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Infertility has become a common problem in recent decades. The pathogenesis of infertility
is variable, but microbiological factors account for a large proportion of it. Dysbiosis of
vaginal microbiota is reportedly associated with female infertility, but the influence of
normal vaginal microbiota on infertility is unclear. In this review, we summarize the
physiological characteristics of the vaginal tract and vaginal microbiota communities.
We mainly focus on the bacterial adherence of vaginal Lactobacillus species. Given that
the adherent effect plays a crucial role in the colonization of bacteria, we hypothesize that
the adherent effect of vaginal Lactobacillus may also influence the fertility of the host. We
also analyze the agglutination and immobilization effects of other bacteria, especially
Escherichia coli, on ejaculated spermatozoa, and speculate on the possible effects of
normal vaginal microbiota on female fertility.
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INTRODUCTION

Infertility has become a common problem in recent decades. Microbiological factors account for a
large proportion of infertility, but attention has mainly focused on pathogenesis and infection
caused by pathogens. With a further understanding of the host–microbe relationship, the
interaction between the normal body microbiome and host cells has been considered important
with regard to etiology. In females, vaginal microbiota plays a role in female infertility. The vagina
has an intrinsic microbiota. Dysbiosis of the vaginal microbiota or invasion of pathogens can impair
the fertility of humans by directly decreasing the motility and vitality of spermatozoa (Monga and
Roberts, 1994; Sellami et al., 2014), or indirectly by inducing organic injuries of the reproductive
system. However, influences from the normal vaginal microbiota on female fertility are unclear.
Lactobacillus is the dominant bacterial genus in the vaginal tract. Evidence has shown that vaginal
Lactobacillus play an essential role in preventing the invasion of foreign bacteria and dysbiosis of
intrinsic microbiota, but its effect on ejaculated spermatozoa has been rarely reported. Bacterial
adherence is an essential colonization process for vaginal Lactobacillus, and Lactobacillus species with
strong adherent effects can provide more benefits to hosts. However, the same adherent effect may also
modulate the chemical and physical properties of ejaculated spermatozoa. This phenomenon may
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account for some cases of unexplained infertility and provide a
unique sperm selection mechanism for the human body.
INFERTILITY AND INFLAMMATION

Infertility is the condition of being unable to produce offspring. It
is defined by the World Health Organization as ‘a disease of the
reproductive system defined by the failure to achieve a clinical
pregnancy after 12 months or more of regular unprotected sexual
intercourse’ (Zegers-Hochschild et al., 2017). It affects about 8%–
12% of couples worldwide; this prevalence has increased in
recent decades (Kumar and Singh, 2015). Given that 95% of
the world population considers becoming a parent as part of
their adult development, infertility is a disruption to their life
course (Bahamondes and Makuch, 2014). It also induces
psychological suffering and discord in the marital relationship
(Bahamondes and Makuch, 2014; Ahmadi Forooshany et al.,
2014). In couples afflicted by infertility, 26%–30% of cases are
caused by male factors, while 45%–60% are caused by female
factors (Lindsay and Vitrikas, 2015). Male infertility is
commonly due to deficiencies in sperm and semen. Male
infertility pathogenesis includes inflammation and infection,
injury and surgery, smoking, drinking, anatomic variance,
genetic defect(s), immunological disorder, systemic disease and
aging. Infection and inflammation of the urogenital tract account
for more than 12% of male infertility (Dohle, 2003). Chlamydia
trachomatis and Neisseria gonorrhoeae are the most common
pathogens in sexually transmitted urogenital infection (Pellati
et al., 2008), and uropathogenic Escherichia coli (UPEC)
accounts for most cases of ascending urogenital infections
(Pellati et al., 2008). Female infertility is mostly due to
infections and inflammation such as salpingitis and vaginitis.
N. gonorrhoeae and C. trachomatis are the most widely reported
pathogens that lead to salpingitis. Other pathogens, such as
Mycoplasma genitalium and Trichomonas vaginalis, have also
been reported (Mitchell and Prabhu, 2013; Tsevat et al., 2017;
Arustamyan et al., 2017). Bacterial vaginitis (BV) is the most
prevalent vaginitis among women of reproductive age;
approximately 40%–50% of vaginitis cases are BV (ACOG
technical bulletin, 1996; Onderdonk et al., 2016). Vaginal
candidiasis (20%–25%) and trichomoniasis (15%–20%) are the
second and third most common vaginitis (ACOG technical
bulletin, 1996). Notably, 10%–20% of infertility cases are
unexplained (Lindsay and Vitrikas, 2015): the infertility does
not have a clinical inflammation or related disease(s). Given that
microbiological factors account for a large proportion of known
infertility, it is rational to study the microbiological induced
infertility under non-inflammatory conditions.
TYPES AND PROBIOTIC PROPERTIES OF
THE VAGINAL MICROBIOME

It has long been known that the vagina contains its own
microbiota. The interaction between host and the vaginal
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
microbiota provides the unique microenvironment of the
vaginal tract.

Lactobacillus: Dominant Genus of the
Vaginal Microbiome Under Physiological
Conditions
The profile of the vaginal microbiome differs depending on age,
but for most cases of healthy women of reproductive age,
Lactobacillus species are the dominant vaginal bacteria (Martin
and Marrazzo, 2016; Godha et al., 2017). Lactobacillus in the
vagina is highly limited to certain strains (Nunn and Forney,
2016). In most cases, Lactobacillus crispatus, Lactobacillus
gasseri, Lactobacillus jensenii and Lactobacillus iners dominate
the vaginal microbiome (Nunn and Forney, 2016). One of the
important factors that influence the profile of vaginal microbiota
is the concentration of local estrogen. A high estrogen
concentration can induce a thicker vagina mucosa, upregulate
proton secretion by vaginal epithelial cells and accelerate the
deposition of glycogen in the vaginal epithelium (Semmens and
Wagner, 1982; Gorodeski et al., 2005; Godha et al., 2017). All
these changes enrich the vaginal microbiota, especially
Lactobacillus species. The pH level of the vaginal cavity
maintains a dynamic stability throughout the reproductive age,
and accumulation of lactic acid released by Lactobacillus species
plays a major role on the acidification process.

Profile and Community State Types of the
Vaginal Microbiome
In terms of the dominant bacterial species, vaginal microbiota
can be divided into five community state types (CSTs). The
microbiome dominated by L. crispatus, L. gasseri, L. iners, and L.
jensenii is separately classified as CST I, II, III, and V, respectively
(Ravel et al., 2011; Nunn and Forney, 2016). Cases that are
dominated by more than one Lactobacillus species are very rare
in black women but common in Caucasian and Asian women
(Zhou et al., 2010). The final community type (CST IV) is
dominated by other anaerobic bacteria such as Gardnerella
vaginalis, Prevotella, Atopobium, and Megasphaera instead of
Lactobacillus (Ravel et al., 2011). CST IV can be further divided
into CST IV-A and CST IV-B. CST IV-A does not have an
obvious dominant bacterial genus and is composed of low
proportions of Lactobacillus species and other anaerobic
species such as Anaerococcus, Corynebacterium, Finegoldia, and
Streptococcus, while CST IV-B is dominated by Atopobium and
accompanied by species from Prevotella, Parvimonas, Sneathia,
Gardnerella, Mobiluncus, or Peptoniphilus (Gajer et al., 2012).
Many bacterial species present in CST IV are considered to be
the pathogens of BV. Thus, the presence of CST IV may indicate
a subclinical BV, and CST IV-B is more likely to develop into a
clinical infection due to its low ratio of Lactobacillus
colonization. Racial differences in vaginal microbiota have
been reported. Fettweis et al. showed that white women were
more likely to develop a Lactobacillus-dominant vaginal
microbiota compared to black women (Fettweis et al., 2014).
Zhou et al. showed that Japanese and Caucasian women were
more likely to develop a vaginal microbiota dominated by
January 2021 | Volume 10 | Article 620529
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multiple Lactobacillus species compared with black women
(Zhou et al., 2010). As a result, black women are more likely to
develop a vaginal microbiome with a lower proportion of
Lactobacillus species.

Probiotic Effect of Vaginal Lactobacilli
Vaginal lactobacilli play an essential role in maintaining a
healthy female genital system. The protective benefits of
vaginal Lactobacillus have been widely reported. These
protective benefits can be attributed to bactericidal substances,
ecological niche occupation and immunomodulatory effects.
Therein, lactic acid secreted by vaginal lactobacilli plays a
major role. The protective benefits of lactic acid have been
widely reported. Some studies have shown that a physiological
concentration of lactic acid in the vagina can effectively inactivate
HIV and inhibit the growth of uropathogenic bacteria and BV-
associated pathogens (Aldunate et al., 2013a; Gong et al., 2014;
Leccese Terraf et al., 2017). Direct inactivation is the major effect
responsible for this benefit (Aldunate et al., 2013b), and the
immunomodulatory effect plays a controversial role in this
process (Witkin et al., 2011; Hearps et al., 2017). Hydrogen
peroxide (H2O2) had been described as the main bactericidal
substance produced by vaginal Lactobacillus, but recent studies
have contradicted the effect of H2O2 (Eschenbach et al., 1989;
Mitchell et al., 2015; Tomás et al., 2016; Tachedjian et al., 2018).
Hence, the acid-producing abilities of Lactobacillus species have
become the major criterion when evaluating their probiotic
benefits. Based on an in vitro test, L. crispatus accumulates a
higher lactic acid concentration compared with L. iners (Witkin
et al., 2013). Thus, L. crispatus has a more potent probiotic effect
compared with L. iners. Vaginal Lactobacillus species also
prevent the occurrence and development of cancer cells. In
several studies, patients with cervical intraepithelial neoplasia
were more likely to have a low concentration of vaginal
Lactobacillus species (Mitra et al., 2016). Other authors have
demonstrated the anti-tumor effect of L. gasseri; this effect is
mediated by directly inhibiting the proliferation of tumor cells
(Wang et al., 2017), or indirectly by promoting the clearance of
human papilloma virus (HPV) (Brotman et al., 2014). Notably,
the inhibitory effect of L. gasseri on tumor cells is independent of
pH level and lactate (Motevaseli et al., 2013); exopolysaccharides
(EPSs) produced by Lactobacillus may play an essential role in
this process (Sungur et al., 2017). The protective benefit against
other pathogens and inflammation also reduces the risk of
cervical cancers, and similar benefit can also be observed in
other gynecological cancers (Ghosh et al., 2016; Ramchander and
Crosbie, 2018).

Dysbiosis of the Vaginal Microbiome
Indicates a Vulnerable Condition
Dysbiosis of the vaginal microbiota often presents as BV. The
major characteristic of BV is the shift from a Lactobacillus-
dominant flora to a polymicrobial flora in the vaginal tract
(Onderdonk et al., 2016). Unlike other forms of vaginitis, BV
is a complex syndrome that is not caused by a specific pathogen.
This indeterminate pathogenicity makes it difficult to diagnose
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
via a single criterion. To date, the Nugent score and Amsel
criteria are two commonly used measures to evaluate BV
(Kenyon and Osbak, 2014). The Nugent score focuses on the
morphotypes of bacteria in vaginal smear (Nugent et al., 1991),
while Amsel criteria focus on the physical characteristics of
vaginal swabs (Amsel et al., 1983; Kenyon and Osbak, 2014).
BV has a strong association with infertility (Salah et al., 2013;
Babu et al., 2017). Ascending infection of BV-associated bacteria
will impair the function and immunity barrier of the upper
genital system (Racicot et al., 2013; Ravel and Brotman, 2016). In
addition, there has been a reported direct impairment effect of
BV-associated pathogens on ejaculated spermatozoa. This
phenomenon provides some hints about the interaction
between the vaginal microbiome and ejaculated spermatozoa.
TYPES AND PATHOGENIC PROPERTIES
OF THE SEMEN MICROBIOME

The semen of healthy males had been considered a sterile
condition because traditional bacterial cultivation provided an
incomplete characterization of the full semen microbiome
profile. With the development of high-throughput sequencing,
insights into the semen microbiome have been gradually
revealed, but the available studies are still insufficient.

Uropathogens, Semen Quality, and
Dysspermia
Based on recent studies, most normal semen contains bacteria,
and 30% of normal semen samples contain overt bacteria that
can be cultivated (Vilvanathan et al., 2016; Zeyad et al., 2018).
The inflammation and infection caused by uropathogens play an
essential role in infertility. Most common uropathogens are
associated with dysspermia: they can influence the semen
quality in spermatogenesis, reservation and fertilization
(Farsimadan and Motamedifar, 2020). Some uropathogens can
directly impair the performance of spermatozoa (Table 1), but
the majority of uropathogens impair the semen quality during
spermatogenesis. However, the spermicidal effect is evaluated in
vitro, and this approach may differ from the physiological state.
Although the virulent factors of many common uropathogens
have been identified, it remains controversial whether the
presence of these uropathogens can impair the semen quality.
Some studies have shown that the presence of these pathogens is
inconsistence with the abnormal semen parameters (Filipiak
et al., 2015; Vilvanathan et al., 2016). Given that a mature
male can release billions of activatable spermatozoa in one
mate, asymptomatic bacteriospermia with a low bacterial load
would likely not cause a prominent decrease in semen quality
(Vilvanathan et al., 2016). The bactericidal molecules in semen
also inhibit the bacterial spermicidal effect (Schulze et al., 2020).

Seminal Lactobacillus, Community Types,
and Dominant Species
When considering the prevalence of bacterial species in the semen
microbiome in healthy males, it is essential to detail the profile of
January 2021 | Volume 10 | Article 620529
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the semen microbiome. The significance of semen bacterial
communities remains to be investigated; in earlier studies,
researchers had been inclined to consider asymptomatic
bacteriospermia as a pre-inflammatory condition, while in
recent studies, researchers have considered some uropathogens
as part of the normal flora in semen (Farsimadan and
Motamedifar, 2020). Farahani et al. summarized the recent
studies on the semen microbiome using high-throughput
sequencing (Farahani et al., 2020). The authors showed that
some common uropathogens such as Ureaplasma urealyticum,
Enterococcus faecalis and Mycoplasma hominis have strong
associations with male infertility, while other uropathogens, such
as C. trachomatis, E. coli, and Staphylococcus aureus are not
associated with low semen quality even though their spermicidal
effects have been widely reported (Farahani et al., 2020). Semen
communities reported in different studies are disparate, and their
influence on semen quality has been controversial. Monteiro et al.
revealed that Enterococcus was a dominant genus among 118
samples of normal semen, low-sperm-concentration semen, low-
sperm-motility semen and abnormal morphylogy semen, and
Lactobacillus represented a very low percentage of the semen
microbiota in all samples (0.5%) (Monteiro et al., 2018). Hou et al.
separated the semen microbiota from 77 samples with six CSTs
according to the Calinski–Harabasz index. CST IV and V were
predominated by Ralstonia and Lactobacillus while other CSTs
were characterized by a variety of bacteria without a dominant
genus. Semen from infertile patients had no significant differences
in CSTs compared with normal samples, which indicates that the
probiotic effect of Lactobacillus in semen quality is limited (Hou
et al., 2013). Another two studies have highlighted the probiotic
effect of seminal Lactobacillus. Weng et al. separated the semen
microbiome from 96 samples into three CSTs, which were
predominated by Pseudomonas, Lactobacillus and Prevotella,
respectively. Most samples with normal semen quality were
dominated by Lactobacillus (Weng et al., 2014). Baud et al.
separated semen microbiome from 94 samples into three CSTs,
which were characterized by high levels of Prevotella and
Lactobacillus and a balanced representation of Corynebacterium,
Staphylococcus, and Planococcaceae. Samples with normal sperm
morphology had a higher level of Lactobacillus, but samples with
low sperm motility and vitality had the same level of Lactobacillus
compared with counterparts (Baud et al., 2019). Generally, a
relatively high percentage of seminal Lactobacillus is positively
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
associated with semen quality, which indicates Lactobacillus
species may play a probiotic role on male genial tract.

Uropathogenic Escherichia coli, Sperm Agglutination
and Immobilization
In previous studies, researchers have mainly focused on the
inflammatory response caused by an infection instead of the
direct spermicidal effect of pathogens. UPEC is the most widely
reported uropathogen, and it presents a direct spermicidal effect.
As early as 1931, Rosenthal had demonstrated an agglutination
effect of E. coli on spermatozoa, and subsequent studies have also
proven its immobilization effect on spermatozoa. Various
proteins and molecules that contribute to these effects have
been isolated. Fimbriae are the major structure responsible for
the agglutination effect of E. coli. Two kinds of fimbriae are
present on the surface of E. coli: type 1 pili and type P pili
(Monga and Roberts, 1994). Type 1 pili can recognize the a-D
mannose group on the head of spermatozoa, while type P pili can
recognize the a-D-galp-l-4-9-D-galp group on the tail of
spermatozoa. Both type 1 and type P fimbriae present a
hemophilic adhesion effect; hence, bacteria that contain these
two fimbriae produce an agglutination effect on spermatozoa.
Different bacteria or even different strains of E. coli show broad
diversity on the categories and numbers of fimbriae. Bartoov
et al. indicated that type 1 pili might play a major role in
urogenital infection (Bartoov et al., 1991). Aucky et al. isolated
a hemagglutinin protein (32.2 kDa) on the terminal of fimbriae,
which might be responsible for the adhesion of E. coli to
spermatozoa (Aucky Hinting DMS, 2013).

Despite the sperm adherent effect, the direct spermicidal effect
of E. coli has been adequately detailed. Sperm immobilization is a
sophisticated process that can be disrupted by a variety of factors.
Some studies have demonstrated the effect of lipopolysaccharide
(LPS) on this process; LPS is a common endotoxin present on the
surface of E. coli that can bind to Toll-like receptor 4 (TLR4),
present on the membrane of spermatozoa, and consequently
decrease sperm motility (Fujita et al., 2011). The possible
mechanism of this impairment is that activation of the TLR
signaling cascade increases the reactive oxygen species (ROS)
level and therefore disrupts the membrane conformation of
spermatozoa. This disruption can be hindered by ROS
scavengers such as superoxide dismutase (SOD) (Urata et al.,
2001; Fujita et al., 2011). Exotoxins also play a role in this
TABLE 1 | Agglutination and immobilization factors of some pathogens.

Impairment model Year Bacteria Thermostability Isolated source Adherent site Molecule

Agglutination factor 2009 E coil (Prabha et al., 2009b) Labile Cell body Head, neck and tail 71 KDa protein
2014 E coil (Kaur and Prabha, 2014) Labile Cell body Head and tail unknown
1993 E coil (Wolff et al., 1993) Labile Cell body Head and tail Molecule in type 1 pili
2013 E coil (Aucky Hinting DMS, 2013) Stable Cell body Head, neck and tail 32.2 KDa protein
2005 S aureus (Ohri and Prabha, 2005) Labile Cell body tail 70 KDa protein
2019 S warneri (Pant et al., 2019) Unknown Cell body Head, neck and tail 80 KDa protein

Immobilization factor 2010 E coil (Prabha et al., 2010; Kumar et al., 2011) Labile Supernant 56 KDa protein
1977 E coil (Paulson and Polakoski, 1977) Stable Supernant <500 mw

Small molecule
2009 Streptococcus (Prabha et al., 2009a) Labile Supernant ~20 KDa protein
2007 Enterococcus (Qiang et al., 2007) Unknown Cell body b-hemolysin
January 2021 | Volum
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process. A common E. coli exotoxin, hemolysin, can enhance the
sperm immobilization mediated by pathogenic E. coli (Boguen
et al., 2015). Hemolytic E. coli strains reportedly immobilize
spermatozoa at a lower concentration compared with non-
hemolytic strains. They can also induce a higher intracellular
ROS level and lower sperm mitochondrial membrane potential
(Dym) (Boguen et al., 2015). a-Hemolysin (HlyA) is the most
common reported hemolysin in UPEC; this 110 kDa protein
contains several toxin family repeats (Wiles and Mulvey, 2013).
HlyA can insert into the membrane of some cell types and
assemble into a transmembrane pore. Studies have demonstrated
that various receptors may mediate this transmembrane effect,
for example, LFA-1 on the surface of leucocytes, but the
transmembrane effect is generally considered to be non-specific
(Wiles and Mulvey, 2013). Notably, a-HlyA of E. coli is
transported by a type I secretion mechanism, and this
mechanism transports hemolysin only when the bacteria
directly contacts the cells (Kim et al., 2008). Hence, these
immobilization factors are isolated from the bacterial body and
only exert an effect when the bacteria adhere to the sperm. In
addition to bacterial bodies, sperm immobilization can also be
observed in supernatant or filtrate of a bacterial suspension. An
early study reported a small soluble sperm immobilization factor
(SIF) – a heat-stable small molecule – in an E. coli filtrate
(Paulson and Polakoski, 1977). In recent studies, researchers
have reported that E. coli contains a large SIF, a heat-labile, 56
kDa protein that can recognize a specific 113 KDa receptor
presented on the membrane of spermatozoa (Prabha et al., 2010;
Kumar et al., 2011). This SIF has a significant inhibitory effect on
Mg2+-dependent ATPase activity and acrosome reaction induced
by calcium ionophore (Vander et al., 2013).

Spermicidal Effect of Other Pathogens
In studies of sperm agglutination and immobilization effects in
other bacteria, researchers have also isolated some related
molecules. Prabha et al. isolated a 20 KDa SIF from S. aureus
filtrates; this heat-labile protein can recognize a specific 62 kDa
receptor on the surface of spermatozoa (Prabha et al., 2009a). It
inhibits Mg2+-dependent ATPase activity and the acrosome
reaction to a lesser extent compared with E. coli (Gupta and
Prabha, 2012). These data indicate that the Mg2+-dependent
ATPase plays an important role on sperm motility function.
Pant et al. isolated an 80 kDa sperm agglutination factor from
Staphylococcus warneri; it also inhibits Mg2+-dependent ATPase
activity and showed a potent contraceptive effect in mouse models
(Pant et al., 2019). Ohri et al. isolated a 70 kDa protein from the
cell culture of S. aureus; this protein mediates a tail-to-tail
agglutination of spermatozoa (Ohri and Prabha, 2005). b-
Hemolysin isolated from Enterococcus also impairs sperm
motility, similar to HlyA; it impacts the membrane integrity and
thus contributes to its toxic effect (Qiang et al., 2007). Sperm
agglutination and immobilization have been shown for other
pathogens, such as C. trachomatis, Mycoplasma species and T.
vaginalis (Monga and Roberts, 1994; Sellami et al., 2014). The
agglutination and immobilization effects of bacteria on human
sperm are simultaneous and reversible in most cases, but high
concentrations of some factors, such as hemolysin and LPS, can
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
remarkably reduce the vitality of spermatozoa. Agglutinated
sperm often show disruption in membrane morphology. An
elevated ROS level and reduced Dym are associated with
necrosis and apoptosis of spermatozoa. In conclusion, the sperm
impairment effect of bacteria is multifactorial and mediated by a
variety of mechanisms.
ROLES OF LACTOBACILLUS ON
FERTILITY

The probiotic effect of Lactobacillus on the male and female genital
tract have been discussed above. Given that the Lactobacillus presents
a probiotic effect on both gametes and the microenvironment, it is
easy to assume that Lactobacillus also plays a positive role on fertility.
However, fertilization is a dynamic process that requires the gametes
maintaining vitality in several microenvironments, a factor that is
usually ignored during in vitro studies.

Bacterial Concentration and the
Adherent Effect
For years, vaginal Lactobacilli had been considered as totally
beneficial components of the genital system, while the seminal
Lactobacillus were still controversial. An essential point that had
been ignored in the previous studies is that the concentrations of
vaginal Lactobacillus and seminal Lactobacillus are totally
different. Ejaculated spermatozoa stay in the vaginal tract for a
period before fertilization. Even if seminal Lactobacillus have a
positive effect on spermatozoa, it remains dubious whether
vaginal Lactobacillus, which are far higher in concentration,
exert a positive effect on ejaculated spermatozoa.

The adherent ability is a crucial property; it varies with the
alteration of bacterial concentration. The adherent ability is an
important criterion for evaluating the probiotic or pathogenic effect
of microbes. Bacterial adhesion is the first step in colonization. It
determines the invasive ability of pathogens and the potential of
probiotics. The adherent effect of vaginal Lactobacillus species has
been extensively studied. Species with a strong adherent effect are
considered to be more beneficial to the human body, and probiotics
with higher adherence to cells or the extracellular matrix, such as
Lactobacillus rhamnosus and Lactobacillus fermentum, are more
frequently used for clinical treatment (Shokryazdan et al., 2014;
Verdenelli et al., 2014; Homayouni et al., 2014).

With a high concentration, the adherence of vaginal
Lactobacillus to spermatozoa may differ from that of seminal
Lactobacillus. Ejaculated spermatozoa are mobile planktonic
cells. Given that spermatozoa motility is a critical criterion for
evaluating fertility, bacterial adherence may increase the load of
spermatozoa and therein impair the motility of spermatozoa.
Spermatozoa with lower motility have more chances to become
adherent, and the binding of bacteria increases the load of cells
and in turn reduces their mobility. With high concentrations of
bacteria in the vaginal tract, these spermatozoa may be deposited
and lose their vitality. Bacteria that adhere to spermatozoa at
some specific sites may induce negative effects. Bacteria that
adhere to the acrosome of the spermatozoa may block critical
January 2021 | Volume 10 | Article 620529
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fertilization mechanisms. Hence, species with an adhesion
preference to the acrosome may present a strong negative
effect. Immobilized spermatozoa can act as a kernel that
attracts planktonic bacteria to form complexes. When the
concentration of planktonic bacteria reaches a threshold,
numerous complexes may agglutinate and form a huge net
structure that may intercept the swimming of normal
spermatozoa. Widespread agglutination of bacterial bodies may
induce the secretion of EPSs and initiate biofilm formation.
Despite the direct attachment, the release of some exotoxins
may immobilize spermatozoa and impair their fertilization
ability. All these negative effects require a high bacterial
concentration, which is unusual in semen but common in
vaginal tract (Figure 1).

Adherent Properties of Lactobacillus to
Spermatozoa
The adherence of Lactobacillus to spermatozoa has been rarely
reported. In a recent in vitro study, vaginal Lactobacillus strains
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
presented a far stronger adherent effect on spermatozoa
compared with Enterococcus, Bacteroides, Bifidobacterium and
Enterobacteriaceae (Wang et al., 2019). In a co-incubation test of
single bacterial species and ejaculated spermatozoa, this adherent
effect significantly impaired the motility of spermatozoa (Wang
et al., 2019).

The mechanism of bacterial adherence is complicated. In
general, pili, afimbrial adhesins and interfacial free energy may
play a role in this process. pili are hair-like appendage on the
surface of bacteria. SpaCBA and LrpCBA are two major types of
pili observed on the surface of some Lactobacillus species.
SpaCBA is a kind of common pilus observed in varieties of
Gram-positive bacteria. It plays a role on colonization by binding
to host epithelial cells, mucin, mucous collagen as well as
inducing bacterial aggregation. This pilus is observed in
seminal Corynebacterium, and these pili may be associated
with an exclusive sperm impairment effect on sperm motility
without impacting the morphology and vitality of these cells
(Turk et al., 2007; Mashaly et al., 2016). LrpCBA can be observed
FIGURE 1 | The influence of vaginal bacteria on ejaculated spermatozoa. The red area shows agglutination models: FimA located along the type 1 pilus of Escherichia coli
binds to a-D mannose; PapG located at the tip of type P pilus binds to a-D-galp-l-4-9-D-galp (Monga and Roberts, 1994); a kind of 70 kDa adhesin on the surface of
Staphylococcus aureus mediates sperm agglutination effect (Ohri and Prabha, 2005); SpaC located along the pilus of the Corynebacterium and Lactobacillus mediate the
sperm agglutination effect (Makarova et al., 2006; Barbonetti et al., 2013); exopolysaccharides (EPSs) of the biofilm may also impact the function of spermatozoa. The yellow
area shows immobilization models: lipopolysaccharide (LPS) in E. coli recognizes Toll-like receptor 4 (TLR4) (Fujita et al., 2011); a soluble small molecule mediates the sperm
immobilization effect (Paulson and Polakoski, 1977); a 56 kDa sperm immobilization factor (SIF) recognizes a 113 kDa receptor and thereby impacts Mg2+-dependent ATPase
and calcium ionophore (Prabha et al., 2010); a-hemolysin (HlyA) in E. coli impacts the membrane integrity of spermatozoa by LFA-1-mediated insertion or non-specific insertion
(Wiles and Mulvey, 2013); a 20 KDa SIF from S. aureus can recognize a 62KDa receptor, which impact the Mg2+-dependent ATPase and calcium ionophore (Prabha et al.,
2009a; Prabha et al., 2009b; Gupta and Prabha, 2012); Lactobacillus peptidoglycan recognizes TLR2 (Fujita et al., 2011); b- hemolysin from Enterococcus or perhaps
Lactobacillus also impacts the membrane integrity of spermatozoa (Qiang et al., 2007). The blue area shows consequences: irremovability, acrosome impairment,
agglutination, apoptosis and deposit. The hollow circles show the related bacteria or matrix.
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in most strains of L. ruminis. This pilus has a trend to bind type I
collagen, fibronectin and host epithelial cells but lacks the ability
of homophilic interaction. Some of Lactobacillus species (L. casei,
L. paracasei and L. rhamnosus) contain the operon of anther
pilus called SpaFED, recombinant SpaFED shows a similar
adhesive property with SpaCBA, but this pilus lacks expression
in native condition (Table 2) (Segers and Lebeer, 2014; von
Ossowski, 2017). A putative mannose binding lectin gene is
identified in the genome of L. plantarum. Given the mannose
binding lectins of E. coli type 1 pili mediate the sperm adherent
effect of UPEC, this gene may mediate the sperm adherent effect
of Lactobacillus speices (Malik et al., 2016). In addition, the long
fibrous structure of a pilus also contributes to the adherent
process. Given that the strength of interfacial free energy is
associated with the surface area, a pilus can easily pierce the
energy barrier between two surfaces due to its small radii (Hori
and Matsumoto, 2010).

Afimbrial adhesins also play an essential role in bacterial
adhesion. A group of proteins called microbial surface components
recognizing adhesive matrix molecules (MSCRAMMs), have been
identified in some gram-positive bacteria. These molecules
covalently link to peptidoglycans in the cell wall by sortases and
target proteins in the host’s extracellular matrix (Vengadesan and
Narayana, 2011). Cna and SdrC are two kinds of MSCRAMMs
detected on the Lactobacillus species (Barbu et al., 2014; Chahales
and Thanassi, 2015). These molecules are originally detected on the
surface of Staphylococcus aureus. Cna plays a role on bacterial
colonization by bind to collagen II of extracellular matrix (Herman-
Bausier et al., 2016). SdrC plays a role on bacteria aggregation by a
mild homophilic interaction. It also induces a strong affinity to some
hydrophobic substances (Table 2) (Barbu et al., 2014). Numerous
adhesins of the cell surface have been derived from gene sharing, a
phenomenon where one protein can perform multiple functions in
unrelated biological processes (Jeffery, 2003). The proteins that
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
present gene sharing are called moonlighter proteins. Some
enzymes, such as glyceraldehyde-3-phosphate dehydrogenase, L-
lactate dehydrogenase, phosphoglyceromutase and UTP-glucose-1-
phosphate, are used as moonlighter proteins in bacteria (Celebioglu
and Svensson, 2018). They are secreted to the cell surface and act as
adhesins, despite their roles in metabolic pathways. Moonlight
proteins are detected on the surface of many Lactobacillus species
(Sengupta et al., 2013), Borgdorff H et al. isolated some of moonlight
proteins of L. iners and L. crispatus, their studies indicated that these
proteins provide extra colonization benefits by playing a role of
adhesins (Borgdorff et al., 2016).

Physical characters of bacterial cells also influence adherence.
Charge distribution, hydrophobicity and the area of the contact
surface are major physical factors that affect bacterial adherence.
The influence of these factors can be quantified as the interfacial free
energy. Hori demonstrated how to calculate the interfacial free
energy and how the interfacial free energy influences the adhesion
process (Hori and Matsumoto, 2010). This theory partly explains
the influence of solution pH and hydrophobicity of cell surface
substrates on adherence. Adhesion is favored when free energy is
negative, and positive free energy provides an energy barrier
between two surfaces and disturbs the adherence (Hori and
Matsumoto, 2010). Interfacial free energy mainly influences the
initial phase of adherence, in which the bacteria attach to a surface
and form a transient, reversible and non-specific adherence. This
initial adherence allows adhesins to bind to the surface, and then the
bacterial adhesins will lead to an irreversible time-dependent
adhesion after the initial phase (Katsikogianni and Missirlis,
2004). Some allosteric proteins such as acetolactate synthase will
undergo a force-induced unfolding during the initial phase. The
unfolding process alters their hydrophobicity and initiates a firm
hydrophobic adhesion (Dufrêne, 2015). This strategy is reported in
yeast cells, but the Als family of adhesins is also expressed in some
Lactobacillus species (Siezen et al., 2012).
TABLE 2 | Fimbriae and microbial surface components recognizing adhesive matrix molecules (MSCRAMMs) of Lactobacillus species.

Binding sites Expression in lactobacilli Expression in uropathogens

Fimbriae SpaCBA
(von Ossowski, 2017)

intestinal epithelial cells
mucin
type I/IV collagen
SpaCBA pili

L. casei,
L. paracasei,
L. rhamnosus

Enterococcus faecium
Enterococcus faecalis

LrpCBA
(von Ossowski, 2017)

intestinal epithelial cells
type I collagen
fibronectin

L. ruminis absent

SpaFED
(Rintahaka et al., 2014)

intestinal epithelial cells
mucin
type I/IV collagen
fibronectin

absent absent

MSCRAMMs Cna
(Herman-Bausier et al., 2016)

type II Collagen L. salivarius
L. animalis
L. casei
L. plantarum

Staphylococcusaureus

SdrC
(Barbu et al., 2014)

SdrC L. gasseri
L. acidophilus
L. paragasseri
L. casei
L. animalis

Staphylococcus aureus
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Host Factors That Influence Bacterial
Adherence
Under physiological conditions, the adherent pattern of bacteria is
much more complex. Bacteria in the human body adhere to host
epithelial cells, mucus and other bacteria. The interaction between
bacteria and mucus plays a specific role on bacterial colonization.
Mucins (MUC) are the major mucus substrate that interact with
colonized bacteria. They are macromolecular glycoproteins that are
secreted by specialized epithelial cells. In the female genital tract,
mucosal epithelial cells express the transmembrane mucins MUC1,
MUC4 and MUC16 on the cell surface, and goblet cells secrete
mucus-forming mucins MUC5AC, MUC5B and MUC6 to the
outer environment (Taherali et al., 2018). Transmembrane mucins
provide adherent sites for vaginal bacteria so that they facilitate the
colonization of vaginal bacteria. However, the effect of mucus-
forming mucins on bacterial colonization is ambiguous. Free
mucins provide adherent sites and nutrition for vaginal
Lactobacillus species in a static condition, but a high level of free
mucins will cover the surface of bacteria and disturb the attachment.
Thus, planktonic bacteria will finally be washed out by vaginal fluid.
The major mucin component of vaginal mucus is MUC5B (Portal
et al., 2017; Taherali et al., 2018), and the secretion of MUC5B in the
vaginal tract fluctuates during the menstrual cycle (Gipson et al.,
2001); hence, the properties of mucus on bacterial adhesion may be
different at different periods. The major ligands for bacterial
adhesins of mucins are O-glycans (Sicard et al., 2017). O-glycan
deficiency or lack of secretion alters vaginal bacterial communities
(Ringot-Destrez et al., 2017). At the ovulatory phase, mucins with a
neutral oligosaccharides on O-glycans are abundant compared with
the acidic oligosaccharides at the follicular phase (Taherali et al.,
2018). In addition to mucins, other matrix proteins such as
fibronectin, fibrinogen and vitronectin also act as adherent sites.

State of Aggregation and Bacterial
Adherence
Bacteria can also attach to each other, a process known as
agglutination. Bacteria with a high agglutination potential can
form a complex architecture called a biofilm (Toyofuku et al.,
2016). Biofilm formation provides a more hospitable outer
environment for bacterial colonization. Intricate host–bacteria and
bacteria–bacteria adhesions allow these bacteria to firmly occupy
niches. A thick EPS layer limits the diffusion of antimicrobial agents,
a factor that helps the bacteria evade the host immune system
(Rabin et al., 2015). Besides, the high density of bacterial
communities facilitates DNA exchange and therein exacerbates
the spread of drug resistance (Rabin et al., 2015). Biofilm
formation seems to be a natural – and sometimes – predominant
step for colonization (Rabin et al., 2015). Planktonic bacteria first
attach and adhere to a surface, and then colonized bacteria secrete
EPSs and recruit other bacteria to thicken the biofilm (Rabin et al.,
2015; Sharma et al., 2016). Aggregated bacteria synchronize their
gene expression by a process called quorum sensing, by which the
community regulates its cell density and performs some collective
behaviors (Lyon and Muir, 2003; Sharma et al., 2016). A
multispecies biofilm often forms an intricate micro-ecological
system. Bacteria with different oxygen demands occupy distinct
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
biofilm layers (Rabin et al., 2015). Synergistic and antagonistic
interactions between species allow the biofilm to resist external
disturbances (Oliveira et al., 2015; Del Pozo, 2017). A mature
biofilm will sometimes undergo a process called dispersion,
during which the bacteria detach from the biofilm and become
planktonic. The outer environment influences the balance of the
planktonic and biofilm state. Severe environments, such as high
level of antimicrobial agents, favor communities to generate a
biofilm. When the condition becomes more favorable, the
bacteria are released by dispersion and become planktonic
(Sharma et al., 2016). Biofilm formation often alters the
physiological character of bacteria. The bacteria within the biofilm
have a different gene expression profile and unique characteristics
compared with their planktonic counterparts (Del Pozo, 2017;
Dumitrache et al., 2017), and the EPSs of a biofilm also influence
the behavior of communities (Rabin et al., 2015). It is rational to
speculate that the state of bacteria also influences their adherent
ability, but the details are still unclear.

Other Possible Sperm Impairment Factors
of Vaginal Lactobacillus
Vaginal Lactobacillus species exert anti-oxidant effects via a
myriad of mechanisms that provide protection against the
impact of ROS caused by immobilization factors. Barbonetti
et al. showed that some Lactobacillus species can prevent the
sperm immobilization effect of soluble factors produced by E.
coli; a reduced ROS level is associated with this benefit
(Barbonetti et al., 2013). LPS is absent in gram-positive
bacteria; however, Peptidoglycan on the surface of bacteria has
a toxic effect that is similar to LPS. It can recognize TLR2
presented on the acrosome surface, reduce the motility of
human sperm and induce the apoptosis of spermatozoa (Fujita
et al., 2011). Thus, the general sperm immobilization effect of
vaginal Lactobacillus is controversial. Furthermore, genomic
studies have revealed the hemolysin genes on all four
Lactobacillus species that dominant vaginal communities, and
some strains of L. rhamnosus and L. fermentum, also contain
hemolysin genes (Makarova et al., 2006). It is still unclear
whether these genes can be expressed and transported through
the cell wall, and the potential immobilization effect of these
Lactobacillus species must be determined by additional studies.

Significance of Vaginal Lactobacillus to
Fertility
A high Lactobacillus load can enhance the vitality of gametes in the
male genital tract and stabilize the microenvironment of the female
genital tract. These probiotic effects ultimately result in a positive
effect on fertility (Rowe et al., 2020). However, the adherent effect of
genital Lactobacilli can also induce a sperm impairment effect when
there is a high bacterial load. Given that vaginal Lactobacillus species
do not dramatically influence fertility, the sperm impairment effects
of vaginal Lactobacillus should be relatively mild under
physiological conditions compared with the powerful effects of
urogenital pathogens. Spermatozoa with low motility or a
vulnerable morphology will be readily agglutinated and
immobilized, but those with higher motility and a stable
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morphology can overcome the weak affinity and remain intact. This
mild impairment effect can perform a selection effect on ejaculated
spermatozoa: spermatozoa with low motility and a vulnerable
morphology will be weeded out in the vaginal tract. This
foundation can be found in postcopulatory sexual selection of
polyandrous wild animal species (Rowe et al., 2020). Vaginal
Lactobacillus species, combined with other selection mechanisms
in the female genital system, eliminate these abnormal spermatozoa
and therefore ensure the quality of the paternal genome. However,
this mild sperm impairment may also be responsible for some cases
of unexplained infertility. For women whose partners are subfertile,
this selection mechanism may exert a negative effect. Given that
their partners are potential patients with oligospermia,
asthenospermia, or teratospermia, the sperm selection effect of
vaginal Lactobacillus species may amplify the condition. In
addition, vaginal Lactobacillus species may show a powerful
sperm impairment effect if they are present at a very high
concentration. Probiotic therapies with vaginal administration
may induce the overload of vaginal Lactobacillus. The
concentration of vaginal Lactobacillus species fluctuates along
with temporal and individual differences, and thus the sperm
impairment effect of vaginal Lactobacillus species may result in
variable consequences in different hosts. Furthermore, bacteria
within a biofilm may present distinct adherence profiles
compared with their planktonic counterparts. Biofilm ESPs may
provide excessive interactions between spermatozoa and
communities, a phenomenon that is often ignored in the co-
incubation test. Some species have a strong tendency to form a
biofilm in vivo, and the adherent effect of biofilm may play a major
role instead of the planktonic counterparts (Ventolini et al., 2015).
The sperm impairment effect of vaginal Lactobacillus species may
also influence the evolution of reproductive strategies. As vaginal
Lactobacillus species only dominate vaginal communities in
humans, the sperm selection of vaginal Lactobacillus species may
denote some unique characteristics in human reproductive
strategies. Understanding this interaction is also essential for
infertility treatment. With the popularization of probiotic drugs
for vaginitis treatment, this interaction should be extensively
investigated, and the adverse effect of vaginal probiotic drugs
should be reconsidered. Despite their medicinal value, related
research findings may also give new contraceptive strategies.
Studies of the sperm–E. coli interaction have demonstrated the
possibility of contraceptive vaccines. This strategy has been
demonstrated as anti-sperm receptor antibodies; previous
contraceptive vaccines mimic the antibodies from E. coli and have
proven its efficacy. Additional studies of vaginal Lactobacillus
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
species can provide new choices for contraceptive vaccines (Kaur
et al., 2015).
CONCLUSION

Lactobacillus are common bacteria in the vaginal tract of healthy
females. While in previous studies authors had usually focused on
their probiotic effect, in this review we provided a new perspective on
how vaginal Lactobacillus impair the ejaculated spermatozoa, which
contradicts the original view of genital Lactobacillus as a probiotics.
The key point is the concentrations of vaginal Lactobacillus are
different from that of seminal Lactobacillus and what is reported in
vitro tests. With a periodic change in nutrition supplementation,
vaginal Lactobacillus present a huge temporal difference in
concentration and distribution, which is often ignored but may
influence the fertility in a subtle way, and the marked individual
differences in the vaginal microbiome in asymptomatic females also
underlies variable effects. Therefore, while the probiotic effects of
genital Lactobacilli have been widely demonstrated, it remains
uncertain whether these Lactobacillus species play a positive role
in fertilization, as the generally supposed probiotic characteristics
may induce variable results under different bacterial concentrations.
With a deeper understanding of microbiology, the boundary of
probiotics and pathogens has become indistinct and controversial.
For each probiotic with potential commercial value, it is of great
importance to evaluate its potential pathogenic elements from
different fields’ points of view. Given that these potential elements
may induce complications during probiotic therapies and partially
elucidate unexplained infertility, extensive study is essential.
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