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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Single-cell RNA sequencing is a powerful biotechnology in COVID-19 research

- It reveals multiple features of SARS-CoV-2 pathogenesis and host immune response

- Single-cell immune profiling characterizes the adaptive immune response in COVID-19

- Analysis of B cell receptors accelerates the neutralizing antibody identification
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Understanding the molecular mechanisms of coronavirus disease 2019
(COVID-19) pathogenesis and immune response is vital for developing ther-
apies. Single-cell RNA sequencing has been applied to delineate the cellular
heterogeneity of the host response toward COVID-19 in multiple tissues and
organs. Here, we review the applications and findings from over 80 original
COVID-19 single-cell RNA sequencing studies as well as many secondary
analysis studies. We describe that single-cell RNA sequencing reveals multi-
ple features of COVID-19 patients with different severity, including cell popu-
lations with proportional alteration, COVID-19-induced genes and pathways,
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in
single cells, and adaptation of immune repertoire. We also collect published
single-cell RNA sequencing datasets from original studies. Finally, we
discuss the limitations in current studies and perspectives for future
advance.

INTRODUCTION
As of June 11th, 2022, the estimated coronavirus disease 2019 (COVID-19)

global caseload and mortality are over 535 million cases and over 6.3 million
deaths respectively (https://ourworldindata.org/grapher/cumulative-deaths-
and-cases-covid-19). The severity of this global emergency has provided fuel
for COVID-19 research. This is reflected in the sharp increase in COVID-19-related
publications, with over 100,000 articles estimated in 2020 alone (https://www.
nature.com/articles/d41586-020-03564-y),many of these published as preprints.

Single-cell RNA sequencing (scRNA-seq) has become one of the most
powerful tools to understand the dynamics of gene expression and geno-
mics both within the cell and in the cellular environment. First developed in
2009 to sequence a mouse blastomere, subsequent developments have
made this high-resolution methodology readily available and widely applied
for dissecting heterogeneity of human tissues and underlying diseases.
The clinical symptoms of severe acute respiratory syndrome coronavirus-2
(SARS-CoV-2) infection severity varies dramatically, ranging from asymp-
totic, mild, severe, critical, to even death. Furthermore, viral infection of
host cells causes dramatic changes in the immune response.1–4 scRNA-
seq offers a high-resolution view into the cell and cellular environment.
Thus, it has been an important tool for studying the molecular mechanisms
of COVID-19, including the dynamic cellular changes in response to viral
infection.

Accordingly, we have seen over 200 scRNA-seq publications for COVID-
19 since the spring 2020. Here, we systematically summarize our search of
these studies, the related datasets, as well as their discoveries. We first pre-
sent a summary of the literature and their classifications. In addition, we
describe the published datasets and their features by categories. We
then discuss the standards of and definitions of COVID-19 infection
severity in these studies. Next, the findings from these studies regarding
immune cell subpopulations and differential gene expression are compared
and discussed. In addition, the pathways of interest and their functions in
COVID-19 infection severity are reviewed. Furthermore, we highlight some
important findings in cellular communication, cell trajectory inference,
and other applications such as using novel variable, diversity and joining
(VDJ) sequencing to identify COVID-19-specific T and B cell responses.
Finally, we review the applications of these datasets, their limitations, and

potential improvements to be made in future. We further discuss the
gaps in knowledge in the field and its current direction.

RAPID ADOPTION OF SCRNA-SEQ IN COVID-19 RESEARCH
Since early spring 2020, over 80 original studies using scRNA-seq in

COVID-19 research and over 60 bioinformatic re-analysis studies of those
original datasets have been published. We retrieved a collection of articles
about this topic from PubMed with query “(single-cell) AND (sequencing OR
seq) AND (COVID OR SARS-CoV-2)” on October 4th, 2021. After removing
duplicates, replacing published preprint articles, and filtering out irrelevant
articles, we obtained a total of 262 articles (Table S1). We classified articles
according to experimental methods, species, and whether subjects were in-
fected with COVID-19. Among these articles, nearly half of the studies per-
formed scRNA-seq on infected or uninfected subjects, while another half
performed bioinformatic analysis on published datasets but did not
perform original sequencing (Figure 1A).
Next, we analyzed the trend of COVID-19 scRNA-seq studies by looking into the

online publication date for these articles. For the studies performing scRNA-seq
on infected subjects, there is a gradual increase in the number of article since the
first publication byWen et al. inMay 2020 (Figure 1B).5 There are also 28 studies
performing scRNA-seq on uninfected subjects and analyzing potential implica-
tions of SARS-CoV-2 infection (labeled “non-COVID-19 infection” in Figure 1A).
They quantified the expression of ACE2 and TMPRSS2 in certain organs, tissues,
or cell types to predict their susceptibility to SARS-CoV-2 infection.6 scRNA-seq
studies using vaccinated human or animal subjects to study vaccine efficacy
and vaccine-induced immune responses started to appear in 2021. Since June
2021, there has been a trend of more articles focusing on analyzing COVID-19
scRNA-seq datasets than non-COVID-19 datasets. This is likely due to the accu-
mulating number of COVID-19 scRNA-seq studies that shared data in the past
year.With the ongoing global pandemic, we expect thatmore scRNA-seq and bio-
informatic analysis studies will appear soon.
Data sharing is a critical issue in biomedical research. As the datasets gener-

ated in COVID-19 scRNA-seq studies can be re-analyzed by others, we evaluate
data sharing of these studies (Figure 1C). About two-thirds of the studies share
both raw (FASTQ) and processed data, or at least share the processed data. How-
ever, there are also studies that did not share their generated scRNA-seq datasets
on any public databases or websites. In addition, several studies claim they up-
loaded their datasets into specific data repository, but there are issues preventing
access, including invalid accession numbers and long-termdelayed sharing. This
issue is unexpected, as most journals now require data sharing for peer review.
To evaluate the effect of data sharing, we counted the frequency of published
COVID-19 scRNA-seq datasets that were re-analyzed in bioinformatic analysis ar-
ticles. The top three datasets7–9 are all publicly accessible datasets deposited to
the Gene Expression Omnibus (GEO) database, andmost of the re-analyzed data-
sets have publicly accessible processed data (Figure 1D). It is apparent that data
sharing promoted follow-up studies in COVID-19 research.Weconclude that data
sharing is necessary and strongly encouraged for ongoing and future COVID-19
studies.
To facilitate further COVID-19 research, we curated a collection of COVID-19

scRNA-seq datasets (Table S2). We made notes of the sampling tissues/or-
gans, number of recruited subjects, sequencing protocols, and accessibility of
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these datasets (Figure 2). Most datasets are generated using peripheral blood
mononuclear cells (PBMCs) from subjects. Other common tissue or organ
samples include bronchoalveolar lavage fluid (BALF), nasopharyngeal swab, ce-
rebrospinal fluid (CSF), and lung. Most studies recruit up to 20 COVID-19 pa-
tients and 20 healthy subjects as controls, but there are a few studies with
over 50 COVID-19 patients.10–13 For library preparation and sequencing proto-
cols, most studies use the 10x Genomics platform. The 50 gene expression li-
brary, including VDJ library (total 38), is preferred compared with the 30 library
(total 28). Most datasets share processed data like count matrices or R/Python
objects, and 36 out of the 65 datasets share raw sequencing data.

COVID-19 INFECTION SEVERITY
One of themajor goals of COVID-19 scRNA-seq research has been uncovering

the genetic and cellular factors that drive COVID-19 disease severity. However,
how do we measure COVID-19 infection severity? The spectrum of symptoms
seen in COVID-19 infections is broad. While some patients do not display any
signs of infection (asymptomatic), there are others that suffer critical or fatal in-
fections. Infection severity can be classified into different groups, such as mild,
moderate, and critical or severe infection based on symptoms. In this section,
we present some of the standards used for classifying infection severity in
COVID-19 scRNA-seq research.

TheWorld Health Organization (WHO) developed a COVID-19 infection severity
classification scale for clinicalmanagement14 and a nine-pointWHOordinal scale
(WOS) for diagnosing COVID-19 infection severity in clinical trials.15 Under the
clinical guidelines, there are three distinct groups: non-severe (also called moder-
ate), severe, and critical COVID-19. The nine-point scale categorizes the patient
state as uninfected, ambulatory, mild, severe, and dead based on a score from
0 to 8, with 0 being uninfected and 8 being dead. The score is assigned according
to the description of the patient (Table 1). Another infection severity standard is

A B

C D

Figure 1. The summary of COVID-19 scRNA-seq
publications as of October 1st, 2021 (A) Number of
published articles by study categories. “scRNA-seq”
refers to the original studies by generating scRNA-seq
data. “re-analysis” indicates the re-analysis studies of
the published scRNA-seq datasets. “COVID-19 infec-
tion” refers to those studies including COVID-19-in-
fected human or animal subjects. “Non-COVID-19
infection” refers to those studies using non-COVID-
19-infected human or animal subjects to predict the
susceptibility of cells to SARS-CoV-2. (B) Distribution
of the number of published articles by month in 2020
and 2021. (C) Status of scRNA-seq data sharing of the
original studies with COVID-19 patients. Raw data
refer to the FASTQ files. Processed data refer to the
count matrices or R/Python objects. (D) The number
of publications (re-analysis) per each COVID-19
scRNA-seq dataset.

provided by the National Health Commission of
China (NHCC).16 The NHCC standard defines
four groups: mild, moderate, severe, and critical
(Table 1). Our review indicates that the NHCC’s
standard is used the most among those COVID-
19 scRNA-seq studies, followed by the WHO’s
standard. Interestingly, some researchers used
multiple datasets where both standards of
severity were used. In addition to the two most
popular standards from the WHO and NHCC,
other criteria, such as intensive care unit (ICU)
admission and mechanical ventilation, a modi-
fied Murray score, or the National Early Warning
Score (NEWS), were adopted. The modified Mur-
ray score is a four-point scale based on five clin-
ical criteria. The NEWS is used in the UK to
determine the degree of illness and need for
critical care (https://www.mdcalc.com/national-
early-warning-score-news).

Our comparison shows no consensus agree-
ment on which standard to use in a study. For

example, Ren et al. categorized the patients basedon theWHOclinical guidelines
to develop a large single-cell transcriptomic atlas.10 They found thatmegakaryo-
cytesandmonocytesmight contribute to the cytokine stormsobserved in severe
infections. On the other hand, Ziegler et al. used the WHO’s nine-point scale to
classify scRNA-seq data from nasopharyngeal swabs. They reported that,
despite a similar viral load, the epithelial cells expressed antiviral genes inmild in-
fections, while the antiviral responses in nasal epithelia were impaired in severe
infections.17

In May 2020, Liao et al. published the first COVID-19 lung tissue scRNA-
seq study in Nature Medicine.7 They developed a single-cell transcriptomic
atlas directly from BALF tissue.7 They used the NHCC infection severity
classification. Liu et al. linked immune response variation to disease
severity over time by performing single-cell analysis of PBMCs.18 They
found that severe patients exhibited low levels of cellular inflammation
early in their hospitalization, but, at 17 to 23 days after symptom onset,
the inflammatory responses were significantly elevated. Hasan et al. clas-
sified infections by defining ICU admission and mechanical ventilation
treatment as severe infections.19 Lam et al. stratified patients by
measuring lung injury with a modified Murray score that assigns a score
between 0 and 4 based on five criteria.20 Lee et al. used NEWS standard
to stratify the disease status and found that type I interferons (IFNs) exac-
erbate inflammation in severe infections.9

Since the classification systems from the WHO and NHCC have similar guide-
lines, we expect the results to be comparable between similar infection severities.
However, the extent of the difference in the results remains unclear and warrants
some future investigation. We believe a universal standard would be beneficial as
standardization is important for comparison between cohorts. However, we also
acknowledge that various factors such as country of origin for data collection
may determine which standard is used.

Review

2 The Innovation 3(5): 100289, September 13, 2022 www.cell.com/the-innovation

w
w
w
.t
he

-in
no

va
tio

n.
or
g

https://www.mdcalc.com/national-early-warning-score-news
https://www.mdcalc.com/national-early-warning-score-news
http://www.thennovation.org22387854
http://www.thennovation.org22387854


ALTERED CELL PROPORTIONS IN COVID-19
scRNA-seq enables the identification of cell populations in samples and com-

parison of cell proportions in different conditions. When comparing cell propor-
tions from samples in different conditions, a higher proportion usually implies

stronger local cell proliferation, transition from other cell types, or recruitment
of cells from adjacent tissues like blood. On the contrary, a lower proportion usu-
ally implies greater cell death, transition to other cell types, or migration
outward. Many COVID-19 scRNA-seq studies analyzed cell proportion alteration

Figure 2. A detailed view of 65 COVID-19 scRNA-seq datasets On the top, it shows several categories: tissue/organ, number of subjects, sequencing protocol, accessibility of data
format (raw or processed). On the left, it shows the datasets by the first author and publication month/year. Top bar plots show the numbers of datasets belonging to each category.
For number of subjects, a blank cell indicates zero subject in this category. The top histogram shows the distribution of subjects in each category among datasets. Datasets with zero
subjects indicate that they are generated from cell culture. For data format columns, green indicates the dataset being publicly accessible, while red indicates not (including dataset not
shared, controlled access, and invalid accession ID). See Table S2 for details. BALF, bronchoalveolar lavage fluid; CSF, cerebrospinal fluid; NS, nasopharyngeal swab; PBMC, peripheral
blood mononuclear cell.
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in COVID-19 patients of different severities compared with healthy controls or
controls with other diseases (Figure 3; Table S3).

Most studies used PBMC samples.8–11,21–33 In general, these studies re-
ported that neutrophils, plasma cells, and classical monocytes had signifi-
cantly increased proportions in the blood of COVID-19 patients. Higher propor-
tions of these cells were also found in severe patients than in moderate
patients.7–9,22,28,29,31,32 Cell populations with a decreased proportion in the
blood of COVID-19 patients included the overall T cells, natural killer (NK) cells,
dendritic cells (DCs), and non-classical monocytes. Severe patients had even
lower proportions of these cells than moderate patients.8–11,21–25,27,29–32

Analysis of bone marrow mononuclear cells (BMMCs) showed a significant
increase of immature myeloid progenitors and a dramatic decrease of
lymphoid progenitors in severe patients, suggesting that dysregulated hema-
topoiesis contributes to the proportional changes of immune cell subsets in
COVID-19 patients.30,34 Of note, each immune cell subset underwent dynamic
cell state transitions in response to viral infection. For example, Xu et al. found
that the proportions of the activated CD4+ T cell subsets (e.g., T helper [Th] 1,
Th2, and Th17-like) among the T cell compartment were increased in the se-
vere patients even though overall T cells were decreased in the PBMCs from
severe COVID-19 patients. How this reflects disease severity needs further
investigation, and each immune cell subset in COVID-19 patients needs
more detailed analysis to reflect a spectrum of dynamic cell states.

In BALF, epithelial cells were decreased in bothmoderate and severe COVID-19
patients.4 As lung epithelial cells are primarily the targets of SARS-CoV-2 attack,
the loss of epithelial cells may reflect virally induced cell death.2 Several research
groups revealed that, compared with the healthy controls, the numbers of CD8+

T cells and NK cells were increased in the moderate and severe patients.1,4,7 The
severe patients had higher proportions of neutrophils and monocytes, and lower
proportions of alveolar macrophages, than both the controls and moderate pa-
tients, but there were no significant differences between the controls andmoder-
ate patients regarding the proportions of those cell subsets. In contrast, the pro-
portion of plasmacytoid DCs (pDCs) in BALF was comparable between healthy
controls and severe patients, and it was only increased in moderate patients.1,7

In a scRNA-seq study of nasopharyngeal swab samples, Chua et al. found that
both the moderate and severe COVID-19 patients had higher proportions of pro-
liferative secretory cells, monocyte-derived DCs, NK T cells, NK cells, and neutro-
phils comparedwith the healthy controls.35 Particularly, an increase in the propor-
tion of neutrophils was observed in association with disease severity (none in the
healthy controls versus 61% of immune cells in the severe patients). In addition,
COVID-19 patients had lower proportions of basal cells, secretory cells, squa-
mous cells, resident macrophages, monocyte-derived macrophages, and cyto-

toxic T cells. Remarkably, the proportion of non-resident macrophages was
decreased in the moderate patients but increased in the severe patients who
experienced a severe extravasation event.35

Cell proportion alteration in the lung and heart from autopsy was also exam-
ined for the patientswhodied of COVID-19. In the lung of COVID-19 patients,mac-
rophages, NK cells, fibroblasts, and endothelial cells were increased, while epithe-
lial cellswere decreased.2,36 This is consistentwith the results fromBALF studies.
When studying the heart tissue of COVID-19 patients, fibroblasts and vascular
endothelial cells were significantly increased, while cardiomyocytes and pericytes
were decreased, suggesting stress-induced apoptosis of these cells.36

In summary, scRNA-seq has demonstrated great sensitivity and accuracy in
quantifying cell proportions and facilitates the identification of cells with altered
proportions. The significantly altered cell populations from most studies are
generally reliable. However, it is worth noting that different studies usually have
highly variable clustering results, and theyusedifferentmethods to determine sig-
nificant changes in cell proportions. This potentially leads to some inconsistent
results among different studies. It remains unclear whether the results would
show more consistency if a universal pipeline was applied to all samples. Such
an analysis using the same pipeline is warranted in future.

COVID-19-INDUCED GENES AND PATHWAYS
One unique feature of scRNA-seq is its capacity to analyze the transcriptomic

changes of different cell types in response to SARS-CoV-2 infection. Differential
expression analysis on scRNA-seq data is a common approach to find upregu-
lated and downregulated genes between COVID-19 patients and healthy controls,
as well as between the patients of different severity. Those differentially ex-
pressed genes (DEGs) are usually followed by gene set enrichment analysis to
identify the activated and deactivated pathways that are most associated with
the immune responses against SARS-CoV-2 infection (Figure 4).
In PBMCs from COVID-19 patients, IFN-stimulated genes (ISGs) were the

most commonly found upregulated genes in most cell types, including B
cells/plasma cells,11,21,31 T cells,8,11,31 NK cells,25,31,37 monocytes,9,13,31,37,38

DCs,31,38 neutrophils,22 and megakaryocytes.21 This gene expression change
is expected because the type I IFN system is triggered by SARS-CoV-2, and
ISGs have antiviral functions. ISGs usually had highest expression in moderate
patients and lower expression in severe patients,11,13,21,22,38 indicating the
decreased immunity of severe patients. Similarly, human leukocyte antigen
(HLA)-II genes also showed downregulation in B cells and myeloid cells from
COVID-19 patients compared with healthy controls,1,8,12,38 suggesting dysregu-
lation of immune cell crosstalk. Moreover, genes in some inflammation-medi-
ating pathways, like interleukin (IL)-1 and tumor necrosis factor (TNF) pathways,

Table 1. Summary of infection severity definition and number of COVID-19 studies in each definition

Definitiona WHO WOS NHCC Other

Mild Absence of any signs of severe or
critical COVID-19

Score 3: hospitalized, no oxygen
therapy
Score 4: oxygen by mask or nasal
prongs

Mild symptoms with no sign of
pneumonia on imaging

Other criteria

Moderate Fever and respiratory symptoms with
radiological findings of pneumonia

Severe Any of:
(1) oxygen saturation <90% on room air
(2) signs of severe respiratory distress
in adults; i.e., respiratory rate >30
breaths per minute
(3) presence of danger signs in children
such as cyanosis

Score 5: non-invasive ventilation or
high-flow oxygen
Score 6: intubation and mechanical
ventilation
Score 7: ventilation + additional organ
support: pressors, RRT, ECMO

Any of:
(1) respiratory distress (defined by as
>30 breaths per minute)
(2) oxygen saturation <93% at rest
(3) PaO2/FiO2 < 300 mmHg
(4) over 50% progression of lung le-
sions within 24–48 h (diagnosed by
lung imaging)

Critical Any of:
(1) ARDS
(2) sepsis
(3) septic shock
(4) requiring any ventilation support
such as mechanical ventilation (any
kind) and/or vasopressor therapy

Any of:
(1) respiratory failure and invasive
mechanical ventilation
(2) shock
(3) multi-organ dysfunction requiring
ICU admission and monitoring

No. of studies 3 12 17b 14

ARDS, acute respiratory distress syndrome; ECMO, extracorporeal membrane oxygenation; NHCC, National Health Commission of China; ICU, intensive care unit; PaO2/
FiO2, ratio of arterial oxygen partial pressure to fraction of inspired air; RRT, renal replacement therapy; WHO World Health Organization; WOS, WHO ordinal scales.
aIncluding the studies using the datasets generated by other studies.
bOne study that used both WHO and NHCC standards is not included here.
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as well as genes encoding pro-inflammatory molecules like S100A8, S100A9,
and S100A12, were found upregulated in several cell types,9–11,25,31,38 suggest-
ing hyperinflammation in COVID-19. The burst of alarmins S100A8/A9 is
considered to contribute to COVID-19 pathogenesis by driving the formation
of aberrant classical monocytes and immature neutrophils, and to trigger the
cytokine storm that characterizes severe COVID-19. These aberrant monocytes
and neutrophils have an immunosuppressive phenotype, suggesting the defec-
tive monocyte activation and emergency myelopoiesis.27,28 In addition to the

genes involved in common pathways, each cell type may have its specific
DEGs. For example, B cells were characterized with upregulated activation-
associated genes and protein transport-associated genes,5,31 showing their
function in antibody synthesis. Effector T cells and NK cells upregulated genes
involved in activation, cytokine production, and lymphocyte cytotoxicity.8,11,25,31

As major inducers and regulators of inflammation, monocytes in blood and
macrophages in BALF upregulated genes encoding many inflammatory cyto-
kines like CCL2, CCL3, and CCL4.1,7,31,38

Figure 3. Major cell populations with significantly altered proportions in COVID-19 Red and blue arrows indicate cell populations with significantly altered proportions in six different
tissues from moderate and severe COVID-19 patients. Double arrows indicate that the proportion of the cell populations in severe patients is significantly higher or lower than both
healthy controls and moderate patients. BALF, bronchoalveolar lavage fluid; BMMC, bone marrow mononuclear cell; cDC, conventional dendritic cell; CLP, common lymphoid progen-
itor cell; EP, erythrocyte progenitor cell; HSC/MPP, hematopoietic stem cell/multipotent progenitor cell; LMPP, lymphoid-primedmultipotent progenitor; moDC, monocyte-derived den-
dritic cell; moM4, monocyte-derived macrophage; nrM4, non-resident macrophage; PBMC, peripheral blood mononuclear cell; pDC, plasmacytoid dendritic cell; rM4, resident
macrophage.
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Samples from other organs of COVID-19 patients displayed similar immune
response-associated differential expression patterns, and showed altered gene
expression in non-immune cells. In the lungs of COVID-19 patients, higher expres-
sion of ISGs was found in both immune cells and alveolar epithelial cells.2,36

Furthermore, alveolar type II epithelial cells (AT2) upregulated genes for pro-
grammed cell death like STAT1 and downregulated a gene required for maintain-
ing AT2 identity, ETV5.2,36 These results suggest impaired alveolar epithelial
regeneration activity conferred by AT2. Monocyte-derived macrophages upregu-
lated genes associatedwith activation and aberrant activation, contributing to the
dysregulated inflammation.36 In the brain, Yang et al. revealed that neurotrans-
mission-mediating synaptic genes, such as VAMP2, SNAP25, and ATP6V0C,
were downregulated in excitatory neurons but upregulated in proximal inhibitory
neurons, suggesting the dysfunction of upper-layer cortical circuitry in COVID-19
patients.2 Heming et al. revealed that, in CSF of COVID-19 patients,many immune
cells also increased the expression of ISGs such as IFITM2, IFI27, IFNGR2, and
IL18 in monocytes and granulocytes and PRF1, XCL1, and ETS1 in T and NK
cells.39

In addition to comparing COVID-19 patients with healthy controls, comparison
of same cell types between different tissues is an intriguing aspect. For instance,
T cell activation assessed in the blood circulation of COVID-19 patients does not
properly reflect T cell responses in the respiratory tract. Szabo et al. compared
T cells and myeloid cells between airways and blood from COVID-19 patients.29

They found that blood T cells expressed high levels of genes associated with
quiescence and lymphoid homing, like TCF7, LEF1, and SELL. In contrast, airway
T cells exhibited an activated and pro-inflammatory state and expressed high

levels of genes encoding cytokines and chemokines, like IFNG, CCL2, and
CCL4. Airway myeloid cells also had higher expression of multiple chemokines
for recruiting monocytes and macrophages, lymphocytes, neutrophils, and com-
plement components. These results suggest that immune cells of the same type
in different tissues could exert different functions during infection.
Instead of using differential expression analysis to reveal overall upregulated

and downregulated genes in certain cell types, many studies performed subpop-
ulation analysis with the identification of marker genes. This approach could help
find geneswith altered expression in a subset of cells from the tissue of COVID-19
patients. However, due to the variations in sampling strategy, sequencing plat-
form and depth, and data analysis in different studies, the obtained cell subclus-
ters were found to vary among studies and they usually showed low consistency.
A large cohort of the recruited subjects is highly recommended to obtain general
results shared bymost COVID-19 patients, although it is often practically difficult.
For example, using PBMC and BALF samples from 171 COVID-19 patients and
25 healthy controls, Ren et al. obtained 64 cell clusters from over a million cells
and analyzed their association with severity.10 They found some severity-associ-
ated clusters, such as XBP1+ plasma cells, MKI67+ plasma cells, LILRA4+ DCs,
CCL3+CD14+ monocytes, CST7+ neutrophils, ANXA2+CD4+ T cells, and IL2RB+

CD8+ T cells. As a larger sample size is usually required to generate more reliable
and general cell clusters, it is good practice to integrate previously published data-
setswith newsequencing data for clustering.4,18,21 Previously published datasets
could also be used for cross-validation of results. Factors such as batch effect,
sequencing platform, and sample and clinical information need to be considered
in such integrative studies.

Figure 4. scRNA-seq reveals major induced genes and pathways in different cell types from brain, lung, and blood of COVID-19 patientsGenes involved in interferon (IFN) response
and inflammation weremost commonly induced inmultiple cell types from different tissues in COVID-19 patients. Each cell type also has induced genes and pathways associated with
its biological functions. AT2, alveolar type II epithelial cell; CSF, cerebrospinal fluid.
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In summary, both differential expression analysis and subpopulation analysis
provide reliable insights into gene expression regulation during SARS-CoV-2 infec-
tion. DEGs involved in some vital antiviral pathways are shared by many immune
cell types, while cell-type-specific, tissue-specific, or subcluster-specific DEGs
reflect their distinct functional changes. SARS-CoV-2 infection generally induces
robust innate and adaptive immune responses, as shown by the dramatic upre-
gulation of cell activation-associated genes in a variety of immune cell types as
well as the upregulation of genes encoding chemokines and inflammatory cyto-
kines. These immune responsesprotectmost virus-infected individuals frompro-
gression to life-threatening disease. Analysis of single-cell atlas further uncovers
many pathogenic mechanisms underlying severe COVID-19, such as defects in
type I IFN response and ISGs expression, aberrant activation of myeloid cells,
and impaired alveolar epithelial regeneration. To deeply understand the multi-or-
gan impact of COVID-19, future studies should make efforts to generate scRNA-
seq data from less acquirable tissues than blood, and integrate new data with
published data to characterize tissue-specific immune response and
pathogenesis.

CELL-CELL COMMUNICATION IN COVID-19
The immune response against SARS-CoV-2 infection and within the infected

cells requires the cooperation of many cell types. The recent development of bio-
informatic methods for scRNA-seq data enables prediction of cell-cell communi-
cation through a ligand-receptor interaction network. So far, some scRNA-seq
studies performed cell-cell communication analysis from COVID-19 patients.
Themost commonly usedmethod to infer cell-cell communication among these
studies is CellPhoneDB,40 while others used methods including CellChat,41

ICELLNET,42 NicheNet,43 and CSOmap.44

Most studies analyzed altered cell-cell communication among certain immune
cell types in blood or BALF from COVID-19 patients (Figure 5A). The increased
interaction of T cell-monocyte/macrophage interaction was underlined in several
studies,34,35,45–48 which constitutes an important step in immune cell activation.
Other highlighted immune cell interactions include monocytes/macrophages
with neutrophils,4 monocytes with platelets,11 and DCs with T cells (Fig-
ure 5B).38,48 Using other sampled tissues from COVID-19 patients, communica-
tion among non-immune cell types was also predicted. For example, Yang
et al. found increased intercellular communication from the choroid plexus
epithelium to the cortex across inflammatory pathways,49 andMelms et al. found
enriched transforming growth factor beta (TGFb) signaling across all major lung
cell types, which promotes fibrosis.36 Some studies recruited patients with
different severity. Taking severity into consideration, the authorsprovided insights
into progressive alteration of the cell-cell communication network. When
comparing patients with severe/critical condition with mild/moderate condition,
several studies reported that communication between T cells and antigen-pre-

sentation cells decreased,4,38,47 suggesting dysfunction of the immune system
at late infection stages.
Apart from overall communication among cell types, predicted ligand-receptor

pairs could also reveal some features of immune response (Figure 5). Enhanced
inflammatory signals were found in both immune and non-immune cells from
blood and brain through two chemokine subclasses (CCL and CXCL) and inter-
leukin families,2,4,45,46 which might contribute to hyperinflammation in COVID-
19. The strong SIRPA-CD47 interaction was predicted to mediate platelet activa-
tion by monocytes, leading to coagulation abnormalities.11 On the other hand,
decreased signaling throughHLA-II-related geneswas found inmoderate and se-
vere patients.38 These results revealed potentially activated and deactivated
signaling pathways during infection.
In summary, cell-cell communication analysis can track down the altered in-

teractions between different cell types and the cell signaling through ligand-re-
ceptor pairs in COVID-19. However, it should be emphasized that these interac-
tions are putative based on previous knowledge, and further validation is
required before drawing definite conclusions. In addition, most studies do not
analyze the effect of ligand-receptor interactions on target gene expression.
We suggest that future study should paymore attention to the functional effects
of cell-cell communication networks in COVID-19 using methods like NicheNet,
which enables the identification of target genes affected by each ligand and
involved signaling mediators.

CELL TRAJECTORY IN COVID-19
Studying the trajectory of a disease at the cellular level is critically important for

our understanding of the disease and development of precision medicine ap-
proaches. scRNA-seq provides unique opportunities for studying cellular dynamic
processes by using trajectory inference (TI) analysis, also called pseudo-time
analysis.50 In disease studies, TI can reveal abnormal cell differentiation and
gene expression alteration induced by disease progression. The detailed features
and findings of trajectory analysis in COVID-19 scRNA-seq studies are summa-
rized in Table S4.
When examining hematopoietic stem cells (HSCs) and multipotent pro-

genitor cells (MPPs), Wang et al. identified attenuated HSCs/MPPs to
megakaryocyte-erythrocyte progenitor cell (MEP) differentiation potential
in COVID-19 patients. Indeed, more HSCs/MPPs from COVID-19 patients
differentiated into granulocyte-monocyte progenitor cells (GMPs) rather
than lymphoid progenitors.30 This could potentially explain increased pro-
portions of myeloid cells and decreased proportions of lymphocytes in
both bone marrow and blood (Figure 3). Trajectory analysis also revealed
uncommon paths of differentiation. Wilk et al. observed a possible lympho-
cyte-to-granulocyte transdifferentiation process from plasmablasts to
developing neutrophils in patients with acute respiratory distress syndrome

A B

Figure 5. scRNA-seq reveals vital cell-cell communication in COVID-19 (A) Bioinformatic methods enable measuring the intensity of overall cell-cell communication and ligand-
receptor interaction among cell populations from scRNA-seq data. (B) Vital cell-cell communication among immune cell populations highlighted in COVID-19 scRNA-seq studies. Some
upregulated ligand-receptor interactions are labeled between cell populations.
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(ARDS).8 In addition, many lymphoid and myeloid cell lineages, such as
DCs,38 monocytes,9 CD4+ T, CD8+ T cells, and B cells,27,51 displayed contin-
uous trajectories along COVID-19 severity, suggesting gradual changes of
transcriptional profiles in response to COVID-19 infection. For example,
Wauters et al. found that resident memory CD8+ T cells and exhausted
CD8+ T cells from BALF exhibited good effector functions in mild patients
but reduced effector functions in critical patients. Myeloid cells were char-
acterized with pro-phagocytic and antigen-presentation-facilitating func-
tions in mild patients, whereas they had disease-worsening characteristics
in critical patients.4 Some cell subpopulations with significant alteration in
severe COVID-19 are usually located in the end of the trajectories, like
differentiated neutrophils with an ISG signature and young reticulated plate-
lets.22 Another special feature was that more diverse trajectories of T cell
and macrophages were observed in BALF from severe COVID-19 compared
with the mild COVID-19 and control groups.52 When studying the cell trajec-
tory of recovered COVID-19 patients, Luo et al. revealed that the transcrip-
tional profiles of CD8+ T cells from discharged patients shifted from anti-
viral immune response to metabolism adaptation.53 An integrated
analysis of PBMC and BALF data by Xu et al. revealed a differentiation tra-
jectory from circulating monocytes to macrophages in respiratory epithe-
lium, suggesting the recruitment of peripheral monocytes into inflamma-
tory tissues (Figure 6A).33

Critical disease severity and viral spread are often linked to the interac-
tions between epithelial cells and immune cells. In addition to the classical
path where basal cells differentiate into ciliated cells through intermediate
club cells,54 Chua et al. identified a subcluster of basal cells differentiating
to ciliated cells, called basal-diff, bypassing the intermediate secretory cell
stage.35 In addition, trajectory analysis can annotate the cells with severe
SARS-CoV-2 infection. For example, to determine an unknown “SARS-
CoV-2hi” cell population, Ahn et al. applied trajectory analysis and identified
them as ciliated cells based on their position in the trajectory.55 Further-
more, TI showed the club and goblet cells could also be major precursors
of differentiated multiciliated cells.55 Last, Ziegler et al. inferred the trajec-
tory of ciliated cell subtypes and showed two decreased terminally differen-
tiated ciliated cell subclusters in severe patients, suggesting that COVID-19
preferentially affected terminally differentiated subsets. Conversely, they
found an increase in the proportion of IFN-responsive ciliated cells in
mild/moderate patients (Figure 6B).17

With the access to other organ samples from autopsy and organoid models,
trajectory analysis indicates that the differentiation of multiple cell types is indi-
rectly disturbed in COVID-19 patients, mostly due to the hyperinflammation
across the body. In the brain of COVID-19 patients, a microglia cluster associ-
ated with COVID-19 was found to derive from a homeostatic cluster, showing
the response of microglia to an inflamed central nervous system environ-
ment.49 In the lung of COVID-19 patients, a trajectory of putative tuft cells
was identified among airway epithelial cells. Melms et al. found that the number
of tuft cells increased 3-fold in COVID-19 patients. As they are involved in airway
inflammation as well as myeloid cell recruitment, these putative tuft cells might
contribute to the pathophysiology of COVID-19.36 In the pancreatic tissues of
COVID-19 patients, Tang et al. revealed beta cell to alpha cell transdifferentia-
tion was correlated with SARS-CoV-2 gene expression. They also identified
the elF2 pathway regulating this process.56 By profiling SARS-CoV-2-infected
colon and ileum organoids, Triana et al. reported that IFN-mediated signaling
was correlated with the trajectory in non-infected cells beside infected cells
(i.e., bystander cells).57

In summary, abnormal cell differentiation and transition were identified in mul-
tiple tissues and organs from COVID-19 patients by trajectory analysis. Immune
cell populations showed skewed differentiation from HSCs/MPPs to myeloid
cells and transition of transcriptional profiles along disease severity. This infec-
tion-induced altered myelopoiesis, also called emergency myelopoiesis, is a hall-
mark of severe COVID-19. For non-immune cells like epithelial cells, their trajec-
tories usually corresponded to SARS-CoV-2 infection and abnormal paths of
differentiation. Even though the abnormal differentiation and transdifferentiation
have been discovered inmany diseases, the interpretation of such cell trajectories
should be carefully examined because the findings of abnormal transdifferentia-
tion may not be supported in other datasets.28 Therefore, validation using other
datasets as well as other bioinformatic or experimental methods is strongly
recommended.

SINGLE-CELL ANALYSIS OF IMMUNE REPERTOIRE IN COVID-19
T cells and B cells mediate antigen-specific adaptive immunity by recognizing

and eliminating antigens originating from infection and disease. Antigen speci-
ficity refers to the ability of a particular T cell or B cell to recognize the antigen
epitope in a specific manner. Expression of a unique T cell receptor (TCR) or B
cell receptor (BCR; membrane-bound immunoglobulin [Ig]) on the surface of
each T cell or B cell is central to specific antigen recognition, respectively. The
vast diversity of TCRs and BCRs expressed on an enormous number of T cells
and B cells allows for the recognition of a broad spectrum of antigens. The im-
mune repertoire refers to the collection of TCRs and BCRs (or T cell and B cell
clonotypes) present in an individual.
The vast diversity of TCRs and BCRs is mainly generated in developing

T cells and B cells by a somatic recombination process called V(D)J recom-
bination. Through V(D)J recombination, the variable region of TCR or BCR
genes is assembled from component V, D, and J gene segments, resulting
in a potential diversity of over 1013 unique TCR and BCR sequences (or
T cell and B cell clonotypes), respectively. Through targeted enrichment, tran-
scripts containing VDJ regions are sequenced in single T cells or B cells us-
ing a similar protocol to scRNA-seq, named single-cell VDJ sequencing
(scVDJ-seq). As scVDJ-seq enables studying adaptive immune response
against foreign antigens, many studies have used it to analyze the alteration
of TCRs and BCRs after COVID-19 infection.
T cell clone diversity and expansion in COVID-19 patients are primary interests

in many COVID-19 scVDJ-seq studies (Figure 7A). Most studies profiled T or B
cells in PBMCs using scVDJ-seq. Several studies obtained the same results
that TCR diversity decreased significantly in severe and critical patients
comparedwith that inmild/moderate patients and healthy people.10,58–60 Slightly
different results were obtained in bonemarrow. Wang et al. found lower diversity
in CD4+ T cells but higher diversity in CD8+ T cells from BMMCs of severe pa-
tients.30 For convalescent patients recovered from mild COVID-19, their TCR di-
versity was high at the recovering stage but quickly decreased after that.53,59

As for T cell clonal expansion,many studies found higher expansion inmild/mod-
erate patients comparedwith healthy patients,7,12,31,58 but there are contradictory
results for severe patients. The results in several studies reported some inconsis-
tent observations. For example, Liu et al. and Stephenson et al. showed that there
were increased clonal expansion levels in CD8+ T cells in severe patients,11,18 but
Liao et al. and Xu et al. showed that there were decreased clonal expansion levels
inCD8+ T cells.7,27 Meckiff et al. and Xu et al. reported increased clonal expansion
levels inCD4+ T cells in severe patients,26,27 but Liu et al. showeddecreased clonal
expansion levels CD4+ T cells.18 In addition, T cell clonal expansion in convales-
cent patients was found either decreased5,53 or increased31 compared with
healthy people. Discordance was also found in TCR gene preponderance from
multiple studies,30,31,60–62 suggesting that many TCR clonotypes could confer
recognition capability. These contradictory results may be due to different
severity standards, infection stages, individual specificity, or technical variation
among studies. Therefore, these results require further investigation and valida-
tion in future studies.
Integrated analysis of single-cell VDJ data and transcriptomicdata could reveal

the heterogeneity of TCR alteration in cell subpopulations (Figure 7B). For
example, Meckiff et al. found the greatest CD4+ cytotoxic T cell clonal expansion
in hospitalized patients.26 Stephenson et al. revealed that the proportion of
expanded effector CD8+ T cells increased, but that of expanded effector memory
CD8+ T cells decreased in severe patients.11 Wang et al. reported that expanded
T cells in PBMCsmainly comprisedCD4+GZMHhigh T cells,CD8+GZMHhigh T cells,
and CD8+GZMKhigh T cells.34 Wen et al. found that naive and central memory
T cells were slightly expanded, while effector memory T cells, terminal effector
CD8+ T cells. and proliferating T cells were highly expanded in patients at the early
recovery stage.5 These results highlight vital T cell subpopulations with the most
clonal expansion duringCOVID-19 infection. Currently, it is difficult to compare the
results from different studies because they usually have different classification
and annotation of subpopulations. To address this issue, follow-up studies per-
forming integration on multiple datasets are required. As we discussed earlier,
data sharing is important for the research community.
Apart from its application in T cells, scVDJ-seq has been used to study

BCR repertoire in COVID-19 patients. In contrast to TCRs, there are more
consistent results for BCRs. COVID-19 patients generally had lower BCR di-
versity and higher BCR expansion,5,11,21,31,59,60,63 but BCR expansion
decreased during recovery (Figure 7A).58 Skewed usage of IGHV3 gene
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family was revealed by most studies,5,10,21,31,51,60 like IGHV3-23 and IGHV3-
30, but the usage of other gene families like, IGHV1 and IGHV4, was also re-
ported.58,63–65 In addition, scVDJ-seq could be used to identify somatic hy-
permutations within the complementarity-determining regions (CDRs) in
BCRs of COVID-19 patients.11,30,51,60 Considering the effect of factors like
age and sex, more BCRmutations were found in female thanmale patients,11

and young patients than old patients.51 Similarly, higher TCR diversity was
found in female and young patients.10 These results collectively suggest
clinal features of COVID-19 patients have impacts on their adaptive immune
response.

An emerging application of scVDJ-seq is to accelerate the identification of
neutralizing antibodies for COVID-19 treatment (Figure 7C).48,66–68 Prior to the in-
vention of scVDJ-seq, RT-PCR was used to obtain antibody sequences from a
limited number of individual B cells. The scVDJ-seq technique has outperformed
RT-PCR and can obtain tens of thousands of antibody sequences in one run. Cao

et al. have recently used scVDJ-seq to analyze antigen-binding B cells from
convalescent COVID-19patients. They identified 14potent neutralizing antibodies
from 8,558 antigen-binding IgG1+ clonotypes.66 Scheid et al. investigated SARS-
CoV-2 spike-specific B cell responses in COVID-19 patients who had recovered
from the disease. By combining analyses of scVDJ-seq, scRNA-seq, and mono-
clonal antibody (mAb) structures, they identified amAbclone, BG10-19, that could
neutralize different SARS-CoV-2 variants by locking the virus spike trimer in a
closed conformation.68 These studies demonstrate the efficiency of scVDJ-seq
for identifying SARS-CoV-2-neutralizing antibodies.
In summary, scVDJ-seq characterizes the change of immune repertoire in

response to SARS-CoV-2 infection, and helps identify SARS-CoV-2-neutralizing
antibodies. Integrated analysis of scRNA-seq and scVDJ-seq can help identify
the highly expanded cell subpopulations. Regarding the BCR, scVDJ-seq can
dramatically accelerate the identification of neutralizing antibodies, which
currently represents the most significant therapeutic application.

A

B

Figure 6. Differentiation trajectory of twomajor cell lineages in the analysis of scRNA-seq data fromCOVID-19 patients (A) Differentiation trajectory of hematopoietic stem cells. (B)
Differentiation trajectory of epithelial cells. Lineages highlighted in red or blue indicate an enhanced or attenuated differentiation pattern respectively in COVID-19 patients. The red
arrows indicate potential differentiation trajectory particular to COVID-19 patients, bypassing conventional differentiation.
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QUANTIFICATION OF SARS-COV-2 GENE EXPRESSION
Lessattentionhasbeenpaid to theexpressionofSARS-CoV-2genescompared

with host genes in most COVID-19 scRNA-seq studies. Only a few studies
analyzed the expression of SARS-CoV-2 genes in individual cells. Thiswas usually
achieved by using a merged human-SARS-CoV-2 genome with merged annota-
tion as reference in read alignment. The aligned reads were then used to quantify
individual viral gene expression or measure overall coverage on the viral
genome.2,56 Somestudiesalso consideredstrand information involvingviral repli-
cation.3,17 Bost et al. developed Viral-Track,1 a computational method to detect
viral RNA in scRNA-seq, and applied it to SARS-CoV-2 expression data. Several
recent studies also used Viral-Track to detect viral reads2,30,32 and then quantify
viral gene expression.4 Among non-immune cells from BALF, there was a strong
enrichment of viral reads in ciliated and epithelial progenitor cells,1,17 which ex-
pressbothACE2andTMPRSS2. Amongvarious immunecell types, strongenrich-
ment of viral readswas found inmacrophages,1,3,4 suggesting thatmacrophages
could be infected by SARS-CoV-2 or phagocytose viral particles.1,3 Infection was
also observed in other cell types, like neutrophils, monocytes, DCs, and T cells,
which do not necessarily express ACE2 and TMPRSS2.2-4,66 Moreover, Wauters
et al. reported the specificity of viral gene expression in different cell types. Viral
spike protein coding gene S was almost exclusively detected in epithelial cells,
while nucleocapsid protein coding gene N was detected more frequently in
myeloid and lymphoid cells, especially in neutrophils and macrophages, than in
epithelial cells.4 Differential expression analysis of viral genes in the infected cells
of patients with different severity revealed the correlation between viral gene
ORF10 expression level and severity.69,70 The expression of viral genes was
also examined in other organs. Tang et al. found high viral gene expression in
acinar cells, alpha cells, beta cells, ductal cells, and fibroblasts from the infected
islet.56 Delorey et al. revealed strong enrichment of viral reads in myeloid cells
and slight enrichment in endothelial cells from the lung.2 Interestingly, a recent
study by Yang et al. did not detect viral reads in the brain, possibly due to the brain
barriers.49 This preliminary study may need further investigation.

Due to the limitation of single-cell library preparation methods, some protocols
capturing the 30 end of transcripts, like 10x Genomics 30 Gene Expression, are
inappropriate to quantify SARS-CoV-2 gene expression. The alignment results
from these methods will have extremely high coverage on the 30 end of SARS-
CoV-2 genomes and low coverage elsewhere,32,69 leading to inaccurate quantifi-
cation of viral genes on the 30 end of the SARS-CoV-2 genome except forORF1ab.
This is because subgenomic RNAs transcribed from those genes share the same
30 end sequence and poly(A) tail.71 The other inappropriate protocol for the quan-
tification of SARS-CoV-2 gene expression is single-nucleus RNA sequencing
(snRNA-seq), which only profiles transcripts in the nucleus by isolating nuclei
from single cells. Since the transcription of SARS-CoV-2 primarily occurs in the

A

B

C
Figure 7. scVDJ-seq characterizes immune reper-
toire in COVID-19 (A) A diagram showing the trend
of the diversity and clonal expansion of TCR and BCR
in COVID-19. Measured from scVDJ-seq data, the di-
versity of TCR and BCR generally decreases in the
condition of COVID-19 infection, and the clonal expan-
sion generally increases in COVID-19 infection. The
curves may not apply to all severity and cell subpopu-
lations. (B) Integrated analysis of transcriptomic and
VDJ data could identify cell subpopulations with high
clonal expansion. Cell subpopulations are identified
using scRNA-seq data, and the clonal sizes of corre-
sponding cells are estimated using scVDJ-seq data.
(C) scVDJ-seq helps find potent neutralizing anti-
bodies against SARS-CoV-2. Other methods like
neutralization assay and cryo-EM structural analysis
are usually needed for the final identification and
validation of neutralizing antibodies.

cytoplasm rather than in the nucleus of host cells,
little or no detection of viral reads in several or-
gans is more likely a consequence of technical
limitation rather than the low rate of SARS-CoV-
2 infection in these cells.2

In addition to scRNA-seq, other molecular
approaches, such as qPCR,66 digital spatial
profiling,72 and bulk RNA sequencing, have

been applied to detect the expression of SARS-CoV-2 genes. For example, by us-
ing bulk RNA sequencing to quantify viral gene expression in an infected human
lungepithelial cell line,Wyler etal. foundan increased relativeamountofORF7aat
a late time post infection.73 However, these approaches lack single-cell resolu-
tion. Future COVID-19 scRNA-seq studies could address this issue by including
the analysis of SARS-CoV-2 gene expression.
In summary, appropriate scRNA-seq library preparation and analysis methods

will enable us to detect SARS-CoV-2 in different cell populations. We strongly
recommend 50 library preparation protocols for more accurate quantification of
SARS-CoV-2 gene expression at single-cell resolution.

SCRNA-SEQ FOR MULTI-OMICS ANALYSIS
The scRNA-seq technology has been used with other genomic evidence (such

as common and rare variants) to unveil COVID-19 disease etiology. Large-scale
genome-wide association studies (GWASs) have revealed thatmany host genetic
factors confer intrinsic susceptibility to COVID-19 severity.74,75 Dai et al. conduct-
ed a systematic fine-mapping of the COVID-19 severity GWAS at the 3p21.31 lo-
cus using tissue and cell-type expression quantitative trait loci (eQTL) data.76

They further validated that the protective geneCXCR6 had lower expression in se-
vere patients than in moderate patients from BALF scRNA-seq data, indicating
CXCR6might play an important role in first-line defense of human lung tissue-resi-
dent memory T cells. Qi et al. developed a network-based approach that is imple-
mented in a user-friendly software Network Calculator to measure the proximity
of the risk genes of GWAS severe COVID-19 symptoms and virus-host interac-
tome genes.77 They identified that these genes tend to have more interactions,
providing some insights for the genetic basis of host susceptibility. They further
identified these genes were highly enriched in the macrophages, T cells, and
epithelial cells of severe patients compared with mild patients. To understand
the genetic basis of severe COVID-19 in non-elderly adults, Zhang et al. performed
whole-exome sequencing and identified common and rare disease-associated
genetic variants within over 1,000 risk genes.78 By integrating single-cell multi-
omics profilings of human lung data, they identified particularly enriched risk
genes in NK cells. The Mendelian randomization indicates the proportion of NK
cells have a causal relationship with critical illness of COVD-19. Last, the 50

scRNA-seq technology could accurately capture the transcriptome of both host
and virus. Liu et al. explicitly identified and quantified the cells with virus tran-
scripts in COVID-19 scRNA-seq data.70 They further identified that the viral
ORF10 transcript was differentially expressed between COVID-19 severe patients
and moderate patients, suggesting an association between viral transcripts and
COVID-19 severity.
scRNA-seq technology has many applications along with other measure-

ments, such as ligand-receptor analysis, cell surface protein prediction, and cell
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surface imaging technology, to uncover the cellular microenvironment and inter-
cellular signaling alteration inCOVID-19 patients. Ramaswamyet al. profiled sam-
ples from COVID-19-induced multisystem inflammatory syndrome in children
(MIS-C), adult COVID-19, and healthy controls using scRNA-seq and serum prote-
omics.79 By analyzing the antigen receptor repertoire, they reported that MIS-C
patients had increased S100A alarmin expression and decreased antigen-presen-
tation signatures in myeloid cells, which is consistent with the serum proteome
signature in MIS-C patients with myeloid inflammatory responses. Cheng et al.
developed a multilayer network method (scMLnet) to characterize the inter-/
intra-cellular signaling network constructed from ligand-receptor interactions, re-
ceptor-transcription factor (TF) pathways, and TF-target interactions.80 By using
COVID-19 scRNA-seq data, they successfully predicted the elevation of the cell
surface protein ACE2 by extracellular cytokines. He et al. used COVID-19
scRNA-seq data and known ligand-receptor interactions to train a risk model
that could predict inflammatory damage score and counts of T cells using serum
cytokinemarkers.81 Lee et al. identified that SLC2A3 inmacrophage groups could
be a possible surface protein to distinguish severe COVID-19 patients by using
COVID-19 scRNA-seq data.82 This study provided a pipeline to use scRNA-seq
data to identify candidate surface and druggable targets with molecular imaging
technology.

In summary, scRNA-seq has been widely integrated with omics data and
cell surface protein activity prediction in COVID-19 research, which greatly
advances our knowledge of COVID-19 at the molecular level. Furthermore,
there are many other studies using scRNA-seq from COVID-19 patients to
conduct therapeutic drug development or validation.81,83,84 Many studies
also explored the post-COVID-19 symptoms by cytokine storm on diverse
organs by using scRNA-seq and other omics data.2,85 Mutual corroboration
of results in transcriptomics and other omics substantially improves the
reliability of new findings, which has been more recognized in the current
COVID-19 research.11,12,21,86

CONCLUDING REMARKS AND PERSPECTIVES
scRNA-seq has demonstrated strength and potential in COVID-19 research. In

this article, we review its broad application and major findings from over 80 orig-
inal studies aswell asmany secondary analysis studies. Here,we discuss the lim-
itations of current studies and propose some perspectives for future advance.

Defining severity is the foundation for COVID-19 studies, and many COVID-19
scRNA-seq studies included patients with different severity. Up to now, there are
several standards for severity definition. It is unknown whether and how using
different severity definitions would generate inconsistent results. For scRNA-
seq studies, a clear anduniversal severity definition couldguarantee replicable an-
alyses and results, and therefore the most used classification is suggested for
future studies.

Up to now, the sampled tissue is limited to PBMC in most COVID-19 scRNA-
seq studies, as blood is easy to collect from subjects, while other tissue, such
as lung, is very difficult to obtain. Despite the difficulty in acquiring samples,
more efforts are needed to study other tissues and organs with SARS-CoV-2
infection. These studies should cover topics that cannot be explained by the alter-
ation of PBMCs, such as the immune response of tissue-resident immune cells,
the recruitment of circulating immune cells into tissues, non-immune cell driving
pathological symptoms like lung fibrosis and neural disorders, as well as the sus-
ceptibility and vulnerability of different cell types against SARS-CoV-2.

In addition to using samples from COVID-19 patients for research, developing
animal models for COVID-19 and subjecting them to scRNA-seq could facilitate
preclinical analysis of vaccines and therapeutic agents. Although there are many
studies using infected animals for COVID-19 research,87,88 only a few studies per-
formed scRNA-seq on COVID-19-infected animals like monkeys,89 hamsters,90

macaques,91 ferrets,92 and K18-hACE2 transgenic mice.93 Several studies
demonstrated the antiviral immune responses of animal models after receiving
newly developed vaccineswith scRNA-seq,94–97 revealing induced genemodules
of different immune cell populations. As it is much easier to obtain samples from
various organs in animal models than in human patients and at consecutive time
points after COVID-19 infection, vaccination, or therapy, performing temporal-
spatial analysis at the single-cell resolution in animal models for COVID-19 could
be a promising future direction. Among those animal studies, the findings from
non-human primateswill bemore useful in general, but they are alsomore expen-
sive and under stronger regulation.

Another important issue is the selection of scRNA-seq protocols. In terms of
COVID-19 studies, 50-end library preparation is prioritized over 30 end. First, it en-
ables more read coverage of SARS-CoV-2 genes and more accurate quantifica-
tion. Subsequent bioinformatic analysis could useeither amergedhuman-SARS-
CoV-2 genome as reference or Viral-Track to detect and quantify viral gene
expression in single cells. Second, 50-end library preparation can be integrated
with scVDJ-seq to profile both transcriptome and immune repertoire. Therefore,
we recommend 50-end scRNA-seq for future studies concerning SARS-CoV-2
gene expression and TCR/BCR profiling. In addition, snRNA-seq is not recom-
mended because it is unlikely to capture viral transcripts in the cytoplasm.
During bioinformatic analysis of scRNA-seq data, the clustering and annotation

of cell subpopulations usually vary in studies, even if samples are collected from
the same tissues. This has a strong impact on downstream analyses like identi-
fying cell proportion alteration and differential expression analysis. Authors could
obtain different results with distinct cluster annotations, which makes it hard to
compare and evaluate the results of subpopulation analysis from different
studies. Although it is impossible to create a comprehensive atlas as a reference
for every study,we suggest integratingmultiple datasets for analysis as a reason-
able compromise. This could also help studywhether the viral strains prevalent in
different locations and time points induce similar immune responses. Therefore,
data sharing and reproducibility are important for follow-up studies during the
ongoing pandemic.
While scRNA-seq has improved our understanding of the infection and im-

mune response of COVID-19, integrating it with other technology to generate
multi-omics data would provide valuable insights from other aspects. There
are many promising technologies and methods to study COVID-19 in combina-
tion with scRNA-seq, such as GWAS for identifying risk genes or alleles for
COVID-19,78 single-cell assay for transposase-accessible chromatin sequencing
(scATAC-seq) for profiling chromatin accessibility,45,86,98 cellular indexing of tran-
scriptomes and epitopes by sequencing (CITE-seq) for profiling surface prote-
ome,11 and spatial transcriptomics for acquiring spatial information.2 The
multi-omics data would facilitate characterizing an integrated framework of
COVID-19 pathogenesis and immune response.
Finally, thoroughness is a limitation of this review. First, the collection of articles

from PubMed using our query does not include every paper in this field. Second,
as COVID-19 is an urgently needed area of research, new studies are consistently
published while writing this review. To address this concern, a database tracking
and curating single-cell COVID-19 studies and datasets would facilitate future
research.
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