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The ultimate goal of precision medicine is to determine right treatment for right patients
based on precise diagnosis. To achieve this goal, correct stratification of patients using
molecular features and clinical phenotypes is crucial. During the long history of medical
science, our understanding on disease classification has been improved greatly by
chemistry and molecular biology. Nowadays, we gain access to large scale patient-
derived data by high-throughput technologies, generating a greater need for data science
including unsupervised learning and network modeling. Unsupervised learning methods
such as clustering could be a better solution to stratify patients when there is a lack of
predefined classifiers. In network modularity analysis, clustering methods can be also
applied to elucidate the complex structure of biological and disease networks at the
systems level. In this review, we went over the main points of clustering analysis and
network modeling, particularly in the context of Traditional Chinese medicine (TCM). We
showed that this approach can provide novel insights on the rationale of classification for
TCM herbs. In a case study, using a modularity analysis of multipartite networks, we
illustrated that the TCM classifications are associated with the chemical properties of the
herb ingredients. We concluded that multipartite network modeling may become a
suitable data integration tool for understanding the mechanisms of actions of
traditional medicine.

Keywords: unsupervided learning, network modelling, precision medicine, traditional medicine, systems medicine
INTRODUCTION

Classification and clustering are our fundamental learning process to understand human biology and
diseases. To achieve the ultimate goal of precision medicine, i.e., the right intervention for a patient at the
right time (Stefano and Kream, 2015), there has been a long history of symptom-based diagnosis that
utilizes available information to classify patients, diseases, and drugs (Figure 1). In the early days of
traditional medicine, physicians tried to characterize diseases using empirical terms, such as
temperament and meridian (Rezadoost et al., 2016; Arji et al., 2019; Wang Y. et al., 2019), based on
which they prescribed corresponding herbs that are known to target them (Xu, 2011; Li and
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Weng, 2017). With increasing knowledge on biochemistry, the era
of modern medicine has started, further advancing our understanding
of human diseases to the molecular level. Molecular profiles, along
with clinical phenotypes, are leveraged to formally characterize
diseases, disorders, and symptoms (Steindel, 2010).

One of the greatest challenges in precision medicine is to
integrate all available patient-derived data for accurate diagnosis
and treatment, which would require novel data-driven approaches
rather than more conventional hypothesis-driven approaches
(Rouillard et al., 2015). Genomic information for patients, albeit
fundamental and often necessary, may not be sufficient due to the
fact that the human genome is dynamically adjusting its functions
by epigenetic regulations (Jafari et al., 2017; Nussinov et al., 2019).
Therefore, interactions among other molecular features including
transcriptome, proteome, and metabolome should also be
considered to obtain a more systematic characterization of the
diseases (Eric, 2014). On the other hand, phenotypic data including
cell and tissue images have been utilized for illustrating the impact
of molecular alternations in human diseases (Langlois et al., 2011;
De Fauw et al., 2018). Likewise, to improve our understanding on
human diseases, we may also investigate sources of clinical,
phenotypic, and pharmacological data that are derived from
traditional medicine (Ma et al., 2010; Zhao et al., 2014). A
systematic integration of all of these available information may
provide a promising approach to turn precision medicine into a
reality ultimately.

Here, we started by reviewing the application of clustering
analysis in high-throughput biological studies in modern and
Frontiers in Pharmacology | www.frontiersin.org 2
traditional medicine. Next, we described the application of
clustering in network modeling for the stratification of drugs
or patients. We focused on the advantages and promises of a
particular network modelling approach called multipartite
networks which can inherently integrate heterogeneous data
types at multiple levels. In a case study, a multipartite network
was developed to model traditional medicine herbs. We showed
that this modeling approach provides novel insights on the
rationale of herb classifications, which may facilitate the drug
discovery in TCM, such as discovering herb combinations or
prioritization of active ingredients.
USING CLUSTERING TO IMPROVE
PATIENT STRATIFICATIONS

Thanks to advanced experimental and computational technologies,
we are able to collect, standardize, and integrate a variety of cell-
based patient-derived datasets. For example, the LINCS program
(Keenan et al., 2018) is one of the recent multi-center studies to
facilitate the understanding of cancer biology by providing
transcriptional and morphological changes of multiple cancer cell
lines in responding to a variety of pharmaceutical agents. Moreover,
there are national and international efforts to sequence patients’
genomic features. For example, UK Biobank and FinnGen focused
on the contributions of genetic predisposition and environmental
exposure to the occurrence of common diseases for over half a
FIGURE 1 | A brief history of medicine and its relation with other branches of science. Traditional medicine as the first era of medicine was mainly built on the
physical characterization of diseases and patient biographical data. The modern medicine was established by including more chemical and physical
characterizations. Defining biomolecule using biochemistry and molecular biology revealed more details of diseases and pathological processes. This eventually led to
the development of diagnosis codes and the pharmaceutical industry. Recently, precision medicine has emerged with the advances of data science, which involves
more holistic analyses in order to understand human medicine at the systems level.
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million subjects (The Finngen Research Project Takes Finns to a
Discovery Trip to Genome Data; Manolio, 2018). On the other
hand, with the development of computational methods such as text
mining technologies, researchers are able to standardize data
resources in traditional medicine, making them easily accessible
and reusable (Zhou et al., 2005; Mirzaeian et al., 2019). For example,
the SymMap database was constructed to provide a mapping
relationship between 499 natural products, 19,595 ingredients,
1,717 clinical symptoms, and 5,235 diseases (Wu et al., 2019).
This work showed the potential to integrate traditional and
modern medicine at both phenotypic and molecular levels toward
phenotype-based drug discovery. Another example was the
UNaProd database which contains information concerning 3,411
natural products used in Iranian traditional medicine (ITM)
(Naghizadeh et al., 2020).

Clustering has been commonly used to identify subpopulations
of patients with distinctive genetic variants or gene expression
profiles. For example, Naval et al. showed how clustering analysis
helped identifying single nucleotide polymorphisms (SNPs)
associated with skin properties (Naval et al., 2014). Combining
transcriptomic data with images, Voineagu et al. showed how the
clustering methods characterize distinct complex disease subtypes
in autism spectrum disorder (Voineagu et al., 2011). Additionally,
in clinical proteomics, clustering analysis also identifies a group
of proteins as functional modules in pathogenesis. For example,
Baldelli et al. clustered non-small cell lung cancer tumors according
to the expression, activation, and phosphorylation levels of 26
signaling proteins (Baldelli et al., 2015). Implementing clustering
methods in the context of precision medicine is not only applicable
to omics data, but also to physiological data. For example, Xu
et al. developed human stress management using clustering of
physiological signals during series of task-rest cycles (Xu et al.,
2015). On the other hand, image data as a major part of health
records of individuals is commonly utilized (Hsu et al., 2013). For
example, Enguehard et al. presented a strategy of integrating neural
network and clustering analysis for automatic magnetic resonance
imaging data analysis (Enguehard et al., 2019). Furthermore, it has
been shown that utilizing biomedical annotations can potentially
improve clustering analysis to obtain more biologically relevant
disease categories (Futschik and Carlisle, 2005; Bandyopadhyay
et al., 2007; Lee, 2011). Therefore, the integration of existing
biomedical annotations, such as gene ontology or pathway
enrichment, is also expected to improve patient disease clustering
with refined distance functions (Handl et al., 2005).

As abovementioned, exploring subclasses of diseases and
drugs is a prevalent task in precision medicine, and traditional
medicine is no exception. For example, Liu et al. studied the gene
expression signature of breast cancer cell lines for an herbal
formula Si-Wu-Tang (SWT). This analysis showed that the effect
of SWT is comparable to b-estradiol treatment on estrogen-
responsive genes (Liu et al., 2013). Ruan et al. proposed a
clustering algorithm called THCluster that can effectively
discover meaningful categorization of herbs and their potential
clinical indications (Ruan et al., 2017). Zhang et al. validated TCM
syndrome types using a clustering method based on latent tree
models, based on which they proposed a standard for syndrome
Frontiers in Pharmacology | www.frontiersin.org 3
differentiation in TCM which was then validated successfully in a
study of kidney deficiency (Zhang et al., 2008). Likewise, Zhao
et al. proposed a top-down subspace clustering for improving the
precision of syndrome differentiation. Considering 5,600 symptoms
and 150 syndrome elements of AIDS (acquired immune deficiency
syndrome) patients, they showed that their method identified
clusters of patients more precisely, compared to conventional
clustering algorithms such as k-means (Zhao et al., 2014).

While identifying the heterogeneity of patients is critical,
understanding the driving molecular mechanisms of such
heterogeneity shall provide more rational on the design of
precision medicine. To understand the underlying factors that
are shared by patients with similar diseases, more information
about the interaction of biological entities including genes,
proteins, and drugs is required. By introducing network models,
such a complex layer of information can be systematically
evaluated, for which clustering analysis may further help infer
the distinctive disease patterns. In the following we focused on the
combination of network modeling and clustering analysis and
showed that how they may contribute to the understanding for
precision medicine.
EXPLORING NETWORK MODULES AS A
BASIS FOR CLASSIFICATION

A simple network consists of a set of elements called nodes or
vertices which are connected by a set of links or edges (Jafari
et al., 2013). Depending on the definition of node and edge sets,
numerous types of biological networks can be constructed and
used for further analysis. For example, the degree of a node,
which is defined as the number of links attached to the node,
suggests the importance of node and helps detect global and
provincial hubs within the network. The heterogeneity of a
network which is defined as the root of the variance of degrees
divided by their mean, also explains the overall topology of the
network and organization of relationships among the nodes
(Dong and Horvath, 2007).

One of the major network modeling approaches is the
modularity analysis or community detection which is the
intersection of clustering analysis and network science
(Fortunato, 2010; Fortunato and Hric, 2016). In this analysis,
exploring the local densely connected nodes, i.e., networks
community structure is the main aim. In other words, a
community within a given network includes nodes with high
intra-relationship and low inter-relationship with the other
nodes outside the community (Girvan and Newman, 2002).
Therefore, finding network modules is important to elucidate
and understand the complex topology of networks by
discriminating dense and sparse local structures. The network
topology determines the adjacency matrix, which can be utilized
for clustering analysis alone or in combination with the similarity
matrix derived from the node properties (Von Luxburg, 2006;
Fortunato, 2010). Since in real biological and disease networks,
there are multifunctional nodes belonging to more than one
group, soft clustering is also recommended (Yang and Leskovec,
August 2020 | Volume 11 | Article 1319
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2015). In the soft clustering, overlapping communities, also
called covers, are detectable because the multiple memberships
for a node are allowed. There are other methods including
dynamical clustering (Jeub et al., 2015). For example, the Markov
Clustering algorithm (MCL) is one of the commonly used dynamic
clustering algorithms based on biological annotations (Jafari et al.,
2015). After exploring the modules of a given network, it is
common to convert the network into its reduced version, where
a node of the reduced network corresponds to a module of the
original network, and an edge is inferred from the number of
interactions between the modules (Figure 2).

Utilizing molecular information in conjunction with the
module detection to predict biological functions is a common
task (Vespignani, 2003; Jafari et al., 2015). The main assumption
is that members of the same cluster tend to be involved in the
same biological process which is known as guilt-by-association.
For example, in protein-protein interaction networks, clique-
based clustering was used to detect protein complexes (Altaf-Ul-
Amin et al., 2006; Phan and Sternberg, 2012; Jafari et al., 2013).
Hierarchical clustering was utilized to identify signaling cascades
or metabolic pathways (Guimera and Amaral, 2005; Koch and
Ackermann, 2013; Azimzadeh Jamalkandi et al., 2016). Also,
according to the local topological features of biological networks,
clustering methods are commonly used to predict cellular co-
localization and co-expressed gene regulatory mechanisms
(Dittrich et al., 2008; Amiri et al., 2013; Mitra et al., 2013). At
the phenotypic level, network modeling linking phenotypes to
molecular components of a biological system, e.g., disease-
causing genetic variations is also one of the exciting research
areas (Goh et al., 2007; Loscalzo and Barabasi, 2011; Goh and
Choi, 2012; Emmert-Streib et al., 2013). In the context of
traditional medicine, Huang et al. highlighted how network
pharmacology modeling allows us to integrate concurrent and
traditional knowledge of herbal medicines for the development
of new drugs for complex human diseases (Huang et al., 2013).
Using a network-based integration of chemical structure and
omics data, they inferred novel drug-disease interactions via
molecular targets and pathways. Similarly, Li et al. introduced a
Frontiers in Pharmacology | www.frontiersin.org 4
distance-basedmutual informationmodel to score herb interactions
based on their frequencies and distances, and thus identify the
rationale of herb combinations (Li et al., 2010).

Network biology approaches have also shown potential for
exploring disease subcategories and patient subclasses in TCM.
For instance, Zhou et al. constructed a clinical phenotype network
to investigate the underlying mechanisms of TCM diagnosis and
treatment (Zhou et al., 2014). Wang et al. proposed a co-
occurrence network approach to identify the TCM symptoms as
biomarkers for the fatty liver disease (Wang W. et al., 2019).
Interestingly, Jiang et al. also demonstrated the association
between the TCM symptoms and tongue-coating microbiome
using co-occurrence networks (Jiang et al., 2012). Network
modeling of cold and hot syndromes of traditional medicine has
also been developed. For example, Ma et al. provided a gene
expression signature of the cold syndrome in TCM associated
with the neuroendocrine-immune system. By analyzing the
protein interaction networks, they showed that the genes related
to the cold syndrome are involved in pathways of energy
metabolism, neurotransmitters, hormones, and cytokines (Ma
et al., 2010). Likewise, Lu et al. provided distinctive molecular
signatures in CD4-positive T cells of Rheumatoid Arthritis
patients associated with the cold and heat patterns in TCM
respectively (Lu et al., 2012a; Lu et al., 2012b).
MULTIPARTITE NETWORK MODELS FOR
INTEGRATING HETEROGENEOUS DATA

With the development of high-throughput technologies, precision
medicine has been made more plausible with increasingly
diversified data sets. These data sets range from gene expression
profiles to medical images, where the scales, characteristics, and
formats are different since they are gathered at the different levels
of biological systems (Lee, 2011). The integration of information
from these heterogeneous biological and clinical data sets need to
be applied in order to discover new mechanistic insights of
systems medicine. For example, to predict more effective disease
A B C

FIGURE 2 | A Poisson-distributed random network is represented in three formats. (A) A complex view of the network by placing nodes on a sphere layout that
obscure the complexity of the network topology. (B) The same network using the force-directed layout algorithm in which communities were identified via a greedy
optimization of modularity score. This representation is usually used to show the modular structure of the network. (C) The simplified network in which each node
represents a community in the original network, and each edge denotes the interaction of communities.
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treatment options using multi-targeted drug combinations (Tang
and Aittokallio, 2014), we need to gather multiple data types such
as in vitro drug response of cancer cells and in vivo response of
patients including symptoms and molecular profiles. To predict
the effectiveness of drug combinations, understanding about the
signaling pathways and drug target interactions along with the
pathophysiological states is essential. There is a major type of
network models called multipartite networks which are commonly
used in systems medicine (Junker and Schreiber, 2008). This kind
of network modeling is crucial due to its flexibility to integrate
mixed datasets and discover complex hidden relationships which
are required for understanding precision medicine. Unlike
ordinary uni-partite networks which contain single sets of nodes
and edges represented by an adjacency matrix, a multipartite
network constitutes of multiple sets of nodes and edges which
are exemplified by incidence matrix (Agnarsson and Greenlaw,
2007). Depending on the data types, the network can represent
gene-disease (Bauer-Mehren et al., 2011; Barneh et al., 2016; Chen
et al., 2018), drug-target (Barneh et al., 2016), protein-cell
localization (Mirzaei Mehrabad et al., 2018), drug-disease (Lamb,
2007) and drug-side effect associations (Luo et al., 2014), as well as
associations at the patient level including patient-drug interactions
and patient-symptom interactions (Bhavnani et al., 2010).

Based on the constructed multipartite networks, different
kinds of clustering algorithms can be applied to identify the
hidden subnetwork structures for each node set. For instance,
Long et al. proposed a clustering method by a combination of co-
clustering and probabilistic hidden Markov models (Long et al.,
2007). Also, Hartsperger et al. developed a fuzzy multipartite
clustering to decompose the nodes of multiple types in tripartite
networks (Hartsperger et al., 2010). They showed that the fuzzy
clustering algorithm was able to identify functionally correlated
modules of a tripartite gene-disease-protein complex network for
the identification of biologically meaningful clusters. Duan et al.
identified two major subtypes of breast cancer by reconstructing
a tripartite graph of drug-cell line-patient tumors. They showed
how drug response data helped discover dysregulated pathways
Frontiers in Pharmacology | www.frontiersin.org 5
for breast cancer (Duan et al., 2013). A multipartite network can
be also utilized as a visualization tool, with which one can
navigate efficiently the high-throughput drug response data
from public databases including Cancer Cell Line Encyclopedia
(CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC)
(Duan et al., 2014).

Typical multipartite network analyses involve network
projection, which aims for simplifying the network topology
from the viewpoint of each node set separately. In Figure 3, the
projection of a schematic bipartite network and module detection
analysis is briefly presented. Constructing the projected networks
facilitates the exploration of hidden relationships among each set
of nodes in a multipartite network. For example, Barneh et al.
constructed a drug-target network and further developed its
projected version called Drug Similarity Network (DSN) and
Target Similarity Network (TSN), which can be used for drug-
target prediction (Barneh et al., 2016). Recently, they have applied
the method to predict drug combinations, and confirmed them
experimentally (Barneh et al., 2018; Barneh et al., 2019). To
facilitate drug repositioning, network topological similarity-
based inference (NTSIM) and its classification-equipped version,
i.e., NTSIM-C methods were also proposed to unveil novel drug-
disease associations (Zhang et al., 2018).
NETWORK ANALYSIS RATIONALIZES
TCM CLASSIFICATIONS: A CASE STUDY

The idea of utilizing multipartite networks in traditional
medicine is potentially feasible, as the data standardization and
annotation has been increasingly pursued. However, to the best
of our knowledge, the models are not yet utilized to provide more
profound insights on traditional medicine, although some tools
such as SymMap (Wu et al., 2019) may provide an appropriate
dataset to build such multipartite networks. In the following, we
conducted a case study to reconstruct a bipartite network of
natural products and ingredients of TCM to show the potential
A B C

FIGURE 3 | A random bipartite graph or bigraph of drugs (square nodes) and targets (circular nodes) is represented along with two possible projections of it. The
center graph (B) is a main bipartite graph by placing nodes in two different sets. The projection of drugs (A) and the projection of targets (C) are shown in which
communities were identified via greedy optimization of modularity score.
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of this modeling for understanding TCM rationale for disease
treatment and drug discovery.

TCM-related databases provide a large set of information
about the TCM herbs including their classifications and disease
indications, as well as molecular characterization, such as ingredient
profiles and molecular targets. Recently, this information has been
successfully applied for developing computational models to
understand the TCM classifications (Wang Y. et al., 2019). As a
case study to show the potential of multipartite networks in the
integration of heterogonous data, we obtained a list of 4,485 natural
products consisting of 2,857 chemical ingredients from the TCMID
database (Huang et al., 2018). We used the second version of the
TCMID database, as the largest dataset in this field, which contains
richer experimental data originating from ingredient-specific and
herbal mass spectrometry spectra. The natural products and
ingredients are considered to be the two parts of a bipartite
network. After removal of disconnected nodes, we extracted a
giant component of the graph consisting of 7,004 nodes and
17,555 edges. Following the projection of this bigraph as outlined
in Figure 3, two projected graphs called the natural product
similarity network (NSN) and ingredient similarity network (ISN)
were reconstructed, such that each edge indicates at least one
common ingredient or natural product in NSN and ISN,
respectively. The NSN contains 4,308 natural products and
204,807 edges, while the ISN consists of 2,696 nodes and 78,228
edges. The community detection was subsequently done for both
similarity networks via optimizing a modularity score (Clauset et al.,
2004), resulting in 42 and 24 communities for NSN and ISN,
separately. The fast greedy algorithm outperformed compared to the
other high-performance algorithms, i.e., infomap and walktrap
(Labatut and Balasque, 2013; Wagenseller et al., 2018) according
to the highest average of modularity index in the NSN and ISN
(Supplementary file 2). These communities reflect the internal
similarity of herbs and ingredients which could be investigated
further. For example, a community of NSN indicates a set of natural
products with similar profiles of ingredients. Therefore, the
members of the same natural product cluster can be used for
therapeutic interchanging due to the similarity of ingredient
profiles in the cluster. Also, members of different clusters can be
candidates for new drug combinations as they are expected to affect
distinctive biological pathways. Similarly, the cluster of active
ingredients in ISN can be used to predict the mechanism of
action of newly discovered or synthesized compounds based on
TCM classifications. In other words, a functionally-unknown
molecule with high structural similarity to any of active ingredient
clusters indicate the analogous TCM properties and implications.
Therefore, any follow-up experimental analysis can be prioritized to
disclose therapeutic hits of the new molecules based on known
properties and implications of the corresponding cluster. Also, the
priority of active ingredients for treatment can be redefined in each
cluster independently using availability, and the relevant protein
targets characterizations (code and data set for this case study can be
found in Supplementary File 1).

We sought to validate our prediction about the herb and
ingredient communities, i.e., whether the herbs or active
ingredients that are clustered in the same community tend to
Frontiers in Pharmacology | www.frontiersin.org 6
share similar features. Four types of features for the natural
products and their ingredients including meridians and
properties were extracted from TCMID. Furthermore, the
SMILE strings of these ingredients along with the identified or
predicted protein targets of them were extracted using PubChem
(Kim et al., 2018) and STITCH databases (Szklarczyk et al.,
2016). Then, the average of pairwise intersection of meridian and
property profiles was computed separately for each cluster in
NSN. Likewise, the average similarity of SMILE string using the
Dice index and the pairwise intersection of their protein targets
in each cluster of ISN were also calculated. We showed in Figure
4 the average similarity of all the 42 and 24 communities in NSN
(Figures 4A, B) and ISN (Figures 4C, D), as compared to that of
random clustering from 100 simulations. We found that the
similarity of natural products or active ingredients within a cluster
is significantly higher than that for the random clustering. For
example, the median of meridian-based similarity of random
grouping is 0.56, while the median similarity of the 42 clusters
found in NSN is 0.96 (p-value = 1.99e-05, Wilcoxon test).
Similarly, in ISN, the median of the Dice similarity of SMILE
strings in random groups is 0.22, while the median of the 24
clusters in ISN is 0.36 (p-value = 5.84e-05, Wilcoxon test). Our
findings suggested that the clusters of ISN and NSN consist of
similar ingredients or natural products, and thus validating the
feasibility of bipartite modeling in analyzing TCM data.

Interestingly, these network analyses also suggested a
molecular basis of TCM classifications, which originated from
the physical features of natural products or empirical knowledge
about the disease indications. Although the chemical and
molecular characteristics of the natural products, i.e., chemical
structures and protein targets have only been available recently,
the TCM classification according to meridians were indeed
associated with them. The same observation was found for the
property classification in TCM in our findings, as the natural
products in a given cluster based on ingredient profiles are
associated with their property profiles. On the other hand, our
approach promises to bridge a gap between pharmaceutical
chemistry and traditional pharmacology in TCM. For example,
we can use attributes of active ingredient profile of natural
products as a rich training set, and newly discovered, or
synthesized molecules can be characterized accordingly as a
test set. To summarize, this bipartite network analysis provides
novel insights for the understanding of molecular evidence of
traditional classification in TCM. Using the bipartite network
modeling, we may integrate phenotypes of different types, i.e.,
signs and symptoms, with the chemical knowledge of drug
molecules in order to provide a formal framework for
phenotype-based drug discovery in TCM.
SUMMARY AND OUTLOOK

Nowadays, TCM, along with the other traditional medical schools,
was modernized and expanded by the molecular shreds of evidence
provided by experimental biology (Xue et al., 2013). These
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experiments usually are started by extraction and fractionation
techniques such as chromatography, and followed by identification
methods such as mass spectrometry to determine a comprehensive
profile of ingredients within the natural products (Jafari et al., 2016;
Kabiri et al., 2017). The challenging part of this experimental design
is identifying the ingredients responsible for the bioactivities of
natural products. To further explore the drug-target interactions of
these ingredients, high-throughput omics is now a preferable
approach to study the effects on gene expression and protein
activity. Through these experimental techniques, large volumes of
molecular features related to disease indications can be disclosed,
including antimicrobial, antiviral, antioxidant, anti-inflammatory,
and neurological activities (Neghabi-Hajiagha et al., 2016;
Pourramezan et al., 2018). In the next step, we always face the
challenge of applying appropriate data integration methods to
associate these molecular features with the phytochemical and
pharmacological properties of the TCM ingredients.

A remarkable portion of biological studies deal with generating,
organizing, and retrieving patient data, which is usually large scale
and noisy. Data mining algorithms such as clustering and
classification are being applied. Furthermore, the integration of
heterogeneous biological data is imperative. Rigorous and efficient
analysis tools are required for the integration of different data
characteristics and formats as standard statistical inference
techniques may be limited (Lee, 2011; Eric, 2014). Harnessing
the network modeling in computational biology becomes a feasible
strategy for data integration to navigate the complex space of
Frontiers in Pharmacology | www.frontiersin.org 7
biological systems (Barabási et al., 2011). Here, we highlighted the
application of the multipartite network reconstruction for data
integration in biomedical researches, particularly in traditional
medicine. More specifically, we demonstrated how we can
combine current chemical knowledge of ingredients and TCM
classifications of natural products to bridge the gap between
traditional and modern medicine. We provided a case study to
show its potentials for uncovering TCM concepts and discovering
potential treatments.

Although network science, and more precisely, network
medicine is on its developing stage, using multipartite network
modeling may provide more rational on the therapies in
traditional medicine. Generally in traditional medicine, much
efforts are spent on collecting the symptoms of patients, while in
modern medicine, biochemical profiles and image data are more
relied on. Providing a framework for integrating all these data
using multipartite network model shall facilitate the interchange
of knowledge from traditional and modern medicine.
Reconstructing multipartite networks is a convenient way to
characterize patient similarity, which serves the basis for further
explorations on their diseases mechanisms (Pai and Bader,
2018). Depending on the nature of the node sets, a multipartite
network can be utilized to investigate complex interactions, that
might be critical for understanding diseases with high-level
patient heterogeneity such as cancer (Yaffe, 2019). Considering
all available data from cellular behaviors to patient responses
using multipartite network modeling can play a significant role
A B

DC

FIGURE 4 | Validation of the network communities in TCM herbs. The distribution of Meridian similarity (A) and Property similarity (B) within the communities of NSN
(natural product similarity network) compared to random groups; The distribution of drug target similarity (C, D) the Dice index similarity within the communities of
ISN (ingredient similarity network) compared to random groups. Lines indicate the quartiles values and gradient color represent the probability of values within the
empirical cumulative density function for the distributions.
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in the integration of these heterogeneous datasets, a successful
application of which may make precision medicine a
reality ultimately.
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