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Abstract

Background: Cardiometabolic (CM) risk factors are heritable and cluster in individuals. We hypothesized that
CM risk factors are associated with multiple shared and unique mRNA and microRNA (miRNA) signatures. We
examined associations of mRNA and miRNA levels with 6 CM traits: body mass index, HDL-cholesterol and
triglycerides, fasting glucose, and systolic and diastolic blood pressures through cross-sectional analysis of
2812 Framingham Heart Study who had whole blood collection for RNA isolation for mRNA and miRNA
expression studies and who consented to genetic research. We excluded participants taking medication for
hypertension, dyslipidemia, or diabetes. We measured mRNA (n = 17,318; using the Affymetrix GeneChip
Human Exon 1.0 ST Array) and miRNA (n = 315; using qRT-PCR) expression in whole blood. We used linear
regression for mRNA analyses and a combination of linear and logistic regression for miRNA analyses. We
conducted miRNA-mRNA coexpression and gene ontology enrichment analyses to explore relations between
pleiotropic miRNAs, mRNA expression, and CM trait clustering.

Results: We identified hundreds of significant associations between mRNAs, miRNAs, and individual CM traits.
Four mRNAs (FAM13A, CSF2RB, HIST1H2AC, WNK1) were associated with all 6 CM traits (FDR < 0.001) and four
miRNAs (miR-197-3p, miR-328, miR-505-5p, miR-145-5p) were associated with four CM traits (FDR < 0.05).
Twelve mRNAs, including WNK1, that were coexpressed with the four most pleiotropic miRNAs, were also
miRNA targets. mRNAs coexpressed with pleiotropic miRNAs were enriched for RNA metabolism (miR-505-5p),
ubiquitin-dependent protein catabolism (miR-197-3p, miR-328) and chromatin assembly (miR-328).

Conclusions: We identified mRNA and miRNA signatures of individual CM traits and their clustering.
Implicated transcripts may play causal roles in CM risk or be downstream consequences of CM risk factors on
the transcriptome. Studies are needed to establish whether or not pleiotropic circulating transcripts illuminate
causal pathways for CM risk.
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Background
Metabolic risk factors cluster in individuals and their
presence is associated with increased risk for type II dia-
betes mellitus (T2DM) and cardiovascular disease
(CVD) [1, 2]. Genome-wide association studies (GWAS)
have identified hundreds of loci associated with cardio-
metabolic (CM) risk factors including body mass index
(BMI), lipid levels, glucose levels, T2DM, and blood
pressure [1–5]. In more recent years, circulating mRNA
and miRNA transcriptional patterns have been linked to
CVD and CM phenotypes [6–9].
Despite having identified molecular associations with

CM risk factors at the genetic, mRNA, and miRNA
levels, multidimensional interrelations of these molecu-
lar elements and how they interact to influence suscepti-
bility to CM risk factors and CVD risk remain unknown.
Recent studies have shown that circulating mRNA and
miRNA transcript levels are heritable quantitative traits
that are partly under genetic control [10]. The molecular
underpinnings of complex CM diseases may be ex-
plained in part by genetic variation, mRNA and miRNA
expression, and by miRNA–mRNA interaction [11].
Therefore, integrative analyses that incorporate multidi-
mensional genomic data are necessary to investigate and
characterize complex changes in the regulatory machin-
ery and their effects on biological functions and complex
CM phenotypes [6, 7].
With the goal of generating new insights into potential

gene regulatory factors responsible for the clustering of
CM risk factors, we examined the relations of circulating
mRNA and miRNA expression levels to six CM traits:
BMI, plasma lipid levels (HDL cholesterol [HDL-C], tri-
glycerides [TG]), fasting glucose levels, and systolic
(SBP) and diastolic (DBP) blood pressure. A high-
throughput, unbiased approach was used to detect novel
relationships among mRNAs and miRNAs across mul-
tiple CM traits since clustering of these traits is fre-
quently seen clinically.

Methods
Study sample
The Framingham Heart Study (FHS) is a prospective,
community-based observational study of CVD and its risk
factors. We included participants from the FHS Offspring
and Third Generation cohorts [12, 13]. We focused on 725
Offspring cohort participants (examination 8, 2005–2008)
and 2087 Third Generation cohort participants (examin-
ation 2, 2008–2011) who had whole blood collection for
RNA isolation for mRNA and miRNA expression studies
and who consented to genetic research. We excluded par-
ticipants taking medication for hypertension, dyslipidemia,
or diabetes. Venous blood samples were obtained after an
overnight fast and samples were stored using methods that
maintain RNA stability (http://www.preanalytix.com/

products/blood/RNA/paxgene-blood-rna-tube) [14]. All
participants gave informed consent. The Boston University
Medical Center Institutional Review Board approved FHS
examination protocols and University of Massachusetts
Medical School Review Board approved the miRNA and
RNA profiling protocols.

Risk factor definitions
FHS participants had a physician-administered history
and physical examination including anthropometric
measurements and a laboratory evaluation focused on
CVD and its risk factors. Blood pressure was mea-
sured twice by a physician with the participant seated;
the average of both measurements was used to calcu-
late SBP and DBP. BMI was calculated by dividing
the weight in kilograms by the square of height in
meters (kg/m2). Fasting plasma glucose was measured
using a hexokinase reagent kit (A-gent glucose test,
Abbott Laboratories, Inc., South Pasadena, CA); the
intra-assay CV was <3% [15]. Venous blood samples
were collected in 0.1% EDTA tubes and plasma was
separated by centrifugation. Plasma lipids levels were
measured before freezing. Triglycerides were mea-
sured using an automated enzymatic assay. HDL-C
was measured after dextran sulfate magnesium pre-
cipitation [16].

mRNA expression profiling
Whole blood was collected in PAXgene (QIAGEN,
Valencia, CA) tubes from each study participant after
an overnight fast and stored at −80°C. RNA was ex-
tracted from whole blood using the PAXgene Blood
RNA System Kit according to published methods [14].
RNA quality was validated using an Agilent 2100 Bioa-
nalyzer (Agilent Technologies, Palo Alto, CA); A
NanoDrop ND-1000 spectrophotometer was used to
quantify RNA concentration (NanoDrop Technolo-
gies, Wilmington, DE). NuGEN’s WT-Ovation Pico
RNA Amplification System was used to amplify 50 ng
of total RNA, which was then labeled according to
established protocols with FL-Ovation cDNA Biotin
Module V2 (NuGEN, San Carlos, CA) [11].

miRNA expression profiling
The same RNA sample was used for miRNA isolation. The
high throughput Gene Expression and Biomarker Core
Laboratory at the University of Massachusetts Medical
School profiled 346 miRNAs isolated from whole blood
(RNA isolation was performed by Asuragen, Inc, Austin,
TX) in 2445 FHS Offspring and 3245 Third Generation co-
hort participants using TaqMan chemistry-based assays
(Additional file 1: Methods). The initial miRNA list encom-
passed all TaqMan miRNA assays (774) available at the
start of the study. If a miRNA was not expressed in any of
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550 randomly selected samples, this miRNA was not exam-
ined in the entire cohort. Using this method, we restricted
miRNA quantification in the overall cohort to the afore-
mentioned 346 miRNAs. Methods used for cDNA conver-
sion, preamplification, and quantification are reported in
the Additional file 1: Methods. Among 70 replicate sam-
ples, >95% of the data points had coefficients of variation
<10% (mean ~4%). As described previously, miRNA ex-
pression was quantified using cycle threshold (Ct), where
higher Ct values reflect lower miRNA expression [14]. We
analyzed 315 miRNAs that were expressed in at least 100
people.

Statistical analyses
We report descriptive statistics using counts and percent-
ages for binary variables and means ± standard deviations
(SD) for continuous variables. We modeled mRNAs and
miRNAs as response variables versus each CM risk factor,
adjusting for age and sex. mRNA expression was quanti-
fied by log-2 transformed expression intensities. These
models also adjusted for RNA processing variables and
differential cell counts (imputed). RNA processing vari-
ables included isolation batch, RNA quality, concentra-
tion, and 260/280 ratio (ratio of absorbance at 260 and
280nm using a spectrophotometer) [14]. Differential cell
counts (white blood count, and percent lymphocytes,
monocytes, eosinophils, basophils) were imputed from
mRNA expression values via partial least square (PLS)
prediction, with cross-validated prediction accuracy esti-
mates ranging from 0.25–0.89. We conducted modeling
in the full sample and in two random, equal subsets (dis-
covery and validation, Additional file 1), which preserved
intact pedigrees. For each metabolic risk factor, we applied
false discovery rate (FDR) calculations in the whole sam-
ple, the discovery set, and the validation set.

mRNA analyses
The robust multichip analysis (RMA) algorithm [17]
was applied using Affymetrix Power Tools (APT) for
generation of signal values to yield an initially nor-
malized dataset using log-2 transformed expression
intensities. For a detailed description on data quality
control and normalization, please refer to Joehanes
et al. [18] Further adjustment of this dataset by Affy-
metrix quality control parameters (all_probeset_mean,
all_probeset_stdev, neg_control_mean, neg_control_stdev,
pos_control_mean, pos_control_stdev, all_probeset_rle_-
mean, all_probeset_mad_residual_mean, mm_mean), the
first principal component of the dataset (PC1), batch (Bat-
ch_Lump), and a factor accounting for the non-random
layout of probesets on the array (ProbesetGroupDiff )
yielded a final normalized dataset. A pedigree-based
mixed-effects model implemented in the R package "pedi-
greemm (version 1.0-4)" was applied to this final

normalized dataset for analysis of differential gene expres-
sion. Age, sex, measured or imputed blood cell counts
(RBC, WBC, PLT, LY_PER, MO_PER, EO_PER, BA_PER,
Retic_Per) were included in the model as covariates.

miRNA analyses
We used pedigree-based linear mixed-effects models (R
package “lmekin”) to analyze continuous miRNA values
(i.e., when Ct < 27) and logistic regression models to
analyze binary values (i.e., Ct < 27 versus Ct > = 27). This
was necessary because expression of miRNAs was not
universal, but varied from 1.5–99.9% among miRNAs.
The observed Ct values generally did not have a trun-
cated normal distribution, which precluded Tobit mod-
eling [19]. Furthermore, imputation produced extreme
bi-modal distributions and was not acceptable for re-
sponse data in linear modeling. Therefore, we employed
an adaptive approach. For a given miRNA, if at least
90% of participants expressed it, we used the linear-
model p value; if <10% of participants expressed it, we
used the logistic-model p value; if between 10% and 90%
of participants expressed the miRNA, we combined re-
sults from the two models. Specifically, we added their
X2 statistics and we calculated the p-value from the dis-
tribution of a X2 variate with two degrees of freedom.

miRNA-mRNA coexpression analysis
The coexpression analysis was performed on FHS
samples for which miRNA and mRNA data were both
available (N = 5626). Linear mixed models (R package
“lmekin”) were used to conduct pairwise coexpression
analyses for all profiled mRNAs (dependent variable,
N = 17,318) and 280 miRNAs (independent variable)
expressed in >200 samples, with fixed effects including
age, sex, technical covariates, imputed cell types, sur-
rogate variables (SV), and a random effect to account
for family structure. As described above, the mRNA
expression was quantified by log-2 transformed ex-
pression intensities. miRNA expression used Ct values
with higher values reflected lower expression levels of
miRNAs. Adjustment was made for technical covari-
ates (11 for mRNA expression and 4 for miRNA ex-
pression). Surrogate variables (SVs) were computed
from the mRNA expression data using the R package
“SVA,” and 51 SVs associated with at least 1 miRNA at
Bonferroni corrected P < 1.7 × 10−4 (0.05/280) were
included in the statistical model. We chose SVs that
correlated with at least 1 miRNA to adjust for add-
itional hidden effects in the mRNA expression mea-
surements that might have affected miRNA-mRNA
correlations. The Benjamini-Hochberg method [20]
was used to compute the false discovery rate (FDR).
The significant miRNA-mRNA coexpression pairs
were selected using FDR < 0.05.
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miRNA target databases
For the top four multiple-trait associated miRNAs, we
used OmniSearch to search for computationally pre-
dicted and experimentally validated targets. OmniSearch
is a semantics-based integration system to search miRNA
targets. OmniSearch provides access to multiple predic-
tion databases, including miRDB, TargetScan, and mi-
Randa, and experimentally validated including
miRTarBase. The predicted miRNA-mRNA target pairs
from these databases were compared with the miRNA-
mRNA coexpression pairs identified in the current study.
The predicted miRNA-mRNA target pairs from these
databases were compared with the miRNA-mRNA coex-
pression pairs identified in the current study.

Pathway and gene ontology enrichment analysis
Co-expressed mRNAs for each miRNA were com-
bined as a set and classified using Gene Ontology
(GO) databases to identify potentially relevant bio-
logical processes. Fisher’s exact test was used to cal-
culate enrichment p values of the overlapped genes in
comparison with the number of co-expressed mRNAs
and the number of genes in each GO biological
process terms. Because of many GO terms duplicated,
we only used 825 unique GO biological process terms
as suggested by MsigDB [21]. We used a Bonferroni
adjusted statistical significance threshold of p < 0.05/
825 = 6.0 × 10−5.
All statistical analyses were performed using SAS soft-

ware version 9.2 (SAS Institute Inc., Cary, NC, USA) or
R software version 3.1.1 (R Foundation for Statistical
Computing, Vienna, Austria).

Results
Demographic and CM risk factor characteristics of the
2812 participants are shown in Table 1. The study

sample consisted of middle-aged (49 ± 12 years) partici-
pants, a slight majority of whom were women (59%).

Circulating mRNAs in association with metabolic traits
Each CM trait was associated with multiple mRNA
gene transcripts at FDR <0.05. TG was associated
with the greatest number of circulating mRNAs (N =
5049), followed by BMI (N = 4826), HDL-C (N =
1768), DBP (N = 1499), SBP (N = 1019), and glucose
(N = 1014).
Numerous transcripts were associated with mul-

tiple CM traits (Table 2 and Fig. 1). As shown in
Fig. 1, genes associated with BMI shared associations
with other CM traits, most notably DBP, TG, and
HDL-C. Genes associated with both BMI and TG
and those associated with BMI and DBP were posi-
tively correlated, whereas genes associated with both
BMI and HDL-C were, in general, inversely corre-
lated. SBP and DBP shared a large number of associ-
ated genes and the directionality of shared
transcripts was concordant.
Four circulating transcripts were associated with all

six CM risk factors at an FDR <0.001 (Table 2), in-
cluding several genes with known associations with
cardiovascular and/or pulmonary disease: FAM13A
(family with sequence similarity 13, member a) [22],
CSF2RB (colony stimulating factor 2 receptor, beta)
[23], HIST1H2AC (histone cluster 1, H2ac), and
WNK1 (WNK lysine deficient protein kinase 1) [4,
24]. An additional 14 transcripts were associated with
five of the six CM traits (Table 2).
We conducted an analysis of all four of the most pleio-

tropic genes to examine relations to ‘energy metabolism’ or
‘cardiomyocyte function’ by searching these key words
using the GeneRif database (https://www.ncbi.nlm.nih.gov/
gene/about-generif), and found none of the four

Table 1 Framingham Heart Study Offspring and Generation 3 Study participant characteristicsa

Variable Total Sample
(n = 2812)

Third Generation Cohort
(n = 2087)

Offspring Cohort
(n = 725)

Age, y 49.2 (12) 44.6 (8) 62.6 (9)

Female sex, n (%) 1672 (59) 1207 (58) 465 (64)

Body mass index, kg/m2 26.9 (5) 26.9 (5) 26.7 (5.0)

Current smoking, n (%) 337 (12) 264 (12.7) 73 (10)

Prevalent diabetes mellitus, n (%) 38 (1) 26 (1.3) 12 (2)

Systolic blood pressure, mm Hg 117 (15) 114 (14) 125 (17)

Diastolic blood pressure, mm Hg 74 (10) 74 (9) 75 (10)

Serum glucose, mg/dL 95 (13) 93 (12) 100 (14)

Total cholesterol, mg/dL 192 (34) 189 (33) 203 (33)

High-density lipoprotein, mg/dL 62 (18) 62 (18) 63 (19)

Triglycerides, mg/dL 104 (67) 104 (70) 103 (57)

Data are presented as means ± standard deviation or number (percentage). Values reported were measured at enrollment
aIndicates absence of treated hypertension, cholesterol, or diabetes at baseline
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aforementioned mRNAs to have reported functions related
to cardiomyocyte function or energy metabolism.
The top ten gene transcripts associated with each CM

trait (BMI, HDL-C, TG, glucose, and SBP and DBP) are
shown in Additional file 1: Tables S3–S8. The directional-
ity and strength of association of the top four mRNAs are
graphically depicted in Additional file 2: Figure S1B.

Circulating miRNAs in association with cardiometabolic
traits
Five CM traits were associated with multiple miRNAs
(FDR < 0.05). TG was associated with the greatest num-
ber of miRNAs (N = 150), followed by DBP (N = 112),
BMI (N = 99), SBP (N = 4). HDL-C and glucose were not
associated with any circulating miRNAs at this FDR
threshold.

Fifty miRNAs were associated with three or more CM
traits and four were associated with four CM traits
(miR-197-3p, miR-328, miR-505-5p, miR-145-5p)
(Table 3 and Fig. 1). As shown in Fig. 1, miRNAs asso-
ciated with BMI shared associations with other CM
traits, most notably DBP and TG. miRNAs associated
with both BMI and TG, and those associated with BMI
and DBP, were positively correlated (reflected by line
color, Fig. 1).
The top ten miRNAs associated with each CM trait

(BMI, HDL-C, TG, glucose, and SBP and DBP) are
shown in Additional file 1: Tables S9–S14. The direc-
tionality and strength of association of the top four
miRNAs are graphically depicted in Additional file 2:
Figure S1A.

Replication results
Results of the separate analyses of discovery and validation
sets revealed a high degree of concordance for mRNA re-
sults across all traits (Additional file 1: Table S1). Only
two genes, ARRDC3 and CAPN2, which were associated
with glucose in the discovery set, failed to validate (at FDR
<0.05) in our validation set; their validation set FDR values
were 0.06. In contrast, owing to reduced power to detect
miRNA-trait associations, far less concordance was noted
between the discovery and replication sets for miRNA-
trait associations (Additional file 1: Table S2).

Coexpression analysis
We identified coexpressed mRNAs for the four miRNAs
that were associated with four CM traits (Table 3). These
highly pleiotropic miRNAs were associated with a large
number of mRNAs (1109 mRNAs in total; 396 coex-
pressed mRNAs for miR-505-5p, 241 for miR-197-3p,
177 for miR-145-5p, and 649 for miR-328). Notably,
similar patterns of associations across traits were seen
for mRNAs and miRNAs (Fig. 2).
Among the 1109 coexpressed mRNAs, 807 mRNAs

were associated with at least one CM trait at FDR <0.1,
and 249 were associated with more than three traits at
FDR <0.1. A less restrictive FDR threshold was used in
these analyses in light of the relatively low number of
coexpressed mRNAs and miRNAs with CM trait associ-
ations included in this model. The coexpressed mRNAs
for the four highly pleiotropic miRNAs were highly
enriched for associations with CM traits (enrichment P
< 1 × 10−32 by hypergeometric test). Figure 3 shows the
miRNA-mRNA coexpression network for the four highly
pleiotropic miRNAs and their coexpressed mRNAs (n =
249) that were each associated with at least four CM
traits. Among the coexpressed mRNAs, 17 mRNAs were
also miRNA targets reported by at least one miRNA tar-
get database, including WNK1 for miR-197-3p.

Table 2 Eighteen mRNAsa with greatest pleiotropy across
metabolic traits using a cut-off of FDR <0.001 to define signifi-
cance of association

Gene Symbol Gene Name # Traits at
FDR < 0.001

Traits
Associated

FAM13A family with sequence
similarity 13, member A

6 All

CSF2RB colony stimulating factor 2
receptor, beta, low-affinity

6 All

HIST1H2AC histone cluster 1, H2ac 6 All

WNK1 WNK lysine deficient
protein kinase 1

6 All

ABCG1 ATP-binding cassette, sub-
family G (WHITE), member 1

5 All but glucose

LSP1 lymphocyte-specific
protein 1

5 All but glucose

LMBRD1 LMBR1 domain containing 1 5 All but SBP

ZNF721 zinc finger protein 721 5 All but SBP

PARP15 poly (ADP-ribose)
polymerase family,
member 15

5 All but glucose

ZNF644 zinc finger protein 644 5 All but SBP

AP2B1 adaptor-related protein
complex 2, beta 1 subunit

5 All but SBP

PDS5B PDS5, regulator of
cohesion maintenance,
homolog B

5 All but glucose

HIST1H4E histone cluster 1, H4e 5 All but HDL-C

ZNF267 zinc finger protein 267 5 All but HDL-C

SAMHD1 SAM domain and HD
domain 1

5 All but HDL-C

CAPN2 calpain 2, (m/II) large
subunit

5 All but HDL-C

KLF10 Kruppel-like factor 10 5 All but HDL-C

CAST calpastatin 5 All but HDL-C
aEighteen mRNAs represent all mRNAs associated with five or more
cardiometabolic traits
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Gene ontology enrichment analysis (Additional file 1:
Table S15) revealed that the co-expressed mRNAs for
miR-505-5p were enriched for genes involved in RNA me-
tabolism (P = 3.5 × 10−5). The coexpressed mRNAs for
miR-197-3p and miR-328 were enriched for cellular
macromolecule catabolism (P = 7.67 × 10−7) and ubiquitin-
dependent protein catabolism (P = 1.86 × 10−10). The coex-
pressed mRNAs for miR-328 were enriched for DNA pack-
aging and chromatin assembly (P = 1.73 × 10−5). miRNAs
coexpressed with miR-145 did not show significant enrich-
ment for GO terms.

Discussion
In a large, community-based cohort, we identified dis-
tinct as well as shared circulating transcriptomic signa-
tures for CM risk factors. Four mRNAs were associated
with all 6 CM risk factors (FDR <0.0001) and four miR-
NAs were associated with four CM risk factors (FDR
<0.05). miRNAs associated with the greatest number of
CM traits were coexpressed with many of the mRNAs
that associated with multiple CM traits, including
validated miR targets. Results of GO analyses revealed

enrichment for processes relevant to regulation of gene
expression and protein levels. These findings are consist-
ent with causal roles of the implicated genes in CM risk.
Alternatively, they may be due to downstream conse-
quences of metabolic syndrome on the transcriptomic
landscape. Functional studies are warranted to explore
the mechanistic role of altered mRNA and miRNA ex-
pression in the pathogenesis of CVD and its CM risk
factors.
To our knowledge, no prior study has performed a

large-scale analysis of circulating miRNA and mRNA ex-
pression across CM traits. Several small studies, how-
ever, have examined mRNAs or miRNAs in relation to
CM risk factors or disease. In the Young Finns Study
[25], which included 71 participants, several circulating
miRs were found to be associated with components of
metabolic syndrome, including glucose and lipids. The
authors also showed that down-regulated targets of two
miRs, miR-1207-5p and miR-129-2-3p, were enriched in
PI3K and MAPK pathways and that eight of 12 enriched
pathways were downregulated in individuals with meta-
bolic syndrome. Reflecting the translational relevance of
our findings and validity of our approach, as discussed
below, several of the most pleiotropic miRNAs and
mRNAs identified in our analyses have been previously
related to individual CM traits [26].

Circulating mRNAs associated with multiple metabolic
traits
Genes with the greatest pleiotropy across multiple CM
traits (i.e. associated with all six CM traits at FDR <0.001)
included FAM13A (family with sequence similarity 13,
member A), CSF2RB (colony stimulating factor 2 receptor,
beta), HIST1H2AC (histone cluster 1, H2ac), and WNK1
(WNK lysine deficient protein kinase 1). FAM13A encodes
a Rho GTPase activating protein involved in signal trans-
duction. Variants in FAM13A, as well as PARK2 and
RGS6, have been associated with chronic lung disease in
prior genome-wide association studies (GWAS) [27, 28].

Fig. 1 Similarity networks for whole blood miRNA (panel A) and mRNA (panel B) across cardiometabolic traits

Table 3 Four miRNAsa with greatest pleiotropy across
metabolic traits using a cut-off of FDR <0.05 to define signifi-
cance of association

Gene Symbol Top Gene targetb # Traits at
FDR < 0.05

Traits
Associated

miR-505-5p Major histocompatibility
complex, class I (MR1)

4 All but HDL-C
and glucose

miR-197-3p SERTA domain containing 4
(SERTAD4)

4 All but HDL-C
and glucose

miR-145-5p ATP-binding cassette,
subfamily E, member 1
(ABCE1)

4 All but HDL-C
and glucose

miR-328 Transcription factor 7-like 2
(TCF7L2)

4 All but HDL-C
and glucose

aFifty miRNAs were associated with 3 traits (all 50 miRNAs were associated
with the same 3 traits (HDL-C, DBP, and TG).b Top target from
miRDB (mirdb.org)
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In another recent GWAS involving over 180,000 partici-
pants, a SNP intronic to FAM13A was reported to be as-
sociated with HDL-C (p = 4 × 10−12) [22].
CSF2RB encodes a protein that is a common subunit

to the three type I cytokine receptors (granulocyte-
macrophage colony stimulating factor receptor, as well
as the interleukin-3 and interleukin-5 receptors). As it
has long been known that inflammatory cells, including
macrophages, play important roles in the pathophysi-
ology of atherogenesis, it is perhaps not surprising that
recent animal work has demonstrated that CSF2RB ex-
pression affects monocyte and macrophage number and
function in atherosclerotic lesions [23].
HIST1H2AC (histone cluster 1, H2ac) encodes Histone

H2A type IC, one of the four core histones responsible
for nucleosome structure in eukaryotic cells. Histones
and other DNA-modifying/chromatin remodeling pro-
teins play important roles as mediators of age-related
DNA change and have been associated with cardiovascu-
lar risk factors, e.g., T2DM, and diseases, including ath-
erosclerosis, myocardial infarction, and heart failure
[29]. A GWAS involving 17,000 participants identified
SNPs intronic to HIS1H2AC (including rs806971) that
were associated with type 1 diabetes mellitus (p = 1.2 ×
10−10) [30].

The WNK1 (WNK lysine deficient protein kinase 1)
protein is a serine/threonine protein kinase that plays a
role in angiogenesis associated with VEGF signaling.
Overexpression of WNK1 has also been linked to hyper-
tension and hyperkalemia through alterations in sodium
and potassium handling [4]. GWAS have linked two
SNPs intronic to, or near, WNK1 with TG levels as well
as stroke risk [24].
Another gene exhibiting significant pleiotropy (5 traits;

Table 2), ATP-binding cassette G1 (ABCG1), has been
associated with total cholesterol levels in GWAS [24].
Lymphocyte-specific protein 1 (LSP1), which was associ-
ated with all metabolic traits except glucose (Table 2)
harbors variants that are associated with both SBP and
DBP [4].

Circulating miRNAs associated with multiple
cardiometabolic traits
miRNAs miR-505-5p, miR-197-3p, miR-145-5p, and
miR-328 exhibited significant associations with BMI,
SBP, DBP, and TG. miR-505-5p targets SRSF1 (Serine/
arginine-rich splicing factor 1). SRSF1, in turn, regu-
lates endoglin, vascular endothelial growth factor A,
and tissue factor, and controls a molecular senescence
program in endothelial cells, leading to age-dependent

Fig. 2 Coexpression network analysis
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vascular pathologies [31]. As shown in Table 3, the
top gene target of miR-505 is major histocompatibility
complex, class I (MR1). Recently, a novel susceptibil-
ity locus in MR1 has been associated with coronary
disease, likely as a result of dysregulated endothelial
function and atherogenesis [31]. As with miR-505-5p,
miR-145-5p is highly expressed in smooth muscle
cells and controls smooth muscle cell differentiation
and function, particularly in the context of metabolic
syndrome [32]. Circulating miR-145 deletion results
in impaired vascular contractility and differential ex-
pression of miR-145 in peripheral blood mononuclear
cells has been shown to relate to hypertension [33].

Both miRNAs have strong signals that they are impli-
cated in vascular function and susceptibility to cardio-
vascular disease.
In another recent study, circulating levels of miR-197

were associated with dyslipidemia in participants with
metabolic syndrome and miR-197 levels correlation
tightly to body mass index (p = 0.029) [34]. In contrast
to the other pleiotropic miRNAs, miR-328 is highly
expressed in platelets and has been associated with atrial
fibrillation and cardiac hypertrophy, likely through SER-
CA2A dependent signaling pathways [35]. Notably, vari-
ants in the primary gene target of miR-328, transcription
factor 7-like 2 gene (TCF7L2) [36], have been associated

Fig. 3 Pleotropic RNAs and miRNAs with heterogeneous effect directions across cardiometabolic traits. a Within trait associations showing
heterogenous effect directions for pleiotropic mRNAs and miRNAs. b Heat map showing strength and directionality of associations between
pleiotropic mRNA and miRNAs
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with T2DM in several genome wide association studies
[37]. Prior associations and mRNA targets suggest that
miRNAs 197 and 328 may play important roles in the
regulation of gene networks influencing body mass and
susceptibility to T2DM.

miRNA-miRNA coexpression analyses and cardiometabolic
traits
To better understand the molecular mechanisms under-
lying relations among circulating miRNAs, mRNAs, and
CM traits, we conducted miRNA-miRNA coexpression
analyses. Figure 3 displays the network of genes coex-
pressed with the most highly pleiotropic miRNAs. Seven-
teen mRNAs, including WNK1, that were coexpressed
with the four most highly pleiotropic miRNAs, were each
associated with multiple CM traits, and were found to be
miR targets. We did not otherwise see extensive overlap
between miRNA-mRNA targets and miRNA-mRNA
coexpression. This may relate to the fact that miRNAs in-
fluence many non-traditional mRNA targets, and the ef-
fect of a miRNA on a single protein-coding gene target
may be too small to be detected. Our findings do suggest,
however, that key miRNAs (“hub” miRNAs, such as miR-
197-3p) are shared across CM traits and co-express with
genes previously associated with CM traits, e.g. WNK1
[38]. We also identified notable associations between miR-
145-5p with ARHGEF12 (or LARG), a gene encoding Rho
guanine nucleotide exchange factor 12, a vascular smooth
muscle signaling protein that is required to develop salt-
induced hypertension [39, 40]. Another notable finding
was the association between miR-197-3p with SLC4A1,
which encodes Band 3 anion transport protein. SLC4A1
has been associated in GWAS with hypertension and its
expression in the kidney is altered in animal models with
altered sodium absorption [41, 42]. These findings suggest
that miRNA-mRNA coexpression pairs may influence vas-
cular phenotypes.
Gene ontology enrichment analysis (Additional file 1:

Table S15) revealed that coexpressed mRNAs for the
most pleiotropic miRNAs were enriched for RNA me-
tabolism (miR-505-5p), ubiquitin-dependent protein ca-
tabolism (miR-197-3p and miR-328), and chromatin
assembly (miR-328). The enriched GO terms (e.g., RNA
metabolism, protein catabolism, and chromatin assem-
bly) are all relevant to controlling gene expression and
protein levels. For example, several genes involved in
chromatin assembly (HIST1H4E, HIST1H4B) were
highly co-expressed and are known to be related to sev-
eral cardiovascular diseases [33].
Although our analyses revealed specific miRNAs and

mRNAs associated and coexpressed with multiple CM
traits, the global effect of these associations is likely to
be complex. While “master regulation” may occur in
specific settings, these data suggest that a cluster of

gene expression changes is contributing to the many
relevant pathways found in complex CM systems. It is
well known that an individual miRNA can target mul-
tiple genes and each protein-coding gene can be regu-
lated by several miRNAs but this complexity is
compounded by the fact that most existing studies are
performed with single miRNAs, limiting the interpret-
ation of intricate observations. However, the unbiased
approach of this study is a strength as it presents the
complex findings as potential starting points for future
mechanistic investigation.
Study Limitations Transcriptomic signatures may

vary by cell type and patterns of mRNA and miRNA
expression are known to differ between cell types.
Since CM risk factors may influence white cell lineage
differentiation, miRNA and mRNA levels in adults
with CM traits may reflect differential leukocyte de-
velopment. Nevertheless, in contrast to many prior
analyses focusing on the circulating transcriptome, all
observed associations were adjusted for white blood
cell counts. Utilization of whole blood derived RNA
for the analyses in our study does not provide de-
tailed information on the specific cellular RNA
source. We have previously observed that plasma de-
rived extracellular miRNA and blood miRNA levels
are often divergent, suggesting that distinct biological
sources of RNA may reflect different biological pro-
cesses and disease associations [43]. This conclusion
is strengthened by our previous observations of both
concordance and divergence amongst different blood
sources of miRNA [44].
We excluded participants receiving several medications,

including statins. Although this may have introduced bias
(e.g., less severe CM phenotypes), this bias would likely
have biased our results toward the null and does not
threaten the validity of our findings. Finally, the FHS par-
ticipants are largely middle-age adults of European ances-
try. Generalizability to other younger individuals or those
from other racial groups is uncertain.

Conclusions
We found multiple circulating mRNAs and miRNAs
that were associated with individual CM phenotypes
and with their clustering. Our work supports the hy-
pothesis that circulating transcriptomic patterns can
be identified for CM traits and can be used to iden-
tify pathways involved in development and progres-
sion of CVD and its risk factors.
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