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Accumulating evidence shows that circular RNAs (circRNAs) have significant roles
in human health and in the occurrence and development of diseases. Biological
researchers have identified disease-related circRNAs that could be considered as
potential biomarkers for clinical diagnosis, prognosis, and treatment. However,
identification of circRNA–disease associations using traditional biological experiments
is still expensive and time-consuming. In this study, we propose a novel method
named MSFCNN for the task of circRNA–disease association prediction, involving two-
layer convolutional neural networks on a feature matrix that fuses multiple similarity
kernels and interaction features among circRNAs, miRNAs, and diseases. First, four
circRNA similarity kernels and seven disease similarity kernels are constructed based
on the biological or topological properties of circRNAs and diseases. Subsequently,
the similarity kernel fusion method is used to integrate the similarity kernels into one
circRNA similarity kernel and one disease similarity kernel, respectively. Then, a feature
matrix for each circRNA–disease pair is constructed by integrating the fused circRNA
similarity kernel and fused disease similarity kernel with interactions and features
among circRNAs, miRNAs, and diseases. The features of circRNA–miRNA and disease–
miRNA interactions are selected using principal component analysis. Finally, taking the
constructed feature matrix as an input, we used two-layer convolutional neural networks
to predict circRNA–disease association labels and mine potential novel associations.
Five-fold cross validation shows that our proposed model outperforms conventional
machine learning methods, including support vector machine, random forest, and
multilayer perception approaches. Furthermore, case studies of predicted circRNAs for
specific diseases and the top predicted circRNA–disease associations are analyzed.
The results show that the MSFCNN model could be an effective tool for mining potential
circRNA–disease associations.

Keywords: circRNA-disease associations, circRNA-miRNA interaction, similarity kernel fusion, feature matrix,
convolutional neural network
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INTRODUCTION

Circular RNAs (circRNAs) are a type of endogenous non-
coding RNA with continuous covalently closed loop structures,
which are produced by back-splicing or lariat events in genes
(Barrett et al., 2015). Recently, with the development of
high-throughput sequencing techniques and other technologies,
a large number of circRNAs have been found in various
organisms, including protists, plants, and metazoans (Danan
et al., 2012; Memczak et al., 2013; Tang et al., 2018). The
main functions of circRNAs include sequestration of microRNAs
(miRNAs) and proteins (Salmena et al., 2011), regulation of
transcription and splicing (Zhang et al., 2013; Conn et al.,
2017), and even translation to produce polypeptides (Yang
et al., 2017; Sun and Li, 2019). Accumulating evidence
implicates mutation or alteration in expression of circRNAs
in the initiation and progression of numerous diseases. For
example, Chioccarelli et al. (2019) identified the differentially
expressed circRNAs in human spermatozoa, and found that
circRNAs are related to spermatozoa quality. By comparing the
expression profiles of circRNAs in disease-specific tissues or
cell lines with those in normal samples, significantly increased
or decreased circRNAs can be identified. In addition, the
intrinsic characteristics of circRNAs indicate they are stable
both inside cells and in extracellular plasma (Bahn et al., 2015;
Li et al., 2015; Memczak et al., 2015). Therefore, disease-
associated circRNAs are considered to be promising novel
biomarkers for diseases.

Recently, several studies have analyzed the roles of circRNAs
in varies samples, and further explore their diversity, expression
patterns, co-expression network, and so on. circAtlas integrates
the most comprehensive circRNAs, their expression, and
functional profiles in vertebrates (Wu et al., 2020). MiOncoCirc
is a cancer-focused circRNA resource to be generated from an
extensive array of tumor tissues (Vo et al., 2019). Ji et al. (2019)
identifies full-length transcripts and evolutionarily conserved
circRNAs, and infers circRNA functions on a global scale. Ruan
et al. (2019) characterizes circRNAs expression profiles, and
explores the potential mechanism of circRNA biogenesis as well
as its therapeutic implications. exoRBase integrates and visualize
the RNA expression profiles both normal individuals and patients
with different diseases (Li et al., 2018). These studies will trigger
functional implication for human diseases and benefit biomedical
research community.

The de-regulated circRNAs in diseases can be identified
for validation using low-throughput biological methods such
as quantitative real-time PCR, northern blotting, and so
on. However, these traditional experiments are costly and
time-consuming. Therefore, computational approaches are
important for exploring potential disease-causing circRNAs
and understanding the associated mechanisms of pathogenicity.
Several models have been proposed to forecast circRNA–
disease associations; most of these approaches are based on
the assumption that circRNAs with similar functions are likely
to be associated with the same or similar diseases. Lei et al.
(2018) developed a path-weighted model to predict circRNA–
disease associations based on circRNA semantic similarity and

disease functional similarity (Lei et al., 2018). KATZHCDA
was used to calculate the number of walks between nodes
and walk lengths for circRNA–disease associations, based on
a priori knowledge of the circRNA expression similarity and
disease phenotype similarity (Fan et al., 2018b). DWNN-RLS
predicted circRNA–disease associations using regularized least
squares of the Kronecker product kernel (Yan et al., 2018). Xiao
et al. (2019) proposed a weighted dual-manifold regularized
low-rank approximation model for disease-related circRNA
prediction, called MRLDC (Xiao et al., 2019). Another model,
iCircDA-MF, incorporated circRNA–gene, gene–disease, and
circRNA–disease associations, together with disease semantic
information, and used non-negative matrix factorization to
predict circRNA–disease associations (Wei and Liu, 2019). Zhao
et al. (2019) integrated the bipartite network projection algorithm
and KATZ measure algorithm to explore novel circRNA–disease
associations (Zhao et al., 2019). Deng et al. (2019) combined
circRNAs, proteins, and diseases to predict circRNA–disease
associations using the KATZ algorithm (Deng et al., 2019). Ge
et al. (2019) developed the LLCDC model for prediction of
human disease-associated circRNAs using locality-constrained
linear coding and a label propagation algorithm (Ge et al.,
2019). CD-LNLP calculated circRNA similarity and disease
similarity using linear neighborhood similarity based on known
associations, and then used the label propagation algorithm to
mine circRNA–disease associations (Zhang et al., 2019). Wang
Y. et al. (2019) used a graph-based recommendation algorithm,
PersonalRank, to predict disease-related circRNAs based on
circRNA expression profiles and functional similarities (Wang
Y. et al., 2019). Lei and Fang (2019) used a gradient boosting
decision tree with multiple biological data fusion for circRNA–
disease prediction (Lei and Fang, 2019). Ding et al. (2020)
developed the RWLR model based on the random walk and
the logistic regression to predict circRNA-disease associations.
iCDA-CGR quantified the sequence nonlinear relationship of
circRNA by chaos game representation technology based on
the biological sequence position information (Zheng et al.,
2020). Lei and Bian (2020) integrated the random walk with
restart and k-nearest neighbors to predict the associations
between circRNAs and diseases. Although these computational
models have achieved encouraging results, they represent
the tip of the iceberg with respect to predicting circRNA–
disease associations.

Several circRNAs can bind with the corresponding miRNAs
and participate in multiple biological processes synchronously
(Qu et al., 2018). Based on this theory, Fang and Lei (2019)
used an improved random walk algorithm to predict circRNA–
miRNA associations, named KRWRMC (Fang and Lei, 2019). As
miRNAs have been implicated in various diseases, we consider
that miRNA information should be included in the identification
of circRNA–disease associations. However, there have been few
studies of circRNA–miRNA interactions, and deep interaction
patterns are rarely considered in prediction of circRNA–disease
associations. In this work, we take circRNA–miRNA interactions
and miRNA–disease associations into account, and capture the
complex miRNA-based interaction features of circRNAs and
diseases, respectively.
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In recent years, deep learning architectures have attracted
increasing attention in various fields, including image analysis
(Yang and Xu, 2020), speech recognition (Graves et al., 2013),
and bioinformatics (Min et al., 2017), etc. The convolutional
neural network (CNN) is a well-known feed-forward artificial
neural network inspired by biological processes that simulates
the cognition function of human neural systems (LeCun et al.,
2015). CNN architectures have the ability to automatically
learn the meaning of combinations of features from the
input data and simplify the process of manual feature
selection (Liu et al., 2017). Recent applications of CNN-
based methods indicate their effectiveness in computational
biology (Liu et al., 2018), including in circRNA research.
Wang and Wang (2019) developed the DeepCirCode model
to discover the sequence code of back-splicing for circRNA
formation, and sequence motifs were also extracted. The
CSCRSites model was proposed to predict cancer-specific
protein binding sites on circRNAs based on CNNs. The
features learned by the CSCRSites model are converted to
sequence motifs, some of which are involved in human diseases
(Wang Z. et al., 2019). Inspired by the superior prediction
performance of this approach, we used CNN architecture to
detect combinations of features and predict potential circRNA–
disease associations.

In this study, we present a novel computational model to
predict potential associations between circRNAs and diseases,
named MSFCNN. The main attributes of the MSFCNN
model are as follows. (1) Four circRNA similarity kernels
and seven disease similarity kernels are constructed using
multiple biological and topological information, such as
circRNA expression profiles, circRNA sequence information,
disease-miRNA interactions, etc. (2) Whereas some existing
methods simply use linear weighting to integrate the similarity
kernels into one kernel, we considered that this may lead to
information loss and noise. Hence, we used the similarity
kernel fusion (SKF) method to fuse four circRNA similarity
kernels and seven disease similarity kernels, thereby retaining
the original information of each similarity kernel. A weight
matrix is used to reduce the noise in the fused similarity
kernel. (3) A feature matrix is constructed based on the
fused circRNA similarity kernel, fused disease similarity
kernel, and interactions and features among circRNAs,
miRNAs, and diseases. Multiple biological premises are
used to construct the feature matrix. On the one hand, two
circRNAs (or diseases) are more similar could capture the
relationships between the circRNA (or disease) similarities and
circRNA–disease associations. On the other hand, circRNA–
miRNA and miRNA–disease associations are also integrated,
and the interaction features are captured using principal
component analysis. (4) A two-layer CNN architecture is
used to process the feature matrix and predict potential
circRNA–disease associations. Five-fold cross-validation
(CV) is used to assess the prediction performance of the
MSFCNN model. The results indicate that the MSFCNN model
outperforms several conventional machine learning classifiers.
Furthermore, case studies of breast cancer, colorectal cancer,
hepatocellular carcinoma, and acute myeloid leukemia indicate

that MSFCNN could be an effective tool to infer potential
circRNA–disease associations.

MATERIALS AND METHODS

A flow chart illustrating MSFCNN, our novel approach to predict
potential circRNA–disease associations is shown in Figure 1.
First, four circRNA similarity kernels and seven disease similarity
kernels are computed based on their biological and topological
properties. Then, these kernel similarities are combined into one
circRNA similarity kernel and one disease similarity kernel by
applying a similarity kernel fusion strategy. Subsequently, the
feature matrix can be constructed based on the fused similarity
kernels, and interactions and features among circRNAs, miRNAs,
and diseases. Finally, we use a CNN to process the feature matrix
and predict final scores for prediction of potential circRNA–
disease associations.

Construction of the CircRNA–Disease,
CircRNA–miRNA, and Disease–miRNA
Networks
In this study, circRNA–disease associations, circRNA–miRNA
associations, and disease–miRNA associations were used to
predict circRNA–disease associations. Known circRNA–disease
associations were downloaded from the CircR2Disease database
(Fan et al., 2018a), which contained 739 entries including
725 experimentally validated circRNA–disease associations from
four species. Only human circRNA–disease associations were
used in this work. Interactions that did not correspond to
circRNAs IDs in the circBase database and disease names were
not recorded in the disease ontology database were removed
(Glazar et al., 2014; Schriml et al., 2019). Thus, we retained
325 circRNAs, 53 diseases, and 371 circRNA–disease associations
as the positive dataset. The circRNA–miRNA interactions were
obtained from the CircBank database (Liu et al., 2019), and
interactions overlapping with disease-related circRNAs were
extracted. Thus, 24745 interactions between 322 circRNAs
and 2545 miRNAs were obtained. In addition, the disease–
miRNA associations that matched circRNA-related diseases were
selected from the human microRNA disease database (Huang
et al., 2019), and 4970 associations between 37 diseases and
873 miRNAs were obtained. Finally, all of these associations
contained three types of nodes including 325 circRNAs, 53
diseases, and 3175 miRNAs.

Based on the circRNA–disease associations, an adjacency
matrix A(i,j) was constructed to represent associations between
nc circRNAs and nd diseases; A(i,j) was assigned a value of 1
if circRNA c(i) was found to be related to disease d(j), and
0 otherwise. Similarly, a circRNA–miRNA matrix Y(i, j) was
constructed to represent the associations between nc circRNAs
and nm miRNAs, and the associations between nd diseases and
nm miRNAs were represented by matrix O(i, j). Y(i, j) was set to 1
when there was an association between circRNA c(i) and miRNA
m(j), and 0 otherwise. If disease d(i) interacted with miRNA m(j),
O(i, j) was set to 1, otherwise it was set to 0.
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FIGURE 1 | Flow chart of the MSFCNN approach. Step 1: Four circRNA similarity kernels and seven disease similarity kernels are measured, respectively. Step 2:
The similarity kernels for circRNAs (or diseases) is fused with SKF method. Step 3: The feature matrix for each circRNA–disease pair is constructed by integrating the
fused similarity kernels, interactions and features among circRNAs, miRNAs, and diseases. Step 4: a CNN architecture is used to train MSFCNN approach and
predict latent circRNA–disease associations.

Representation of CircRNA Similarity
Kernels
CircRNA Sequence Similarity
The 325 circRNA sequences were obtained from the circBase
database (Glazar et al., 2014), and the sequence similarity of each
circRNA–circRNA pair was calculated using a modification of the
Needleman–Wunsch algorithm with the Emboss-stretcher tool
(Rice et al., 2000). Therefore, the circRNA sequence similarity

score SC_Seq(ci, cj) could be obtained by setting the parameters
as follows: Matrix = EDNAFULL, Gap open = 16, Gap extend = 4.

CircRNA Regulatory Similarity
Based on the assumption that circRNAs associated with the same
miRNAs tend to have similar biological regulatory functions, we
used the miRNA–circRNA interactions to measure the circRNA
regulatory similarity (Huang et al., 2018). Given the two sets of
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miRNAs, Mi and Mj, that had relationships with circRNAs ci
and cj, respectively, the circRNA regulatory similarity kernel was
calculated as follows:

SC_RG(ci, cj) =
card(Mi

⋂
Mj)√

card(Mi) ·
√

card(Mj)
(1)

CircRNA Expression Similarity
The circRNA expression profiles were derived from the
exoRBase database (Li et al., 2018). Each circRNA record
had 90 dimensions, representing the expression levels of a
single type of circRNA. By extracting the common circRNAs
between the CircR2Disease and exoRBase databases, circRNA
expression profiles were obtained for calculation of the circRNA
similarity kernel. We used the Pearson correlation coefficient
to measure circRNA expression similarity, and let SC_EP(ci, cj)
represent the expression similarity score between circRNAs ci
and ci. The expression similarity kernel of the circRNAs was
computed as follows:

SC_EP(ci, cj) =

∑N
i=1(xi− x̄)(yi− ȳ)√∑N

i=1(xi− x̄)2 ∑N
i=1(yi− ȳ)2

(2)

where N represents the number of properties of the expression
profiles, and xi and yi denote the expression values in different
tissues. In general, a pair of circRNAs with a higher correlation
score are considered to be more similarly expressed.

GIP Kernel Similarity for CircRNAs
The Gaussian interaction profile (GIP) kernel similarity was
used to measure the similarity between circRNAs, based on
the assumption that similar circRNAs are more likely exhibit a
similar interaction or non-interaction pattern with miRNAs (Van
Laarhoven et al., 2011). GIP kernel similarity for circRNAs was
measured based on circRNA–miRNA interactions and defined as:

SC_GIP(ci, cj) = exp(−γc ‖ c(i)− c(j) ‖2)

γc =
1

1
nc

nc∑
i=1

‖ c(i) ‖2
(3)

where the circRNA interaction profiles are represented by c(i), a
binary vector that encodes the interaction between circRNA i and
all miRNAs, i.e., the i-th row of the circRNA–miRNA interaction
matrix Y. The parameter γc controls the kernel bandwidth, and
nc is the number of circRNAs.

Representation of Disease Similarity
Kernels
Disease Symptom Similarity
According to the co-occurrence of disease and symptom terms
recorded in the PubMed bibliography, Zhou et al. (2014)
considered that diseases are connected if they have a positive
symptom similarity (Zhou et al., 2014). Thus, the disease
similarity could be measured and a symptom-based human
disease network was constructed. Here, the symptom-based
disease similarity SD_Sym was obtained from the symptom
profiles of diseases.

Disease Semantic Similarity
According to Medical Subject Headings descriptions, diseases
can be described by a hierarchical directed acyclic graph (DAG).
Here, disease semantic similarity is calculated using the method
of Wang et al. (2007). DAGd = (d, Td, Ed) represents the DAG
of a disease, in which Td denotes node d and its ancestor nodes,
and Ed denotes the direct edges from a parent node to child nodes
within Td. Therefore, the semantic contribution of parent node t
to d is defined as follows:

Dd(t) =
{

1, if t = d
max{1 ∗ Dd(d′)|d′ ∈ children of t, if t 6= d

(4)

where M represents the semantic contribution decay factor (M
is set as 0.5). The semantic value of disease d can be calculated
as follows:

DV(d) =
∑
t∈Td

Dd(t) (5)

If two diseases share a larger part of DAGs, they tend to
have higher similarity. The similarity score between di and dj
is defined as:

SD_Dss(di, dj) =

∑
t∈Tdi

⋂
Tdj

(Ddi(t)+ Ddj(t))

DV(di)+ DV(dj)
(6)

GIP Kernel Similarity for Diseases
Similar to the calculation of GIP kernel similarity for circRNAs,
the disease GIP kernel similarity was measured based on disease–
miRNA interaction profiles. It is defined as:

SD_GIP(d(i), d(j)) = exp(−γd ‖ d(i)− d(j) ‖2)

γd =
1

1
nd

nd∑
i=1

‖ d(i) ‖2
(7)

where the disease interaction profiles are represented by d(i),
a binary vector that encodes the interaction between disease i
and each miRNA, i.e., the i-th row of association matrix O. The
parameter γd is also used to control the kernel bandwidth, and nd
is the number of diseases.

Other Disease Similarities
Besides disease symptom similarity, disease sematic similarity,
and GIP kernel similarity, disease similarities can also
be measured using the Lin (1998), PSB (Mathur and
Dinakarpandian, 2012), Resnik (1995), and SemFunSim (Cheng
et al., 2014) methods based on the DincRNA database (Cheng
et al., 2018). Four disease similarity kernels were constructed
using these methods and denoted SD_Lin, SD_PSB, SD_Resnik,
and SD_SemFunSim, respectively.

Similarity Kernel Fusion
Next, we used the similarity kernel fusion method to integrate
four circRNA similarity kernels and seven disease similarity
kernels (Jiang et al., 2018). Let Sc,m (m = 1,2,. . .4) represent the
four circRNA similarity kernels and Sd,n (n = 1,2,. . .7) the seven
disease similarity kernels, respectively.
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First, each original similarity kernel for circRNAs was
normalized using Eq. (8):

NSc,m(ci, cj) =
Sc,m(ci, cj)∑

ck∈C Sc,m(ck, cj)
(8)

where NSc,m denotes a normalized similarity kernel for circRNAs
that satisfies

∑
ck∈C NSc,m(ck, cj) = 1.

Then, a sparse kernel for each circRNA similarity kernel was
constructed using Eq. (9):

Fc,m(ci, cj) =


Sc,m(ci, cj)∑

ck∈Ni
Sc,m(ci, ck)

cj ∈ Ni

0 cj /∈ Ni

(9)

where Fc,m is a sparse kernel satisfying
∑

cj∈C Fc,m(ck, cj) = 1,
and Ni is a set of ci’s neighbors including ci itself.

The four circRNA similarity kernels were computed
using Eq. (10):

SCt+1
c,m = α

(
Fc,m ×

∑
r 6=1 SCt

c,r

2
× FT

c,m

)

+ (1− α)

(∑
r 6=1 SC0

c,r

2

)
α ∈ (0, 1) (10)

where SCt+1
c,m is the status matrix of m-th circRNA similarity

kernel after t+1 iterations, andSC0
c,r denotes the initial status of

SCc,r .
After t+1 steps, the overall kernel for circRNAs was calculated

using Eq. (11):

Sc =
1
4

4∑
m=1

SCt+1
c,m (11)
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FIGURE 2 | Establishment of the feature matrix of circRNA c1 and disease d2. Based on three premises, c1-d2 feature matrix is constructed by combing fused
similarities and associations among circRNAs, diseases and miRNAs.
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Furthermore, a weight matrix wc was used to eliminate the
noise in matrix Sc, and the fused circRNA similarity kernel was
computed using Eq. (12):

S∗c = wc ◦ Sc (12)

wc(ci, cj) =


1 if ci ∈ Nj and cj ∈ Ni
0 if ci /∈ Nj and cj /∈ Ni
0.5 otherwise

(13)

Similarly, the seven disease similarity kernels were fused to form
one disease similarity kernel, denoted byS∗d .

Construction of the Feature Matrix
The feature matrix for each circRNA–disease pair was
constructed by incorporating the fused circRNA similarity, fused
disease similarity, circRNA–miRNA interactions, circRNA–
disease associations, and disease–miRNA associations (Figure 2).

FIGURE 3 | Graphical illustration of the MSFCNN architecture. The feature matrix of circRNA c1 and disease d2 is input to the convolution neural network model to
learn global deep representation between c1 and d2.
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In the construction process of the feature matrix, three biological
premises were used. Here, we take the construction of the
c1-d2 feature matrix as an example. Based on the premise that
the circRNAs should be more similar that have interaction
with circRNA similarities and circRNA–disease associations,
the first part of the feature matrix consists of the similarity
between c1 and all circRNAs, and the associations of d2 with
all circRNAs. If circRNA c1 and c2 or other circRNAs have
similar functions, and at the same time d2 has been shown to
be associated with these circRNAs, c1 has a large probability
associated with d2. The dimension of the first part of the
feature matrix is 2 × nc. Similarly, based on the premise
that diseases should be more similar that have interaction
with disease similarities and circRNA–disease associations,
we integrate the associations between circRNA c1 and all
diseases, as well as the similarities between disease d2 and all
diseases. The second part of the feature matrix has dimension
2 × nd. In addition, circRNA–miRNA and miRNA–disease is
integrated to capture the relation features. When c1 and d2 have
interactions with common miRNAs, they are more likely to be
associated with each other. The interactions between c1 and
various miRNAs, as well as the associations between d2 and
miRNAs, are integrated to construct a matrix with dimension
2 × nm. However, the matrix is very sparse, so we perform
principal component analysis (PCA) to obtain miRNA-based
features for the c1-d2 pair with dimension 2 × np (np is set as
50). Finally, we concatenate these three matrices to form the
feature matrix of circRNA c1 and disease d2 with dimension
2× (nc+nd+np).

Identification of CircRNA–Disease
Associations Based on CNN
The MSFCNN architecture consists of an input layer, two
convolutions, and an activation layer, polling layer, fully
connected layer, and softmax layer (Figure 3). The feature matrix
X of node pairs is used as an input to the CNN architecture to
learn the representations of node-pair circRNAs and diseases.
The MSFCNN can be summarized as:

Out = f Softmaxf Fully_connectedf GlobalMaxPoolf Conv2D_ReLU f Conv2D_ReLU (X) (14)

where X is the feature matrix that is fed to the two-dimensional
convolution (Conv2D) layer. In the first convolutional layer,
if the number of filters is nconv1, the width of the kernel is
nw, and its length is set as nl. The convolution filters are
indicated as Wconv1∈Rnconv1 × nw × nl, and the feature maps are
Zconv1∈Rnconv1 × (2−nw+1) × (nc+nd+np−nl+1). The convolution
process can be described as follows:

Xk,i,j = X(i : i+ nw, j : j+ nl) Xk,i,j ∈ Rnw×nl (15)

Zconv1,k(i, j) = g(Wconv1(k, :, :) ∗ Xconv1,i,j + bconv1(k))
k ∈ [1, nconv1], i ∈ [1, 2], j ∈ [1, nc + nd + np − nl + 1]

, (16)

where X(i,j) is the element of matrix X in the i-th row and j-th
column, and Xk,i,j represents the region in the filter where the
k-th filter slides to the position X(i,j). g is a rectified linear units
(relu) function (Nair and Hinton, 2010), bconv1 is the bias vector, ∗
represents the convolution operation, and Zconv1,k(i,j) represents

the convolution result of the k-th filter sliding to the j-th column
of the i-th row.

Similarly, the second Conv2D layer is also used to learn
the higher-level features. To compress data and reduce over-
fitting, the polling layer is used to obtain robust features.
Here, the max-pooling operation is employed for each feature
map (Collobert et al., 2011). Then, the outputs of the pooling
layer are concatenated together from all kernels into one
feature vector and input into the fully connected layer. The
nonlinear softmax activation function is used to perform the
task of classification.

To avoid over-fitting, a dropout layer is implemented before
the output, in which the output of every neuron is set to
zero with a probability of 0.5. The dropped-out neurons are
not included in the forward pass or the back-propagation
(Hinton et al., 2012).

Prediction of Novel CircRNA–Disease
Associations
Next, we used all the positive and negative circRNA–disease
association samples to train the MSFCNN architecture. Then,
MSFCNN was used to score the unlabeled associations between
circRNAs and diseases. Owing to the different negative samples
used to train the model in each iteration of the five-fold cross
validation (five-fold CV), we scored the candidate associations 10
times. Finally, we calculated the average scores for the candidate
associations, and the candidate circRNAs related to specific
diseases were analyzed using case studies.

RESULTS

Performance Evaluation
The performance of MSFCNN and other conventional machine
learning-based methods for predicting circRNA–disease
associations was evaluated using five-fold CV. If the circRNA
c(i) was found to be related to disease d(j), the node pair ci-dj
was considered as a positive example. Hence, the validated
circRNA–disease associations were regarded as the positive
set. However, because of the unavailability of a dataset for
negative samples, we randomly selected a negative set from
unobserved associations that was the same size as the positive
set. All the positive samples were divided into five subsets of
equal size, and each subset was tested once. For each CV, we
took four positive subsets and the same number of negative
subsets from five subsets to train the models; the remaining
one positive subset and one negative subset were used for
testing to evaluate the prediction performance. To lessen
the bias resulting from sample division, we performed 10
repetitions of five-fold CV and obtained the average values of
five experiments.

Receiver operating characteristic (ROC) curves were plotted to
show the prediction performance by calculating the true positive
rate and false positive rate. The area under the curve (AUC)
was calculated to evaluate the overall performance. In addition,
five metrics, precision (Pre), sensitivity (Sen), accuracy (Acc), F1-
score, and Matthews’s correlation coefficient (MCC) were used
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to evaluate the capability of the MSFCNN model. The detailed
calculation of these metrics was as follows:

Pre =
TP

TP + FP
(17)

Sen =
TP

TP + FN
(18)

Acc =
TP + TN

TP + TN + FP + FN
(19)

F1− score =
2× Sen× Pre

Sen+ Pre
(20)

MCC =
TP ∗ TN − FP ∗ FN

√
(TP + FN) ∗ (TP + FP) ∗ (TN + FN) ∗ (TN + FP)

(21)

where TP and TN represent the number of true positives and true
negatives, respectively, and FP and FN represent the number of
positives and negatives, respectively, that were wrongly predicted.

Parameter Setting
Convergence and parameter selection are important factors
in the SKF method, that is, the number of iterations and
two parameters, α and the size of neighbors. Following a
previous study (Jiang et al., 2018), we set these two parameters
to 0.1 and 36, respectively. As the number of iterations is
important for the convergence of the SKF method, we also
analyzed whether the number of iterations was sufficient for
convergence in the four circRNA similarity kernels and seven
disease similarity kernels. The relative error of the process
of iteration was denoted ECt and EDt for circRNA similarity
fusion and disease similarity fusion, respectively. The number
of iterations ranged from 1 to 25 with steps of 1, and ECt
and EDt were computed after every iteration. The convergence
processes of the four circRNA similarity kernels and seven disease
similarity kernels are shown in Figure 4. The results indicate that
the convergence process was fast, and the ECt and EDt values
reached 10−10 after 10 iterations. Therefore, we set the number

of iterations to 10 for both circRNA similarity fusion and disease
similarity fusion.

ECt =
‖ SCt+1

c,m − SCt
c,m ‖

‖ SCt
c,m ‖

(22)

EDt =
‖ SDt+1

d,n − SDt
d,n ‖

‖ SDt
d,n ‖

(23)

In the convolution operation of the MSFCNN model, the number
of filters was set to 8. The kernel size was set to 2 × 32 in the
first convolutional layer and 1 × 16 in the second convolutional
layer. We implemented the MSFCNN model using the Keras 2.2.4
library in Python 3.7.3.

Evaluation of Prediction Performance
To assess the performance of the MSFCNN model for prediction
of circRNA–disease associations, we used five-fold CV with 10
experiments (see Table 1 and Figure 5 for details). MSFCNN
achieved average precision, sensitivity, F1-score, Acc, MCC, and
AUC values of 0.9030, 0.9464, 0.9240, 0.9220, 0.8452, and 0.9525,
with standard deviations of 0.0360, 0.0256, 0.0292, 0.0305, 0.0605,
and 0.0202, respectively. Furthermore, the ROC curves for the
MSFCNN model were at the upper left of the picture. These
results indicate that our proposed model performs well in
prediction of circRNA–disease associations.

Comparison With Average Kernel Fusion
Strategy
In the MSFCNN model, the SKF method is used to fuse the
four circRNA similarity kernels and seven disease similarity
kernels into one circRNA similarity kernel and one disease
similarity kernel, respectively. We compared the performance
of the SKF method when integrating several similarity kernels
with that of an average kernel fusion strategy. The average
fusion strategy calculated the average similarity scores for four
circRNA similarity matrix or seven disease similarity matrices,
respectively. Five-fold CV was performed 10 times for predicting

FIGURE 4 | Relative errors of the SKF method with various numbers of iteration for the four circRNA similarity matrices and seven disease similarity matrices.
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TABLE 1 | Evaluation metrics for performance of the MSFCNN approach.

Times Pre Sen F1-score Acc MCC

1 0.9573 0.9677 0.9625 0.9623 0.9246

2 0.8488 0.9380 0.8912 0.8854 0.7752

3 0.9251 0.9326 0.9289 0.9286 0.8572

4 0.8660 0.9057 0.8854 0.8827 0.7663

5 0.9203 0.9650 0.9421 0.9407 0.8824

6 0.9010 0.9568 0.9281 0.9259 0.8534

7 0.9258 0.9757 0.9501 0.9488 0.8989

8 0.8641 0.9084 0.8857 0.8827 0.7665

9 0.8835 0.9407 0.9112 0.9084 0.8184

10 0.9377 0.9730 0.9550 0.9542 0.9090

Average 0.9030+/
−0.0360

0.9464+/
−0.0256

0.9240+/
−0.0292

0.9220+/
−0.0305

0.8452+/
−0.0605

FIGURE 5 | ROC curves of MSFCNN model for the task of circRNA–disease
association prediction.

circRNA–disease associations. The average kernel fusion-based
MSFCNN model had an average AUC of 0.8628 (Figure 6); by
comparison, the SKF-based MSFCNN model had an AUC of
0.9525 (an improvement of 0.0897). Other evaluation metrics
also indicated that the SKF method performs better than the
average kernel fusion strategy in MSFCNN (Table 2). Hence,
the SKF method is an effective fusion strategy for prediction of
circRNA–disease associations.

Comparison With Conventional Machine
Learning Approaches
To demonstrate the reliability and robustness of the MSFCNN
method, we made comparisons with state-of-the-art machine
learning approaches: support vector machine (SVM), random
forest (RF), and multilayer perception (MLP). For each of these
machine learning approach, the feature matrix fed into the model
was consistent with that used for MSFCNN to ensure the fairness
of the experiments. As shown in Figure 7, the average AUC
of the MSFCNN model in the five-fold CV was 0.9179 higher
than those of the SVM, RF, and MLP methods. In addition,
MSFCNN achieved higher precision, sensitivity, F1-score, Acc,
and MCC values than the other machine learning approaches

FIGURE 6 | ROC curves of the MSFCNN model with average kernel fusion
strategy.

TABLE 2 | Evaluation metrics for performance of the MSFCNN model with
average kernel fusion strategy.

Times Pre Sen F1-score Acc MCC

1 0.8448 0.8948 0.8691 0.8653 0.7317

2 0.7889 0.8464 0.8166 0.8100 0.6216

3 0.7834 0.7116 0.7458 0.7574 0.5170

4 0.8832 0.8760 0.8796 0.8801 0.7601

5 0.8342 0.8410 0.8376 0.8369 0.6738

6 0.7186 0.7709 0.7438 0.7345 0.4702

7 0.7171 0.7925 0.7529 0.7398 0.4825

8 0.7649 0.7278 0.7459 0.7520 0.5046

9 0.7778 0.8679 0.8204 0.8100 0.6242

10 0.7357 0.7951 0.7642 0.7547 0.5111

Average 0.7848+/
−0.0553

0.8123+/
−0.0629

0.7976+/
−0.0534

0.7941+/
−0.0537

0.5897+/
−0.1070

FIGURE 7 | ROC curves of the MSFCNN model and other machine learning
methods.

(Table 3). Therefore, the proposed method is more suitable than
these conventional approaches for the task of circRNA–disease
association prediction.
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TABLE 3 | Evaluation metrics for performance of the MSFCNN and other
tmachine learning methods.

Methods Pre Sen F1-score Acc MCC

MSFCNN 0.8468 0.8491 0.8479 0.8477 0.6954

SVM 0.6166 0.6415 0.6288 0.6213 0.2428

RF 0.6851 0.5337 0.6000 0.6442 0.2957

MLP 0.6455 0.6577 0.6515 0.6482 0.2965

TABLE 4 | Candidate circRNAs predicted by the MSFCNN model
for four diseases.

Diseases circRNAs Rank Evidence

Acute myeloid leukemia hsa_circ_0000677 3 Circ2Traits

hsa_circ_0000175 6 Circ2Traits

Breast cancer hsa_circ_0000677 8 Circ2Traits

hsa_circ_0000175 11 Circ2Traits

hsa_circ_0001417 25 Circ2Traits

Colorectal cancer hsa_circ_0001417 16 Circ2Traits

hsa_circ_0000175 19 Circ2Traits

hsa_circ_0001283 40 Circ2Traits

hsa_circ_0000615 56 Circ2Traits

Hepatocellular hsa_circ_0000677 10 Circ2Traits

hsa_circ_0001417 24 Circ2Traits

hsa_circ_0001283 48 Circ2Traits

FIGURE 8 | Top 20 predicted circRNA–disease associations.

Case Study
To further demonstrate the ability of the MSFCNN model
to discover potential circRNA–disease associations, we scored
unlabeled associations between circRNAs and diseases using
the trained model. Average scores were obtained from 10
applications of the MSFCNN model, and candidate circRNA–
disease associations were identified based on their ranked
scores. Case studies were performed for breast cancer, colorectal
cancer, hepatocellular carcinoma, and acute myeloid leukemia.
Some of the predicted specific disease-related circRNAs were
found in the Circ2Traits database (Ghosal et al., 2013),
which collects circRNAs and miRNAs related to diseases
and traits (Table 4). In addition, we plotted the top 20
predicted circRNA–disease associations; the results show that

these circRNAs may be related to the same diseases, and
the diseases may also be associated with the same circRNAs
(Figure 8). Hence, these results show that the MSFCNN model
could be an effective tool for the prediction of circRNA–
disease associations.

CONCLUSION

Prioritizing potential disease-related circRNAs based on various
types of prior information is beneficial to understanding
disease mechanisms, diagnosis, and treatment. In this study,
we developed a novel computational method named MSFCNN
to predict potential circRNA–disease associations, using a two-
layer two-dimensional CNN and integrating multiple biological
data. First, one of the crucial technical points for predicting
circRNA–disease associations is the similarity calculation for
circRNA–circRNA and disease–disease pairs. Therefore, we
calculated four circRNA similarity kernels and seven disease
similarity kernels based on multiple biological and topological
information. In addition, similarity kernel fusion was used
to integrate various similarity kernels into one circRNA
similarity kernel and one disease similarity kernel. Based
on these fused similarity kernels and interactions/features
among circRNAs, miRNA, and diseases, a feature matrix
was constructed for each circRNA–disease pair. Finally, a
two-layer CNN architecture was used to predict circRNA–
disease associations. The MSFCNN approach showed good
performance based on the five-fold CV, outperforming the
SVM, RF, and MLP classifiers. Furthermore, case studies
of breast cancer, colorectal cancer, hepatocellular carcinoma,
and acute myeloid leukemia demonstrated that the MSFCNN
framework could be an effective tool for successfully inferring
potential circRNA–disease associations and providing a basis for
biological validation.

The good performance of MSFCNN method mainly conclude
following aspects. Firstly, multiple similarity kernels for circRNAs
and diseases are effectively introduced to measure the biological
and topological features of circRNAs and diseases. Secondly,
the relationships of circRNA–miRNA and disease–miRNA
are also used to construct the feature matrix for each
circRNA–disease pair. Furthermore, the application of CNN
architecture guarantees the effectiveness of learning the meaning
of combinations of features from the feature matrix. Hence,
MSFCNN method is an effective biomedical resource to predict
the circRNA–disease associations.

Despite its promising prediction performance, the MSFCNN
approach has some limitations. First, incomplete and noisy
circRNA–disease associations were used as positive samples, and
negative samples are randomly selected, limiting the prediction
performance. This could be improved as more associations are
discovered. Furthermore, more reliable biological information
should be considered, such as circRNA coding potential and
circRNA functional information, as well as disease phenotypes
and functional information, etc. In addition, optional similarity
measurements would be integrated based on comparing the
prediction results of different similarity measures. Therefore,
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more data sources should be collected, and a more effective model
needs to be developed to address the above limitations.
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