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ABSTRACT

The yeast mutant collections are a fundamental tool
in deciphering genomic organization and function.
Over the last decade, they have been used for the
systematic exploration of ∼6 000 000 double gene
mutants, identifying and cataloging genetic interac-
tions among them. Here we studied the extent to
which these data are prone to neighboring gene ef-
fects (NGEs), a phenomenon by which the deletion
of a gene affects the expression of adjacent genes
along the genome. Analyzing ∼90,000 negative ge-
netic interactions observed to date, we found that
more than 10% of them are incorrectly annotated
due to NGEs. We developed a novel algorithm, GIN-
GER, to identify and correct erroneous interaction
annotations. We validated the algorithm using a com-
parative analysis of interactions from Schizosaccha-
romyces pombe. We further showed that our predic-
tions are significantly more concordant with diverse
biological data compared to their mis-annotated
counterparts. Our work uncovered about 9500 new
genetic interactions in yeast.

INTRODUCTION

The yeast Saccharomyces cerevisiae has been a model organ-
ism for genetic studies since the 1950s (1). Among its obvi-
ous advantages are a rapid growth rate, easy-to-carry-out
genetics and biochemical procedures, the ability to intro-
duce foreign DNA and the ease with which genomic manip-
ulations can be implemented. The construction of ordered
mutant libraries jump-started the systems biology revolu-
tion by allowing the systematic analysis of a variety of cel-
lular phenotypes. The non-essential deletion collection con-
sists of ∼4700 yeast strains, each carrying a precise dele-
tion of a single, non-essential gene, replaced by a marker
gene that confers antibiotic resistance (2). Two additional

collections include either hypomorphic (3) or temperature-
sensitive (4,5) alleles of the remaining ∼1100 essential genes.
Going beyond single genes, the development of the Syn-
thetic Genetic Array (SGA) technology (6,7), allowed the
large scale systematic surveys of double mutants. One of the
most ambitious goals of these large-scale explorations is an
investigation of all the possible genetic interactions (GIs) in
yeast. In brief, each mutant is combined with all the others,
and the growth rate of the double mutants is compared to
that of the single mutants. A differential increase or decrease
in fitness (measured by the size of the colonies formed) im-
plies either a positive or a negative genetic interaction. As
the genome of S. cerevisiae contains ∼6000 genes, the com-
pletion of this project will require the creation of ∼36 000
000 yeast strains. Up to now, ∼6 000 000 of these have been
created and analyzed (8). The resulting database constitutes
one of the most important resources for the analysis of ge-
nomic function.

One obvious assumption, when using these mutant col-
lections, is that any phenotype observed in a particular
strain stems from the specific mutation carried by the
strain (either a perfect deletion, an hypomorphic or a
temperature-sensitive allele). However, the apparent direct
relation between the mutated gene and the phenotype is
sometimes misleading (9–14). As previously demonstrated
(15), the mutations may affect the expression of genes lo-
cated next to the deleted genes along the genome. We refer
to this effect as the neighboring gene effect (NGE). We have
previously shown that NGE contaminates the results of sys-
tematic analyses in yeast in a non-trivial fashion: analysis of
four different genetic screens found between 7 and 15% of
NGE cases (15). The direct result of the NGE is a double
mis-annotation: the correct gene mutation is annotated as
having a phenotype it lacks, whereas the gene responsible
for the phenotype (the adjacent gene) is not identified. It is
therefore important to identify NGE cases and correct the
annotation. Briefly, our previous approach selected between
deleted genes and their neighbors by connecting them, via
a protein–protein interaction (PPI) network with genes that
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are known to be central to the studied phenotype. We rea-
soned that NGE may also result in mis-annotations among
the large-scale GI network being created. The approach de-
veloped, however, cannot be applied to growth phenotype
where the fitness of different mutants is affected via a vari-
ety of different biological mechanisms (16).

Here we study potential annotation errors in the largest
database of genetic interaction data available to date (8,17),
showing that systematic biases due to NGE greatly affect
these data. We present the Genetic Interaction Neighboring
Gene Effect Recovery (GINGER) algorithm to detect cases
in which the neighboring gene, rather than the deleted one,
should be considered the real genetic interactor. GINGER
overcomes the need to specify central genes, by using data
on physically interacting genes as partial evidence to the
similarity between their genetic profiles. Subsequently, these
local evidences are combined so that the overall evidence
over the set of available interactions is maximized. Our anal-
ysis suggests significant NGE biases that cover more than
10% of the experimental results reported to date.

MATERIALS AND METHODS

S. cerevisiae genetic interaction data

Raw genetic interaction data for 6.6M double knockout ex-
periments were downloaded from Costanzo et al. and fil-
tered using the cutoffs recommended by the authors (|�|
> 0.08 and P-value < 0.05) (8,17). Reciprocal interactions
with � having different signs or where one of the P-values
did not meet the cutoff were removed. Focusing on nega-
tive interactions among non-essential genes, these thresh-
olds yielded an initial set of 88 037 genetic interactions. We
additionally used stringent cutoffs, as defined by Costanzo
et al., to create a ‘strict’ dataset (� < −0.12 or � > 0.16;
P-value < 0.05).

Construction of a gold standard

Genetic interaction data for Schizosaccharomyces pombe
were compiled from two recent studies (18,19). Low confi-
dence interactions (S-score > −2.0) were not considered in
our analysis. Reciprocal interactions with S-scores indicat-
ing different interaction type (negative versus positive) were
additionally removed from the dataset, resulting in a set of
121 921 negative genetic interactions.

Information about orthologouos genes between S. cere-
visae and S. pombe was downloaded from PomBase (20),
discarding non-unique S. cerevisae to S. pombe mappings.
Interactions that are conserved between S. cerevisae and S.
pombe were considered as positive (non-NGE) cases. For
the negative (NGE) cases, we compiled a list of suspected
interactions; these are interactions that are not conserved
but when one of the interactors was replaced with its neigh-
bor the interaction was found in S. pombe but not in S. cere-
visiae.

The training set was refined by removing interactions that
were neither found in low-throughput experiments nor sup-
ported by the network. The set of low-throughput experi-
ments was downloaded from BioGRID (21). Network sup-
port is measured by the number of incomplete bipartite
graphs containing the suggested interaction as the missing

edge. The bipartite graph motif was previously shown to be
a good predictor for potential genetic interactions (22,23).
Accordingly, we removed suspected interactions if they were
supported by fewer bipartite motifs than the observed ones,
and removed conserved interactions if they were supported
by less than 5707 (top 25% of all conserved interactions)
bipartite motifs. The low-throughput based lists contained
295 positive and 51 negative interactions. The network-
support based lists contained 378 positive and 196 negative
interactions. The combined gold standard contained 460
positive and 215 negative cases.

Optimal operating point

We calculated the optimal operating point on the receiver
operating curve (ROC) according to two established meth-
ods. The Youden Index (24) specifies that the optimal point
on the curve as the one with maximum distance from the
expected performance on random data (where the false pos-
itive rate equals the true positive rate). A different criterion
(25) denotes the optimal point as the one closest to the per-
fect classifier (where the true positive rate is one and the
false positive rate is zero). Application of both methods in-
dicated an optimal cutoff of 0.8.

Physical interactions data

We downloaded physical interaction data from BioGRID
(21). We assigned confidence scores to edges based on the
experimental evidence supporting them using a logistic re-
gression model, as previously described (26). The choice of
training sets for the logistic regression was also previously
described (27). Briefly, 500 positive examples denoting high
confidence interactions were extracted from KEGG (28).
Similarly 500 negative interactions were defined as those
whose end points are the most distant in the physical inter-
action network when that interaction was removed. The in-
teraction data and scores are available in ANAT (29). In this
study we removed edges with very low confidence (<0.4; see
‘Parameters estimation’ section). Overall our PPI network
contained 14 843 interactions among 3826 proteins.

Genomic data

Genomic loci for S. cerevisiae were downloaded from the
Saccharomyces Genome Database (30). Genomic loci for
S. pombe were downloaded from NCBI Gene database (31).
Genomic locations for genes were defined by their transcrip-
tion start site (TSS) and transcription stop point (TSP). Ge-
nomic intervals were ordered so that every gene is associated
with a genomic interval (s, e) such that s = min (TSS, TSP)
and e = max (TSS, TSP), s < e regardless of the strand on
which the gene is located. Neighboring genes were defined
as those whose genomic distance was less than 350 bp, the
median intergenic distance. Formally, the distance between
genes A and B (sA ≤ sB) is given by: sB − sA if eA ≤ eB or 0
otherwise. By this definition non-positive distances denote
overlapping genes.

The GINGER algorithm

The GINGER algorithm integrates genetic interaction
data, physical interaction data and data on the genomic co-
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ordinates of genes; it aims to identify the set of interactions
that are best supported by all the data sources. The first step
in the algorithm is to supplement the set of 88 037 observed
genetic interactions with ones that may arise due to NGE.
Formally, denote by N(g) all the genes whose transcription
starts or stops within 350 bp from the transcribed interval
of g (see ‘Genomic data’ section). Then, the interaction A–
B is supplemented with A′–B′ for every A′ in N(A) and B′ in
N(B). Note that some of the interactions A′–B′ may also be
present in the database (e.g. the observed interaction) and
we therefore keep track of whether an interaction was ob-
served in the experimental data or not. This step greatly in-
creased the size of the database (∼4.2-fold; 376 133 interac-
tions).

In the second step of the algorithm the information from
all the data sources is encoded in a single ‘support’ network.
In this network, nodes correspond to genetic interactions
and edges connect interactions that are supported by the
PPI data. Precisely, we searched the physical and genetic in-
teraction data for a motif where physically interacting pro-
teins A–B have a common genetic interactor C and added
the nodes A–C and B–C to the support network, connected
by an edge. Genetic interactions that were not supported
by any physical interaction were removed, and the resulting
network spanned 133 547 nodes. Next, we scored the edges
of the support network in the following manner: edges con-
necting nodes that correspond to experimentally observed
interactions were given a score of 1.0 (full support). In con-
trast, the score for edges that connect at least one putative
interaction exponentially decays with the number of neigh-
bors used in the putative interactions they connect. For-
mally, let pA-C denote the number of neighbors used to in-
fer the interaction A–C (pA−C ∈ {0, 1, 2}) then the score for
the edge connecting A–C and B–C is given by: αpA−C · αpB−C ,
where � is a parameter denoting the penalty for deviating
from the experimental data.

In the final step of the algorithm we search the support
network for a collection of nodes (genetic interactions) with
maximum support (connected by high-scoring edges). We
constrained the search procedure to select at most one can-
didate interaction from the set of candidates derived from
each observed interaction. We formalize this optimization
problem as an integer linear program. The program uses
two sets of binary variables (i) Y(v) indicating which nodes
(interactions) are selected by the algorithm, and (ii) X(e)
indicating which edges are connecting the selected nodes.
Let ce denote the score associated with edge e then the ob-
jective is trivially given by maximizing cT

e · X(e). The pro-
gram uses two types of constraints. The first type, X(e) <
Y(u), Y(v) ∀e = (u, v), ensures that edges may only be se-
lected if both their corresponding nodes are selected. The
second type,

∑

v∈NA−B

Y(v) ≤ 1 ∀NA−B, ensures that at most

one interaction is selected from the set of candidate interac-
tions NA-B derived from the observed interactions A–B. The

complete program is given below:

max
∑

e
cT

e · X(e)

s.t. X(e) ≤ Y(u), Y(v) ∀e = (u, v)∑

v∈NA−B

Y(v) ≤ 1 ∀NA−B

X(e), Y(v) ∈ {0, 1} ∀e, v

The resulting program may admit multiple equally-good
solutions. We therefore associate predictions with confi-
dence scores by repeatedly perturbing the program and
recording the number of optimal solutions containing each
prediction. In detail, we solve the above program 100 times
while adding a zero-mean Gaussian noise (with standard
deviation controlled by the parameter β) to the coefficients
ce. The confidence score for a given interaction is the num-
ber of times it appears in the optimal solutions for the ran-
domized programs.

Parameter estimation

The performance of the GINGER algorithm may be af-
fected by several parameters. In particular, we studied the
effect of the penalty for deviation from observed data (�),
the amount of noise added to the objective (β) and the cut-
off for filtering low-confidence PPI data. We followed a grid-
search procedure exploring all the combinations for setting
� in the range 0.1–1.0 in 0.1 steps, β ∈ {0.05, 0.1, 0.15} and
the threshold for PPIs in the range 0.2–0.7 in 0.1 steps. Top
performance was achieved with PPI cutoff of 0.4, � = 0.2
and β = 0.1. Notably, the performance was robust to small
perturbations: the top three performing parameter sets dif-
fered only in the amount of noise used to evaluate the score
the predictions (the parameter β). The top nine performing
parameter sets additionally differed only in the penalty for
deviation from the experimentally observed data, with � set
to either 0.4 or 0.3. An implementation of the algorithm is
freely available (File S2).

Co-expression data

Co-expression data were downloaded from COEX-
PRESSdb (32). As per the authors recommendations we
only considered gene pairs with mutual rank ≤200.

Enrichment calculation

We downloaded the association of genes with Gene On-
tology (GO) terms from the GO consortium website (33).
We found that ∼10% of the associations were based solely
on genetic interaction studies and therefore removed them
from the analysis to avoid potential biases. Similarly, we re-
moved annotations based on physical interactions or mu-
tant phenotype data. Overall, we retained 15 325 annota-
tions out of the 26 482 published ones. For a fair com-
parison, interactions were limited to those spanning com-
mon proteins. Enrichment scores were computed for genes
pairs sharing the exact same category. We only focus on spe-
cific categories having no more than 30 annotations. The
reported P-values were computed for the two-tailed Fisher
Exact Test and were corrected for multiple hypotheses test-
ing via false discovery rate (FDR).
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RESULTS

Our hypothesis is that the deletion in the mutant strains
may affect the behavior of neighboring genes, thus leading
to incorrect association with a given phenotype. Under this
working model, the phenotype in question––slower growth
of a double knockout––is likely to be observed in the strain
in which the true causative gene is mutated as well as in
the strain in which its neighboring gene (genomic distance
<350 bp) was knocked out. As a simple proof of principle,
we scanned the available collection of negative genetic in-
teractions for neighboring genes sharing common interac-
tors. Indeed, we found that a very large fraction (>7.4%;
7270) of the reported set of negative interactions satisfied
this criterion (Figure 1A). This observation was highly sig-
nificant compared to the expected number of interactions
with neighboring genes in a randomized network that pre-
serves node degrees (P < 0.001; empiric P-value).

Algorithmic approach

Following previous works (22–23,34), we focus on the set
of negative genetic interactions which covers the majority
of the mapped interactions. When a double mutant shows
a reduction in fitness, it is commonly concluded that the
genes mutated exhibit a genetic interaction (8,35–36). As ex-
plained, the genetic interactions may be caused by either of
the deleted genes or any of their neighbors, or even by inter-
actions between the neighboring genes of each deletion. To
identify and correct NGEs, we make use of PPI data, which
does not depend on the yeast mutant libraries and thus is
not prone to be affected by NGE. We rely on the empirical
observation that proteins whose encoded genes have sim-
ilar genetic interaction profiles tend to physically interact
and vice versa (8,37) (see Figure 1B). This observation al-
lows us to disambiguate candidate genetic interactions by
preferring those that increase the genetic profile similarity
of physically interacting proteins.

Our computational approach is outlined in Figure 2 (see
‘Materials and Methods’ section for details): First, the set
of 88 037 experimentally observed genetic interactions is

supplemented with additional putative interactions that in-
clude the neighboring genes (for a total of 376 133 putative
interactions). Second, we integrate the physical and genetic
interaction data into a network whose nodes correspond to
the possible genetic interactions and edges connect the in-
teractions that are further supported by the physical inter-
action data. Edges are additionally weighed to penalize de-
viations from the experimental data. Removing nodes that
were not supported by the physical interaction data, leaves
a total of 133 547 candidate genetic interactions. Finally,
we search this network for a collection of genetic interac-
tions (nodes) that are maximally supported by both genetic
and physical interaction data. In our formulation we addi-
tionally require that no more than one interaction is chosen
from a set of candidate interactions generated for a single
experimental observation. We formalize the optimization
problem as an integer linear program and solve it using a
dedicated solver, obtaining a set of interaction predictions
along with confidence scores (‘Materials and Methods’ sec-
tion). Using GINGER we were able to generate confident
predictions for 49 698 (56%) experimentally detected inter-
actions.

Evaluation

In order to evaluate the predictions generated by GINGER,
we compiled a gold standard containing both positive (true
non-NGE) and negative (true NGE) examples. For the pos-
itive examples, we used the set of genetic interactions found
to be conserved in budding yeast and in the fission yeast,
S. pombe. Although S. pombe and S. cerevisiae have a simi-
lar number of genes (of which around two thirds are con-
firmed homologs), the genomic architecture (synteny) of
these two organisms differs (38). Thus, neighboring genes
are not shared between the two organisms, and conserved
genetic relationships are likely to represent true interactions
(39).

Compilation of a gold standard negative set is challeng-
ing as it requires the identification of true NGE cases. To
this end, we first compiled a list of suspected NGEs by
searching for S. cerevisiae interactions that were not con-

Figure 1. Genetic interaction and neighboring gene statistics. (A) Number of neighboring gene pairs that share an interactor compared to a random
distribution (based on 1000 degree-preserving randomizations). (B) Proteins with high-confidence physical interaction score (≥0.5) are more correlated in
their genetic interaction profile.
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Figure 2. Overview of GINGER. (A) The input to the GINGER algorithm is data on genetic interactions (light red), physical interactions (gray) and
genomic loci (blue lines denote DNA molecules). Genetic interactions are supplemented with candidate interactions to neighboring genes (green edges).
(B) GINGER builds a ‘support’ network to disambiguate genetic interactions. In this network nodes represent both observed genetic interactions (white
nodes) and candidate interactions (violet nodes). Nodes are further grouped (pink rectangles) based on the observed interactions (white nodes) that they
might correct. Physically interacting genes having a common genetic interactor attest to similarity in the genetic profile and the genetic interactions are
connected in the support network (e.g. the physical interaction B–C supports the genetic interactions B–F and C–F). GINGER aims to pick as many edges
(support) as possible without touching more than one node in each group. In the example the interaction A′–F is preferred to either A–F or A′ ′–F (red
nodes; panel A) and the decision is supported by the additional interactions with the complex A/B/C/D/E.

served in S. pombe, but for which a genetic interaction ex-
ists in S. pombe when one of the S. cerevisiae genes is re-
placed by its genomic neighbor (Figure 3A). This criterion
is likely to introduce false positives because (i) more com-
binations involving neighbors exist, and (ii) the data on ge-
netic interactions in S. pombe is incomplete. Therefore, for
both positive and negative examples we retain only those
interactions that, in addition, were either (i) confirmed in a
low-throughput experiment, or (ii) have increased support
in the genetic interaction network (6,8,23,37) (see ‘Materi-
als and Methods’ section and Figure 3B). Overall our gold
standard contained 460 positive examples and 215 negative
examples.

Applying GINGER to the GI data, we observed that its
predictions were highly concordant with interactions that
were confirmed by low-throughput experiments, achieving
an area under the ROC (AUC) of 0.94 (Figure 3C). When
also taking into consideration suspected NGE cases that
were supported by the topology of the network, the AUC, as
expected, slightly decreased (to 0.83). In order to determine
a cutoff for high-quality predictions, we calculated the op-
timal operating point according to the Youden Index (24).
The optimal operating point corresponded to a threshold
of 0.8. Under this cutoff, most of GINGER’s predictions
(32 269/49 698; 65%) were considered confident. The set of
confident predictions contained 9438 predicted NGE cases
(Supplementary Table S1) representing a substantial part
(10.7%) of the original set of 88 037 negative genetic inter-
actions and 29.2% of the predictions. In the following anal-
yses we focus on these confident predictions.

GINGER uncovers non-trivial NGE cases

The yeast genome includes ∼800 open reading frames
(ORFs) not likely to encode for proteins. These are called
‘dubious ORFs’, and many times (71%, 563/784) overlap

other, confirmed ORFs. Since the deletion collection con-
tains deletions of many of these dubious ORFs (which also
inactivate the overlapping gene), one trivial possibility is
that the potential NGE cases identified are mainly of this
category. The information on whether an ORF is dubious or
not was not available to GINGER and we use it as an addi-
tional measure of the algorithm’s performance. Of the 9438
confident NGE predictions, only 1037 (10.9%) interactions
(involving 153 genes) include a dubious ORF overlapping a
confirmed gene. Reassuringly, the corrections suggested by
GINGER significantly reduced the number of interactions
involving dubious ORFs overlapping with confirmed genes
to 224 (P < 4.5E-24; Wilcoxon) and the number of dubi-
ous ORFs they spanned to 50. Thus, GINGER recognizes
and corrects most errors caused by the deletion of overlap-
ping genes, and the majority of NGE events uncovered by
GINGER do not stem from dubious ORFs.

Enrichment analysis

Negative genetic interactions usually indicate functional re-
lationships between the interacting genes, and are often
used to place two mutants in the same cellular process or
pathway (37,40–41). In line with these previous approaches,
we sought to assess the quality of our predictions in the con-
text of current biological knowledge. To this end, we con-
sidered four sets of interactions: (i) All is the set of all ex-
perimentally observed interactions; (ii) GINGER is the set
of ‘corrected’ interactions that GINGER suggests as an al-
ternative to the experimentally observed ones that are pre-
dicted to be affected by NGE; (iii) Predicted non-NGE is the
set of experimentally observed interactions that GINGER
considers correct; and (iv) Predicted NGE is the set of exper-
imentally observed interactions that GINGER considers as
incorrect, i.e. NGE-affected. We measured the agreement
with biological knowledge by calculating the enrichment
(42) of each set of interactions in (i) the set of pairs of genes
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Figure 3. Evaluation of the GINGER algorithm. (A) To compile a gold standard for our predictions in Saccharomyces cerevisiae (blue) we used genetic
interaction data from Schizosaccharomyces pombe (green). A conserved interaction (A-C/a-c) is more likely to be true and thus is considered a case where
NGE does not occur. On the other hand interactions that are not conserved (A–B) but become conserved when considering a neighbor (A-B′/a-b′) are
likely to represent NGE cases. We additionally require support from low throughput experiments or network topology to qualify such cases for the gold
standard. (B) Network topology support. The interaction C–D is supported by two incomplete bipartite graphs, one spanning A, B, C and D, and the other
spanning C, D, E and F. (C) Evaluation of GINGER’s predictions versus the gold standard, using only low-throughput experiments as additional criterion
for NGE cases yields AUC of 0.94, adding the motif-supported interactions reduced the AUC to 0.83. (D) Enrichment analysis of confident predictions for
co-occurrence in GO categories from cellular component (CC), molecular function (MF) and biological process (BP). In addition, we test for enrichment
for complex membership (Co-Complexes) and for co-expression (Co-Exp). Asterisks denote significance with FDR-corrected P < 0.05.

annotated with identical GO terms (33), (ii) membership in
curated complexes (43) and (iii) pairs of co-expressed genes
(32). We excluded GO annotations with evidence based on
genetic interactions (see ‘Materials and Methods’ section).

The enrichment analysis highlights the utility of GIN-
GER in capturing current biological knowledge. Specifi-
cally, the set of Predicted NGE interactions was not signif-
icantly enriched in most of the tested datasets, except for
the set of co-expressed genes (Figure 3D). In sharp con-
trast, the sets derived from GINGER’s predictions (GIN-
GER and Predicted non-NGE) proved significant across the
entire test set and achieved higher odds-ratio rates across al-
most all the tested categories. More importantly, the enrich-
ment of GINGER’s predictions resembled more closely the
enrichment of the original set of interactions in the database

whereas the Predicted NGE set did not. The largest differ-
ences in performance were noticed in enrichment in the vari-
ous GO namespaces (Molecular Function: P < 7.1E-9, Cel-
lular Component: P < 5.3E-16 and Biological Process: P <
3.1E-3. P-values are FDR corrected). A milder gap was no-
ticed in the enrichment for membership in complexes which
is probably due to negative interactions being less prevalent
within complexes (44). Interestingly, we found that all the
sets achieved near-similar performance for the enrichment
in co-expression data. A possible explanation is that neigh-
boring genes tend to co-express (45) (Odds ratio 41.4; P =
0; Two-tailed Fisher Exact Test).
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Figure 4. Examples of GINGER’s novel predictions. (A) GINGER predicted that the observed interaction between PAN2 and CDC50 (red) is incorrect
and should be attributed to NGE. Instead GINGER suggests CDC39, a member of the CCR4-NOT complex (green). Both CCR4-NOT and PAN com-
plexes (blue) regulate mRNA levels while CDC50 is an endosomal protein. (B) The observed interaction between UBC13 and LAT1 (red) is predicted
to be incorrect. GINGER suggests RNH201, a member of RNase (green), as the correct interactor. RNase and Ubc13/Mms2 complexes (blue) provide
alternative DNA repair mechanisms while LAT1 is a mitochondrial gene. (C) GINGER replaced the observed interaction between CDC73, a member of
the Paf1 complex (blue) and DNM1 (red) with an interaction with RTT109. Rtt109 and Vps75 (green) form an Histone acetyltransferase that acetylates
histone H3. Consistently, one of Paf1’s roles is histone modification. Dnm1 is a mitochondrial protein. (D) GINGER replaces the observed interaction
between EAF3, a component of Rpd3S histone deacetylase complex (blue) and SPO19 (red), which encodes a meiosis-specific protein, with an interaction
with TAF14, a subunit of Ino80 complex (green). Another NGE was detected between SIN3 and the uncharacterized gene YLR053C (red). Edge color
coding: gray denotes physical interaction. Red edges denote genetic interactions where wide edges are high-confidence DRYGIN interactions (available to
GINGER) and thin edges are lower-confidence information from DRYGIN or synthetic lethal interactions in BioGRID, both not available to GINGER.
Dark blue lines denote DNA

Analysis with high scoring genetic interactions

Costanzo et al. designate a subset of their genetic interac-
tion database as being of exceptional quality, based on par-
ticularly high genetic interaction scores. We applied our al-
gorithmic approach to this dataset of 47 427 interactions.
Encouragingly, GINGER produced 35 313 (74%) confident
interactions, markedly higher than the rate obtained for the
weaker quality dataset (56%). Comparing them against our
gold standard revealed that the quality of these predictions
was indeed higher than the ones obtained from the weak
dataset. In particular, agreement with low-throughput in-
teractions (AUC: 0.94) was maintained and even increased
(AUC 0.87) when the gold standard was supplemented with
cases derived from topological information. Based on the
Youden index 22 870 interactions were deemed in highly
confidence, of them 4128 (18%) corresponded to NGE
cases. Enrichment analysis applied to these predictions re-
vealed that their performance was better than the perfor-
mance of those derived from the weaker dataset. Our results
are summarized in Supplementary Figure S3.

DISCUSSION

The genetic interaction map of S. cerevisiae constitutes
an invaluable resource for all systems biology researchers.
Here, for the first time, we systematically scan the largest
genetic interaction dataset gathered to date for systematic
errors. Our analysis suggests that a large fraction (>10%)
of the annotations in this invaluable data source may be
misleading and that the annotations should probably be at-
tributed to genes in the vicinity of the deletion loci. In our
study we developed a novel approach, GINGER, that not
only detects the possible errors in annotations but also sug-
gests the way to correct them. Overall, GINGER provided
close to 9500 new genetic interaction pairs (Supplementary
Table S1).

The success of GINGER in detection and correction of
NGE biases is apparent not only through large-scale anal-
ysis but also in many specific cases where the observed in-
teractions seem highly unlikely. For example, CDC50 en-
codes an endosomal protein that interacts with phospho-
lipid flippase Drs2p (46–48). In DRYGIN (17) CDC50 is
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annotated with high confidence as a genetic interactor of
PAN2, a subunit of the Pan2p-Pan3p poly (A)-ribonuclease
complex which regulates poly (A) tail length (Figure 4A).
However this interaction between a membrane-bound pro-
tein and an mRNA controller seems unlikely. On the other
hand, CDC50 is located 319 bp downstream to CDC39 (also
known as NOT1) which GINGER predicts as the true inter-
actor of PAN2. Indeed, CDC39 is a member of the CCR4–
NOT complex, which is involved in many mRNA regulation
processes (49–51). These two complexes provide alterna-
tive mechanisms of mRNA de-adenylation and are impor-
tant for mRNA decay (52,53). In addition to the functional
support for the interaction, DRYGIN also detects addi-
tional interactions between the PAN and CCR4–NOT com-
plexes: both PAN members positively interact with POP2
and PAN3 is annotated to interact with CCR4.

In another case (Figure 4B), RNH201, the catalytic sub-
unit of the Ribonuclease H enzyme appears (in DRYGIN)
as a genetic interactor of LAT1, a component of the pyru-
vate dehydrogenase complex, which catalyzes the oxida-
tive decarboxylation of pyruvate to acetyl-CoA in the mi-
tochondria. GINGER corrects this annotation, and con-
nects RNH201 to the UBC13 gene, encoding, together with
MMS2, an E2 ubiquitin-conjugating enzyme involved in
the error-free DNA post-replication repair pathway (54).
During DNA replication, ribonucleotides are incorporated
into DNA; these are usually excised by the RNase H com-
plex; in the absence of this activity, the RNA:DNA hybrid
is cut by topoisomerase I, leading to increased mutations,
and, sometimes, to replication stalling (55). Lately, it has
been suggested that under these circumstances, Srs2, an he-
licase of the post-replication repair pathway may act (by
ubiquitinating target proteins) in order to allow lesion by-
pass and a resumption of DNA replication (56). Thus, a ge-
netic interaction between RNase H and the Ubc13/Mms2
complex is consistent with alternative mechanisms of DNA
repair/bypass. An additional interaction between RNH202
and Ubc13, and a weaker interaction between RNH201 and
Mms2, further support our hypothesis.

Similarly, whereas a genetic interaction was described be-
tween Cdc73, a member of the Paf1 complex (which af-
fects, among other roles, histone modifications (57)) and
Dnm1, a Dynamin-related GTPase involved in mitochon-
drial organization (58), GINGER detects interactions be-
tween CDC73 and RTT109, DNM1’s neighboring gene
(Figure 4C). RTT109 encodes a protein that, together with
Vps75 forms an Histone acetyltransferase that acetylates hi-
stone H3 at position K56 (59). Mutations in both histone-
modifying proteins reduce the cell’s fitness. This predic-
tion is further supported by genetic interactions between
RTT109 and RTF1 and LEO1, two additional components
of the Paf1 complex.

As a final example, EAF3, a component of both the
Rpd3S histone deacetylase complex and the NuA4 acetyl-
transferase complex (60,61) is annotated as having a ge-
netic interaction with Spo19, a meiosis-specific prospore
protein. GINGER corrects this annotation by determin-
ing that EAF3 mutations have reduced fitness when com-
bined with SPO19’s neighbor, TAF14, a non-essential sub-
unit of the TFIID, TFIIF, INO80, SWI/SNF and NuA3
chromatin remodeling complexes (62). Interestingly, a sec-

ond NGE example can be seen in Figure 4D: YLR053c, an
uncharacterized gene proposed to interact with SIN3, an-
other component of the Rpd3S complex, is a neighbor of
IES3, part of the INO80 complex.

Our systematic analysis has highlighted a large number
of interactions that may suffer from NGE. However, in this
study we have only investigated the non-essential portion of
the genetic map and focused on negative interactions. It is
likely that the additional interactions in the map are sim-
ilarly biased and additional study of these interactions is
needed. To systematically study these interactions requires
algorithms that take into account the heterogeneous nature
of these data sources but, more importantly, an experimen-
tal effort should be made to establish a large gold-standard
to measure against. We hope that this paper will help to raise
the interest in the community to inspect more carefully the
annotations and conclusions that are drawn from deletion-
based experiments.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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