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Abstract

Genome-wide association studies (GWAS) have identified thousands of variants robustly 

associated with complex traits. However, the biological mechanisms underlying these associations 

are, in general, not well understood. We propose a gene-based association method called 

PrediXcan that directly tests the molecular mechanisms through which genetic variation affects 

phenotype. The approach estimates the component of gene expression determined by an 

Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, 
subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms

Correspondence to: Hae Kyung Im, Ph.D., haky@uchicago.edu, Section of Genetic Medicine, Department of Medicine, The 
University of Chicago, Chicago, IL 60637.
9These authors contributed equally to this work.

URLs
PrediXcan software, https://github.com/hakyimlab/PrediXcan
University of Michigan Imputation-Server, https://imputationserver.sph.umich.edu/start.html
GEUVADIS RNA-Seq data, http://www.geuvadis.org/web/geuvadis/RNAseq-project glmnet package, http://
www.jstatsoft.org/v33/i01
International Inflammatory Bowel Disease Genetics Consortium Crohn’s disease meta-analysis data, http://www.ibdgenetics.org/
downloads.html
Psychiatric Genomics Consortium bipolar disorder data, http://www.med.unc.edu/pgc/downloads
Open Science Data Cloud, https://www.opensciencedatacloud.org
GTEx Portal, http://www.gtexportal.org/

Author contributions
H.K.I., H.E.W., E.R.G., K.P.S., S.V.M., and K.A. performed the analyses. J.C.D., R.J.C., and A.E.E. provided replication data. 
E.R.G., H.E.W., K.P.S., and H.K.I. wrote the manuscript. D.L.N., N.J.C., and H.K.I. provided intellectual input and supervised the 
study. H.K.I. designed the study. All authors reviewed and contributed to the final manuscript.

Competing financial interests
The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Nat Genet. Author manuscript; available in PMC 2016 March 01.

Published in final edited form as:
Nat Genet. 2015 September ; 47(9): 1091–1098. doi:10.1038/ng.3367.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.nature.com/authors/editorial_policies/license.html#terms
https://github.com/hakyimlab/PrediXcan
https://imputationserver.sph.umich.edu/start.html
http://www.geuvadis.org/web/geuvadis/RNAseq-project
http://www.jstatsoft.org/v33/i01
http://www.jstatsoft.org/v33/i01
http://www.ibdgenetics.org/downloads.html
http://www.ibdgenetics.org/downloads.html
http://www.med.unc.edu/pgc/downloads
https://www.opensciencedatacloud.org
http://www.gtexportal.org/


individual’s genetic profile and correlates the “imputed” gene expression with the phenotype 

under investigation to identify genes involved in the etiology of the phenotype. The genetically 

regulated gene expression is estimated using whole-genome tissue-dependent prediction models 

trained with reference transcriptome datasets. PrediXcan enjoys the benefits of gene-based 

approaches such as reduced multiple testing burden and a principled approach to the design of 

follow-up experiments. Our results demonstrate that PrediXcan can detect known and novel genes 

associated with disease traits and provide insights into the mechanism of these associations.

Introduction

Genome-wide association studies (GWAS) have been remarkably successful in identifying 

susceptibility loci for complex diseases. These studies typically conduct single-variant tests 

of association to interrogate the genome in an agnostic fashion and, due to modest effect 

sizes, have come to rely on ever-greater sample sizes1,2 to make meaningful inferences. We 

have been less successful in developing methods that improve on existing simple 

approaches. In general, the genetic associations identified as genome-wide significant thus 

far account for only a modest proportion of variance in disease risk3. Indeed, there is now 

widespread recognition, if not consensus, that GWAS of disease susceptibility (for which, 

the relevant genetic effects may be very small) and pharmacologic traits (for which large 

effect sizes are not unusual)4,5 have resulted in limited conclusive findings on the genetic 

factors contributing to complex traits. Importantly, the functional significance of most 

discovered loci, including even those that have been the most reproducibly associated, 

remains unclear. Assigning a causal link to the nearest gene falls short of elucidating a 

functional connection, as recently demonstrated by the obesity-associated variants within 

FTO that form long-range functional connections with IRX36. And while GWAS will no 

doubt continue to identify many more susceptibility loci, the question of how to advance 

biological knowledge of the underlying mechanisms of disease risk remains a paramount 

challenge.

A large portion of phenotypic variability in disease risk for a broad spectrum of disease 

phenotypes can be explained by regulatory variants, i.e. genetic variants that regulate the 

expression levels of genes7–10. For example, almost 80% of the chip-based heritability of 

disease risk for 11 diseases from the WTCCC can be explained by genome variation in 

DNase I hypersensitivity sites, which are likely to regulate chromatin accessibility and thus 

transcription11.

Large genomic consortia (e.g., ENCODE12) are generating an unprecedented volume of data 

on the function of genetic variation. The Genotype-Tissue Expression (GTEx13) project is 

an NIH Common Fund project that aims to collect a comprehensive set of tissues from 900 

deceased donors (for a total of about 20,000 samples) and to provide the scientific 

community a database of genetic associations with molecular traits such as mRNA levels. 

(See GTEx main paper14 on Phase 1 data.) Other large-scale transcriptome datasets include 

Genetic European Variation in Health and Disease15 (GEUVADIS, 460 lymphoblastoid cell 

lines), Depression Genes and Networks (DGN, 922 whole blood samples)16, and Braineac 
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(130 individuals with multiple brain region samples)17. Yet, effective methods that harness 

these reference transcriptome datasets for disease mapping are lacking.

Methodologically, gene-based approaches and multi-marker association tests have been 

developed as alternatives to traditional single-variant tests. By conducting tests of 

association on biologically informed aggregates of SNPs, such tests seek to evaluate a priori 

functionally relevant units of the genome and, in many cases, reduce the multiple-testing 

penalty that plague single-variant approaches, by 10 to 100 fold. The incorporation of -

omics data, such as those being generated by high-resolution transcriptome studies, provides 

a means to extend genome-wide association studies by addressing the functional gap. 

Technological advances in high-throughput methods have reinforced the important finding 

that intermediate molecular phenotypes are under significant genetic regulation, with 

expression quantitative trait loci (eQTLs) as the predominant example. However, 

approaches that fully leverage the comprehensive regulatory knowledge generated by 

transcriptome studies are relatively lacking despite the fact that these studies have the 

potential to dramatically improve our understanding of the genetic basis of complex traits13.

We hypothesized that a SNP aggregation approach that integrates information on whether a 

SNP regulates the expression of a gene can greatly increase the power to identify trait-

associated loci either from a strong functional SNP signal or from a combination of modest 

signals, the so-called grey area of GWAS. The present study suggests that PrediXcan, a 

novel method that incorporates information on gene regulation from a set of markers, 

increases the power to detect associations relative to traditional SNP-based GWAS and 

known gene-based tests under a broad range of genetic architectures and provides 

mechanistic insights and more easily interpreted direction of effect into the observed 

associations.

Results

PrediXcan method

PrediXcan, by design, exploits genetic control of phenotype through the mechanism of gene 

regulation as a way to identify trait-associated genes. Figure 1 is a schematic diagram of the 

regulatory mechanism that is tested with PrediXcan. An individual's gene expression level 

(typically unobserved in a GWAS) is decomposed into a genetically regulated expression 

(GReX) component, a component altered by the trait itself (i.e., a reverse causal effect that 

may occur if disease status or other conditions alter expression levels), and the remaining 

component attributable to environmental and other factors. PrediXcan tests the mediating 

effect of gene expression by quantifying the association between GReX and the phenotype of 

interest.

We use reference transcriptome datasets from studies such as GTEx13, GEUVADIS15, and 

DGN16 among others, to train additive models of gene expression levels. These models 

allow us to estimate the genetically regulated expression, GReX. We denote the estimated 

value with a hat,  These estimates constitute multiple-SNP prediction of expression 

levels. The weights for the estimation are stored in our publicly available database.
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The analogy with genotype imputation is relevant here. Genotype imputation uses 

information from a reference sample to learn how to impute genotypes at the unmeasured 

SNPs in the test set. Similarly, PrediXcan uses a reference dataset in which both genome 

variation and gene expression levels have been measured to develop prediction models for 

gene expression. We use these prediction models to “impute” gene expression (which is 

unobserved in a typical GWAS), and we do so by estimating the genetically determined 

component, GReX.

PrediXcan application to a GWAS dataset consists of “imputing” the transcriptome using 

the weights derived from reference transcriptome datasets and correlating the GReX with the 

phenotype of interest using regression methods (e.g., linear, logistic, Cox) or non-parametric 

approaches (e.g., Spearman). (For the specific results on disease phenotypes analyzed here, 

we used logistic regression with disease status.) We are aware of the attenuation bias that 

arises because of the error in the estimation of GReX. This is a subject to be investigated in 

the future, but this bias does not invalidate our analysis since we only use the estimate of 

GReX as a discovery tool. Figure 2 summarizes the flow of the method development 

described above.

Features of PrediXcan

PrediXcan is, as we have emphasized, particularly focused on a mechanism – gene 

expression regulation – that has already been established as being contributory to common 

diseases, including psychiatric and neurodevelopmental disorders7. The test has the potential 

to identify gene targets for therapeutic applications because it is inherently mechanism-

based and provides directionality.

Additional advantages include:

• Like other gene-based tests, it has much smaller multiple-testing burden (~20K 

tests maximum, ~10K genes with high quality prediction in most tissues) compared 

to single variant tests (~5–10M tests). Moving beyond the stringent Bonferroni 

correction, priors on genes can be less restrictive than for SNPs.

• Informative priors and groupings of functional units (based on known pathways, 

for example) are much more straightforward to construct for genes than SNPs.

• No actual transcriptome data are required since the predicted expression levels are 

a function of genetic variation alone. Thus, the method can be applied to any 

existing dataset with large-scale genome interrogation such as those in dbGaP or 

other repositories. Re-analyses of existing datasets, with a focus on mechanism 

using PrediXcan, address a gap that has largely characterized GWAS to date.

• Reverse causality is not a major concern since disease status or drug treatment does 

not alter germline genomic variation.

• Meta-analysis of gene-based results is simplified since less stringent harmonization 

between studies is required.

• Multiple tissues can be evaluated using a reference transcriptome dataset (such as 

GTEx). In general, the only limitation is the availability of gene expression data in 
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the given tissue for model building, which need not be, from the same study as that 

used for phenotype investigation. In cases where transcriptome data are available, 

separate analyses should be performed to simplify interpretation.

• The approach can be applied to common or rare variants. In general, larger sample 

sizes for the training set will be needed to achieve good prediction models with rare 

variants.

Database of prediction models and software

We make the prediction models (derived from LASSO18 and elastic net19) and the software 

to predict the transcriptome (in a variety of tissues) (see Materials and Methods) publicly 

available.

Predicting the transcriptome

We built prediction models in the DGN whole blood cohort using LASSO, the elastic net 

(α=0.5), and polygenic score at several p-value thresholds (single top SNP, 1×10−4, 0.001, 

0.01, 0.05, 0.5, 1). We assessed predictive performance using 10-fold cross-validation (R2 of 

estimated GReX vs. observed expression) as well as in an independent set. We found that 

LASSO performed similarly to the elastic net and that LASSO outperformed the polygenic 

score at all thresholds, although all methods are highly correlated (see Supplemental Figure 

1). For subsequent analyses, we focused on the prediction models using the elastic net 

because we found it to perform well and to be more robust to slight changes in input SNPs 

(potentially due to variations in imputation quality between cohorts).

We estimated the heritability of gene expression in DGN attributable to SNPs in the vicinity 

of each gene using a mixed-effects model (see Materials and Methods) and calculated 

variances using restricted maximum likelihood as implemented in GCTA20. We use only 

local SNPs since we found that heritability estimates using all genotyped SNPs were too 

noisy to make meaningful inferences.

We use heritability estimates as our benchmark for the prediction R2 since this constitutes 

the upper limit of our prediction performance. For genes for which an elastic net model was 

available (n=10,427), the average heritability in DGN was 0.153. In comparison, the average 

10-fold cross-validated prediction R2 for elastic net was quite close at 0.137; for the 

polygenic score (P<1×10−4) and top-SNP models, average prediction R2 values were sizably 

lower at 0.099 and 0.114, respectively. We show the performance R2 for each model in 

Figure 3, with the corresponding heritability estimate and confidence interval in the 

background for comparison. We also note that elastic net predictive performance reached or 

exceeded the lower bound of the heritability estimate for 94% of genes, while polygenic 

score (P<1×10−4) did so for just 76% of the genes and the top SNP for 80% of the genes 

(Figure 3), consistent with the performance ranking given by the average (across genes) R2.

Predictive performance of elastic net was similar whether all SNPs from the 1000 Genomes 

imputation or the HapMap Phase II subset were included in the model building 

(Supplemental Figure 2). Models based on imputed data (both the 1000 Genomes and the 

HapMap subset) substantially outperformed models based on genotyped SNPs in WTCCC 
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(Supplemental Figure 2). Thus, we chose the elastic net models built in the smaller HapMap 

SNP subset, relative to 1000 Genomes, in our applications of PrediXcan to reduce 

computation time without sacrificing performance. As reference transcriptome studies 

increase in sample size, we may need to switch to a more dense imputation to take 

advantage of increased prediction performance from rare variants.

We also tested the prediction models trained in the DGN whole blood cohort on several 

independent test cohorts with available whole-genome genotype and transcriptome data. We 

used weights derived from the DGN whole blood data (“training set”) to predict gene 

expression levels (treated as quantitative traits) in GEUVADIS LCLs (lymphoblastoid cell 

lines) and nine GTEx pilot tissues (“test sets”). Figure 4 provides a Q-Q plot showing the 

expected (under the null, correlation between two independent vectors with the same sample 

size) and observed R2 (between observed and predicted) from the elastic net prediction in 

GEUVADIS LCLs. We find a substantial departure from the null distribution indicating that 

the elastic net model trained in DGN (equation 2 of Materials and Methods, with effect size 

estimates ) captures a significant proportion of the transcriptome variability. The 

average prediction R2 is 0.0197 for GEUVADIS LCLs. For GTEx tissues, the prediction R2 

values are 0.0367 (adipose), 0.0358 (tibial artery), 0.0356 (left ventricular heart), 0.0359 

(lung), 0.0269 (muscle), 0.0422 (tibial nerve), 0.0374 (sun exposed skin), 0.0398 (thyroid), 

and 0.0458 (whole blood). Interestingly, we also find a substantial departure from the null 

distribution of expected R2 values for predicted expression using DGN weights in each of 

the nine GTEx tissues suggesting that models developed in whole blood are still useful for 

understanding diseases that affect other primary tissues (Supplemental Figure 3). Consistent 

with this, average prediction R2 is highest for whole blood as expected but the loss in power 

for other tissues is modest.

Figure 5 illustrates the genes with some of the highest correlations from this analysis, 

providing a comparison of the predicted expression and the observed expression. Among 

these genes, both ERAP2 and its paralog ERAP1 play fundamental roles in MHC antigen 

presentation21, immune activation and inflammation.

We also generated prediction models trained in the DGN whole blood cohort that included 

trans-eQTLs (>1Mb from gene start or end or on a different chromosome) generated from 

linear regression (p<10−5). We tested the predictive performance of these models in the 

GTEx whole blood cohort. While a few genes had higher correlations between predicted and 

observed expression than expected by chance, the departure from the null distribution was 

much smaller than that for the prediction models based on local SNPs (Supplemental Figure 

4), perhaps due to the low power to map trans SNPs. Based on this result, in this paper we 

focus primarily on results based on local SNPs.

Application of PrediXcan to WTCCC

We applied PrediXcan to seven complex disease phenotypes from the WTCCC study22. For 

this purpose, we utilized the DGN whole blood elastic net prediction models. We correlated 

the estimated genetically regulated gene expression for close to 8700 genes with disease 

status for each WTCCC dataset and identified 41 significant associations (Bonferroni 
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corrected p < 0.05) with five diseases (Table 1). Notably, we identified 29 genes associated 

with type 1 diabetes (T1D) risk (Table 1 and Fig. 6), 8 of which were outside of the 

extended MHC. Complete results for the remaining 6 diseases are shown in Supplemental 

Figures 5 and 6. Consistent with the original GWAS of WTCCC diseases, our most 

significant results were for autoimmune diseases22.

As has been previously reported for complex autoimmune diseases23, we observed genes 

that were associated with multiple autoimmune diseases, namely T1D, Crohn’s disease 

(CD), and rheumatoid arthritis (RA). Interestingly, the top (genome-wide significant) 

PrediXcan gene for both T1D and RA, DCLRE1B, has not been previously reported (in the 

NHGRI catalog) in either disease, but has been linked to CD, ulcerative colitis and 

inflammatory bowel disease24. Lower predicted expression of DCLRE1B was associated 

with increased disease risk for both RA and T1D. Interestingly, higher predicted expression 

of DCLRE1B was nominally associated with increased Crohn’s disease risk in our 

PrediXcan analysis (p = 0.001). Similarly, PTPN22 was significantly (positively) associated 

with RA and T1D (table 1), and nominally (negatively) associated with CD (p-value = 

0.017). Previous single variant analyses implicated PTPN22 with multiple autoimmune 

diseases including RA, T1D, CD, myasthenia gravis, and vitiligo according to the NHGRI 

catalog25. These results highlight the known overlap in genetic risk factors for autoimmune 

diseases.

All genes in table 1, excluding PTPRE and KCNN4 (discussed below), have been either 

previously reported with GWAS studies, or are located in the vicinity of reported genes 

(within 1MB). About 35% of all GENCODE protein-coding genes are reported (in the 

NHGRI catalog) or within 1 MB of a reported gene as associated with a WTCCC disease. 

For T1D, 5 out of the 29 genome-wide significant genes have been reported via 

conventional single variant analyses (as curated by the NHGRI25 repository of GWAS 

results). Furthermore, 21 of the genes associated with T1D in our analysis lie within the 

extended MHC (Table 1), a region that is known to be associated with disease risk26. 

Additionally, ERBB3, which contains SNPs previously associated with T1D in GWAS27, 

showed a negative correlation with disease risk in PrediXcan (p < 10−11), which is 

consistent with a prior study that showed risk genotypes associated with lower expression of 

ERBB3 in PBMCs28. Furthermore, it has been reported that subjects with protective 

genotypes had higher percentages of ERBB3+ monocytes and dendritic cells leading to 

greater T cell proliferation28. These results highlight one of the key advantages of 

PrediXcan, which is to provide the direction of effect.

The results described above highlight gene associations that attain genome-wide 

significance. Additionally, we tested for enrichment of reported disease genes among our 

PrediXcan results using less stringent significance thresholds. Reported genes were derived 

from the comprehensive NHGRI catalog of disease-associated variants identified using 

GWAS25. Five of the seven diseases (bipolar disorder (BD), coronary artery disease (CAD), 

CD, RA, T1D) had a significant enrichment of reported genes in the PrediXcan results 

(Figure 6C, Supplemental Figure 7). Results for other p-value thresholds were similar 

(results not shown). These enrichment analyses on the PrediXcan findings suggest that 

Gamazon et al. Page 7

Nat Genet. Author manuscript; available in PMC 2016 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



among the genes that fail to meet strict genome-wide significance, there are likely to be true 

disease associations.

In addition to the results described above for autoimmune diseases, we identified two 

potentially novel disease-associated genes. Lower predicted expression of KCNN4 was 

associated with an increased risk of hypertension (p-value = 2.62 × 10−6, Table 1) and high 

predicted PTPRE expression was associated with increased risk of bipolar disorder (p-value 

= 7.71 × 10−7, Table 1). Interestingly, an intronic SNP in PTPRE was previously found to 

associate with response to the stimulant amphetamine29,30. In contrast to the original 

WTCCC single-variant analyses22, the PrediXcan analysis for bipolar disorder and 

hypertension produced genome-wide significant results. Additional studies of these genes 

are warranted.

Using publically available meta-analysis results, we summarized the single-variant 

association results for SNPs that are included in the prediction models for the top disease-

associated PrediXcan genes. See Supplemental Note and Supplemental Table 1 for the 

results of this analysis.

We applied PrediXcan and two widely-used gene-based tests (VEGAS and SKAT) to 

WTCCC. In a Q-Q plot showing all three distributions of p-values, for genes outside of the 

HLA region, from these gene-based tests (Figure 7), SKAT had improved performance 

relative to VEGAS, and PrediXcan showed the most extreme departure from the null at the 

tail end of the distribution.

To replicate our findings, we applied the DGN elastic net whole blood prediction models to 

an independent rheumatoid arthritis GWAS from Vanderbilt University’s BioVU repository 

(see Materials and Methods). Both genes (DCLRE1B and PTPN22) that were found to be 

genome-wide significant in the WTCCC rheumatoid arthritis data were also significant, with 

concordant direction of effect, in the replication samples (p = 0.012 and p = 0.036, 

respectively).

Discussion

Gene expression, as an intermediate phenotype between genetic variation and higher-level 

phenotypes, is an important mechanism underlying disease susceptibility and drug response. 

Studies of the transcriptome in several tissues13 have shown that variation in gene 

expression is heritable32,33 and can be mapped to the genome. Particularly, eQTL mapping 

provides an immediate view of the effects of genetic variants on the phenotype closest to 

genetic variation, namely transcript abundance, and thus promises to enable the discovery of 

the molecular mechanisms underlying human phenotypic variation34. Furthermore, 

transcriptome regulation studies facilitate the consideration of thousands of gene expression 

phenotypes in parallel, thereby enabling a comprehensive approach to understanding the 

genetic basis of complex traits35. In this study, we developed a method that explicitly 

utilizes the wealth of regulatory information derived from transcriptome regulation studies 

to map trait-associated loci.
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Our PrediXcan method tests the mediating effects of gene expression levels by quantifying 

the association between the genetically regulated levels of expression and the phenotype of 

interest. To implement this, we developed prediction models of gene expression using large-

scale transcriptome study datasets (DGN, GEUVADIS, GTEx). (Summary statistics on 

samples per tissue for every data release are available from the GTEx portal.) After 

extensive testing, we chose to use the elastic net model, which performed similarly to 

LASSO, but substantially outperformed simple polygenic approaches. Manor and Segal36 

have published results on robust prediction of expression levels using K nearest neighbor 

(KNN) and elastic net approaches. Based on their conclusion that a combination of elastic 

net and KNN along with the use of genomic annotation such as GC content can improve 

prediction performance, it is reasonable to hypothesize that the incorporation of a more 

comprehensive functional annotation approach into the PrediXcan framework can yield 

additional performance gain.

Application of the method to WTCCC data recapitulated many known loci but also 

identified novel genome-wide significant genes. We believe that a systematic reanalyses of 

GWAS datasets in comprehensive repositories such as dbGAP and the European Genome-

phenome Archive (EGA) could provide a cost-effective approach to uncovering novel 

disease mechanisms using only existing genomic resources.

In contrast to other gene-based tests, PrediXcan provides the direction of effect, which may 

yield opportunities for therapeutic development. The development of therapeutics that 

down-regulate a gene is generally easier to achieve than therapeutics that up-regulate a gene; 

thus, genes with expression levels that are positively correlated with disease risk may be 

more favorable drug targets for novel therapies. The direction of effect may also provide 

information to elucidate pathways and the opportunity to explore systems-based approaches 

to the development of disease. The prediction models can be applied to genotype data of 

subjects in large biobanks to investigate potential side-effects of drugs with specific gene 

targets. Finally, direction of effect can be used to improve the interpretation of sequence 

analyses of genes showing significant correlation of predicted expression with phenotype, 

since phenotypes associated with reduced expression of genes are more likely to show a 

relative excess of rare variants. Indeed, we believe that PrediXcan offers intriguing 

opportunities to combine results of rare and common variant association tests within whole 

genome sequencing studies, and more generally, to combine results of rare variant gene-

based tests from sequencing studies with results of PrediXcan gene-based tests from the 

large body of existing GWAS for the same phenotypes. Thus, PrediXcan is a method 

developed to integrate –omics data that can facilitate integration of results from common 

and rare variant studies.

Regarding the multiple testing correction approach, here we have used Bonferroni correction 

using the total number of genes tested. In general, both single-variant and PrediXcan 

analyses will be performed; thus the question that arises is how to address the issue of 

multiple testing adjustment. The prior probability for a SNP to be causal is much smaller 

than the prior probability of causality for a gene so it would not be fair to subject SNP tests 

and gene-based tests to the same level of adjustment. Since we are presenting only gene-

based results in our application and given the highly conservative nature of Bonferroni 
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correction, there is no need to further adjust our results. A more conservative approach 

would be to divide the significance threshold used by a factor of two for the multiple testing 

using gene-based and SNP-based approaches.

Given the large contribution of regulatory variants on complex traits9,10,37, our method is 

likely to identify causal genes. However, we do not claim causality since SNPs that 

contribute to the expression of a gene can also act through other mechanisms to determine 

the phenotype of interest. Replication and experimental validations are needed to determine 

causality.

In conclusion, we presented a novel gene-based test, PrediXcan that incorporates functional 

information with regard to gene regulation to identify genes associated with disease traits in 

large GWAS or whole genome sequence datasets. Our method has the advantage of 

providing biological insights into the mechanism, namely regulation of gene expression, and 

direction of effect. This approach can be readily applied to existing GWAS datasets through 

the use of our publically available PredictDB resource. We further show the utility of our 

approach by identifying and replicating a number of novel candidate associations within the 

previously analyzed WTCCC dataset.

Methods

Genomic and Transcriptomic Data

DGN RNA-Seq Dataset—We obtained whole blood RNA-Seq38 and genome-wide 

genotype data for 922 individuals from the Depression Genes and Networks cohort16, all of 

European ancestry. For our analyses, we used the HCP (hidden covariates with prior) 

normalized gene-level expression data used for the trans-eQTL analysis in Battle et al.16 and 

downloaded from the NIMH repository. Approximately 650K SNPs (minor allele frequency 

[MAF] > 0.05, Hardy-Weinberg Equilibrium [P > 0.05], non-ambiguous strand [no A/T or 

C/G SNPs]) comprised the input set of SNPs for imputation, which was performed on the 

University of Michigan Imputation-Server39,40 with the following parameters: 1000G Phase 

1 v3 ShapeIt2 (no singletons) reference panel, SHAPEIT phasing, and EUR population. 

Non-ambiguous strand SNPs with MAF > 0.05, imputation R2 > 0.8 were retained for 

subsequent analysis. To reduce computational burden in the application to WTCCC, we 

used models developed on the HapMap Phase II subset of SNPs.

GEUVADIS RNA-Seq Dataset—We obtained freely available RNA-Seq data from 421 

lymphoblastoid cell lines (LCLs) generated by the GEUVADIS consortium15 and genotype 

data generated by the 1000 Genomes project. We used GEUVADIS as a validation dataset 

to test the gene prediction models generated in the DGN cohort.

GTEx RNA-Seq Datasets—We used the nine tissues with the largest sample size in the 

Genotype-Tissue Expression (GTEx) Pilot Project14 to test the gene prediction models 

generated in the DGN cohort. Tissue samples included subcutaneous adipose (n=115), tibial 

artery (n=122), left ventricle heart (n=88), lung (n=126), skeletal muscle (n=143), tibial 

nerve (n=98), skin from the sun-exposed portion of the lower leg (n=114), thyroid (n=112), 

and whole blood (n=162). In each tissue, normalized gene expression was adjusted for 
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gender, the top 3 principal components (derived from genotype data), and the top 15 PEER 

factorsh.2p2csry (to quantify batch effects and experimental confounders)41. We used GTEx 

to test the portability of predictors developed in whole blood (from the DGN cohort) across 

a wide variety of tissues.

Additive model for gene expression traits—We use an additive genetic model to 

characterize gene expression traits:

(1)

where Yg is the expression trait of gene g, wk,g is the effect size of marker k for gene g, Xk is 

the number of reference alleles of marker k, and ϵ is the contribution of other factors that 

determine the expression trait assumed to be independent of the genetic component. We note 

that the summation in model (1) is the genetically determined component of gene expression 

(i.e., GReX).

Effect sizes (wk,g) in model (1) can be estimated using multiple approaches. In this paper we 

compare penalized approaches such as LASSO (Least Absolute Shrinkage and Selection 

Operator)18 and the elastic net19 as well as the more naive simple polygenic score estimates. 

However, other statistical machine learning approaches42, such as Random Forest43 or 

OmicKriging44, can be used within the PrediXcan framework to develop prediction models.

The heritability of gene expression defines an upper bound to how well we can predict the 

trait. We estimated the narrow-sense heritability for each gene using a variance component 

model with a genetic relationship matrix (GRM) estimated from genotype data, as 

implemented in GCTA20. No pair of subjects from the 922 individuals in DGN shared 

genetic relatedness (π̂) in excess of 5% and thus all were included in the narrow-sense 

heritability estimation. SNPs in the vicinity of each gene (within 1Mb of gene start or end, 

as defined by the GENCODE45 version 12 gene annotation), with MAF > 0.05, and in 

Hardy-Weinberg Equilibrium (P > 0.05) were used to construct the GRM for each gene. We 

calculated the proportion of the variance of gene expression explained by these local SNPs 

using the following mixed-effects model37:

where Y is a gene expression trait and b a vector of fixed effects. Here Alocal is the GRM 

calculated from the local SNPs, and (the random effect) Glocal denotes the genetic effect 

attributable to the set of local SNPs with var  In this paper we focus on 

the component of heritability driven by SNPs in the vicinity of each gene since the 

component based on distal SNPs could not be estimated with enough accuracy to make 

meaningful inferences.
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Estimation of the genetic component of gene expression levels (GReX)

In the simple polygenic score approach, we estimate wk as the single-variant coefficient 

derived from regressing the gene expression trait Y on variant Xk (as implemented in the 

eQTL analysis software Matrix eQTL46) using the reference transcriptome data. This yields 

an estimate, , for a GWAS study sample, of the (unobserved) genetically determined 

expression of each gene g:

(2)

In this implementation of polygenic score, we include all SNPs (regardless of linkage 

disequilibrium [LD]) that are associated with the expression level of the gene at a chosen p-

value threshold in the prediction model.

In contrast, LASSO uses an L1 penalty as a variable selection method to select a sparse set 

of (uncorrelated) predictors18 while the elastic net linearly combines the L1 and L2 penalties 

of LASSO and ridge regression respectively to perform variable selection19. We used the R 

package glmnet to implement LASSO and elastic net with α=0.5.

For each gene, LASSO, the elastic net and the simple polygenic score were used to provide 

an estimate of GReX̂ (using equation 2, with the effect size estimates ,  and 

, respectively). We included only local SNPs (within 1Mb of the gene start or end). In 

order to determine the optimal modeling method, we compared the 10-fold cross-validated 

prediction R2 (the square of the correlation between predicted and observed expression) for 

the simple polygenic score ( ) at several p-value thresholds (single top SNP, 1×10−4, 

0.001, 0.01, 0.05, 0.5, 1) with that from LASSO ( ) and elastic net ( ).

We also compared the 10-fold cross-validated prediction R2 from elastic net models with 

different starting SNP sets from the DGN genotype imputation (4.6M 1000 Genomes Project 

SNPs (MAF>0.05, R2>0.8, non-ambiguous strand), the 1.9M of these SNPs that are also in 

HapMap Phase II, and the 300K of these SNPs that were genotyped in the WTCCC).

Performance of transcriptome prediction in independent cohorts—We tested the 

feasibility of predicting the transcriptome (i.e., estimating the genetic component of each 

gene expression trait,  in an independent test transcriptome dataset) using the elastic 

net effect sizes trained in the DGN whole blood data (n=922). For the test sets, we used 

independent RNA-Seq datasets from 421 LCL cell lines from the 1000 Genomes project 

generated by the GEUVADIS consortium15 and the nine tissues from the GTEx pilot 

project14 (see Supplemental Figure 3). To assess performance, we used the square of the 

Pearson correlation, R2, between predicted and observed expression levels.

PrediXcan in the WTCCC GWAS Datasets—To illustrate the method, we applied 

gene prediction models (derived from whole blood) consisting of DGN elastic net predictors 

to the seven WTCCC disease studies -- bipolar disorder (BD), coronary artery disease 

(CAD), hypertension (HT), type 1 diabetes (T1D), type 2 diabetes (T2D), Crohn’s disease 
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(CD), and rheumatoid arthritis (RA)22 . Genotypes imputed to the 1000G reference sets 

were used. Imputation was done using the University of Michigan Imputation-Server and the 

same parameters as described for the imputation of DGN data. For each disease, cases and 

controls (1958 Birth Cohort and the UK Blood Service Cohort) were jointly imputed to 

avoid subtle differences between cases and controls not attributable to disease risk. We 

excluded all SNPs with an imputation R2 < 0.8 and for computational speed we kept only 

the HapMap Phase II subset of SNPs.

For each WTCCC disease, we estimated , and tested it for association with disease 

risk using logistic regression in R (R-project.org). We restricted our PrediXcan analysis to 

include genes with a cross-validated prediction R2 > 0.01 (10% correlation) in the DGN 

sample. Because the WTCCC studies use shared controls, pleiotropy analyses using these 

datasets would not be straightforward, and comparison of results across diseases was 

avoided.

GWAS Enrichment analysis—Relative to recent association studies, the WTCCC has a 

small sample size (~2,000 cases and ~3,000 controls per disease). Thus, even with our novel 

method and a reduced multiple testing burden, our ability to detect numerous novel gene 

associations may be limited. Alternatively, we tested each disease for an enrichment of 

known disease genes identified from the NHGRI GWAS Catalog25. For each disease, we 

used the reported genes from the GWAS catalog as the set of known disease genes. We 

excluded studies listed in the NHGRI GWAS catalog that included the WTCCC samples in 

order to make sure our known gene lists were independent from the current analysis. We 

then counted the number of known disease genes that had a PrediXcan p-value below a 

given threshold. We compared this to the null expectation based on 10,000 randomly drawn 

gene sets of similar size to the known disease gene set to derive an enrichment p-value. We 

tested enrichment using PrediXcan p-value thresholds of 0.05 and 0.01.

Comparison to large single variant meta-analyses—For the top PrediXcan results 

in the WTCCC, we cross-referenced the SNPs in the prediction models for these genes with 

the publically available single-SNP meta-analysis summary results. We excluded T1D from 

this analysis because, to our knowledge, there are no publically available meta-analysis 

studies of this disease. We used meta-analyses results for systolic and diastolic blood 

pressure as a proxy for hypertension. For CD, RA, and BD we were able to use meta-

analyses for the same diseases (CD47, RA48, and BD31).

Comparison of gene-based tests (PrediXcan, SKAT, VEGAS)—We compared the 

results derived from PrediXcan with those from two widely-used gene-based tests, namely 

VEGAS49 and SKAT50,51. VEGAS aggregates information from the full set of SNPs within 

a gene and accounts for LD using simulations from the multivariate normal distribution. 

SKAT is a kernel-based association test that evaluates the regression coefficients of the 

SNPs within a gene by a variance component score test in a mixed model framework. We 

generated BED-formatted files for SNPs and genes (as defined by GENCODE v12) and 

mapped SNPs that met post-imputation QC parameters to gene regions using bedtools. The 

use of an offline Perl implementation for VEGAS allowed us to examine the dependence of 
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the results from this approach on LD information through the use of the actual genotype data 

(versus the default HapMap CEU reference panel data). We developed an R-based pipeline 

that invokes the SKAT package (version 1.0.1) that is publicly available from CRAN. We 

generated a Q-Q plot showing the distribution of gene-level p-values for association with 

RA (for genes outside the HLA region) derived from each gene-based test to test for 

systematic departure from the null expectation (of uniform p-values).

Replication of PrediXcan findings—We selected individuals from Vanderbilt 

University’s BioVU repository with a diagnosis of rheumatoid arthritis48 using a previously 

validated algorithm for identification of RA cases with a reported positive predictive value 

of 0.94 and sensitivity of 0.87, as previously described52. This trained machine learning 

classifier was applied to records with at least one International Classification of Diseases, 

9th edition code for rheumatoid arthritis to identify true RA cases. RA positive individuals 

identified by this algorithm were genotyped on two platforms: 833 using the Illumina 

OmniExpress + Exome chip and 1408 using the Illumina Omni 2.5 BeadChip. A total of 

2650 samples from the Illumina Genotype Control set genotyped on Illumina 

HumanMap550v1/v3 were used for controls. We used the following QC thresholds: sample 

call rate > 0.98, SNP call rate > 0.99, MAF > 0.05, HWE p-value > 10−3. Imputation was 

performed using IMPUTE2 with the 1000 Genomes phase 1 v3 European samples as the 

reference panel, phasing was done with SHAPEIT, and SNPs with imputation quality score 

(“INFO”) > 0.50 were retained. To replicate the PrediXcan RA findings that meet genome-

wide significance, we utilized the DGN whole blood elastic net prediction models (as we 

had done in the discovery WTCCC data). We estimated the genetically regulated gene 

expression level  in the replication samples and performed logistic regression with 

disease status.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Mechanism tested by the PrediXcan method
This figure shows the conceptual decomposition of the expression level of a gene into three 

components: genetically determined component, a component altered by the trait itself, and 

the remaining factors (including environment). PrediXcan estimates the genetically 

regulated component of expression (GReX) and correlates it with the trait to identify trait-

associated genes.
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Figure 2. PrediXcan framework
The workflow illustrates the steps used in developing the PrediXcan method. The top panel 

shows the data used from the reference transcriptome studies: genotype and expression 

levels (GTEx, GEUVADIS, DGN, etc). The sample size of the study is denoted by n, m is 

the number of genes considered, M is the total number of SNPs, and p is the number of 

available tissues. The second panel shows the additive model used to build a database of 

prediction models, PredictDB. T represents the expression trait, and Xk is the number of 

reference alleles for SNP k. The coefficients of the models for each tissue are fitted using the 
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reference transcriptome datasets and optimal statistical learning methods chosen among 

LASSO, Elastic Net, OmicKriging, etc. The bottom panel shows the application of 

PrediXcan to a GWAS dataset. Using genetic variation data from the GWAS and weights in 

PredictDB, we “impute” expression levels for the whole transcriptome. These imputed 

levels are correlated with the trait using regression (e.g., linear, logistic, Cox) or non-

parametric (Spearman) approaches. (For the disease phenotypes in the WTCCC datasets and 

the replication dataset reported here, we used logistic regression with disease status.)
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Figure 3. Cross-validated prediction performance vs heritability
This figure shows the prediction performance (R2 of GReX vs. observed expression in red) 

compared to gene expression heritability estimates (black with 95% confidence interval in 

gray). Performance was assessed using 10-fold cross-validation in the DGN whole blood 

cohort (n=922) with the elastic net, polygenic score (p < 1×10−4), and using the top SNP for 

prediction.
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Figure 4. Prediction performance of elastic net tested on a separate cohort
Using whole blood prediction models trained in DGN, we compared predicted levels of 

expression with observed levels on lymphoblastoid cell lines from the 1000 Genomes 

project. RNA-sequenced data (n=421) on these cell lines have been made publicly available 

by the GEUVADIS consortium. Left panel shows the squared correlation, R2, between 

predicted and observed levels plotted against the null distribution of R2 Right panel shows 

prediction performance (R2 of GReX vs. observed expression in green) compared to 

GEUVADIS gene expression heritability (h2) estimates (black with 95% confidence interval 

in gray).
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Figure 5. Examples of well-predicted genes
These plots show observed vs. predicted levels of 4 genes. Predicted levels were computed 

using whole blood elastic net prediction models trained in DGN data. Observed levels were 

RNA-seq data in lymphoblastoid cell lines generated by the GEUVADIS consortium.
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Figure 6. PrediXcan results for type 1 diabetes
Complete results for our analysis of type 1 diabetes from the WTCCC using gene expression 

predicted with the DGN whole blood predictors. Panel (a) shows association p-values based 

on gene position across the genome. Panel (b) shows the same results plotted against the null 

expectation in a q–q plot. The red line in panel (b) shows the null expected distribution of p-

values. In panels (a) and (b), the blue line represents the bonferroni corrected genome-wide 

significance threshold. The top 3 genes are labeled. Panel (c) shows the results of our 

GWAS enrichment analysis. The histogram shows the expected number of genes with a p-
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value < 0.01 based on 10,000 random permutations. The large point shows the observed 

number of previously known T1D genes that fall below this threshold.
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Figure 7. Comparison of gene-based methods
Q-Q plot showing distribution of p-values derived from each method (VEGAS, SKAT, and 

PrediXcan) for genes outside of the HLA region for Rheumatoid Arthritis.
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