbose. Kotala-

nol was the most tightly bound protein. Protein binding with acarbose and HA was weak. This

finding was consistent with the previous analysis, in which HA had a higher Ki than kotalanol.

MM-PBSA calculations

By calculating the potential energy in the vacuum, van der Waals, electrostatic interactions

and net non-bonded potential energy between the protein and ligands were calculated, as

Fig 7. (A) The distance between Asn572H and the O atom of Gly570. (B) The relative frequency of distance between

Asn572H and the O atom of Gly570 of the four complexes. (C) The hydrogen bond between Asn572H and the O atom

of Gly570.

https://doi.org/10.1371/journal.pone.0255351.g007

Table 3. The probability(%) for corresponding most stable structures and substable structures.

PC1 PC2

non-ligand 33.04 10.10

kotalanol 35.84 11.91

HA 25.81 11.72

acarbose 30.35 9.17

https://doi.org/10.1371/journal.pone.0255351.t003
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shown in Table 4. An average binding energy equal to -66.47 kcal /mol was achieved for SI-

kotalanol, -54.39 kcal /mol for SI-HA and -49.58 kcal /mol for SI-acarbose. This finding was

consistent with the previous analysis, in which HA had a higher Ki than kotalanol.

Fig 8. Free energy landscape (FEL) and structures of the two most stable structures of the four systems. The α helix in residue 530–580 (A) ADA.

(B) ADA-FR0 complex. (C) ADA-FR2 complex. (D) ADA-PRH complex.

https://doi.org/10.1371/journal.pone.0255351.g008
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Conclusion

The HA is an important component of the A. cornea (E.) polysaccharide and has extremely

high medicinal value. We used HA as the lead compound to search the target protein sucrase-

Fig 9. Subnetwork analysis of the protein−ligand interaction. (A) The subnetwork of SI-kotalanol. (B) The subnetwork of SI-HA. (C) The subnetwork of SI-

acarbose.

https://doi.org/10.1371/journal.pone.0255351.g009
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isomaltase (SI). Then, the QSAR model was used to predict the inhibition kinetics of HA. The

MD simulations showed that the binding of the three inhibitors may induce the partial disap-

pearance of the α helix in residues 530–580. Our results may provide reasonable theoretical

clues on the acidic heteropolysaccharides of A. cornea (E.).

Supporting information

S1 Fig. (A) The interaction between SI and kotalanol. (B) The location diagram of crystal

kotalanol and (B) docked kotalanol, (C) docked acarbose. (D) docked hyaluronic acid.

(TIF)
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