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Objective: The aim of this study is to explore the resting-state functional connectivity (FC) 

differences between the paired default mode network (DMN) subregions in patients with pri-

mary insomnia (PIs).

Methods: Forty-two PIs and forty-two age- and sex-matched good sleepers (GSs) were 

recruited. All subjects underwent the resting-state functional magnetic resonance imaging scans. 

The seed-based region-to-region FC method was used to evaluate the abnormal connectivity 

within the DMN subregions between the PIs and the GSs. Pearson correlation analysis was 

used to investigate the relationships between the abnormal FC strength within the paired DMN 

subregions and the clinical features in PIs.

Results: Compared with the GSs, the PIs showed higher Pittsburgh Sleep Quality Index score, 

Hamilton Anxiety Rating Scale score, Hamilton Depression Rating Scale score, Self-Rating 

Depression Scale score, Self Rating Anxiety Scale score, Self-Rating Scale of Sleep score, and 

Profile of Mood States score (P,0.001). Compared with the GSs, the PIs showed significant 

decreased region-to-region FC between the medial prefrontal cortex and the right medial tem-

poral lobe (t=-2.275, P=0.026), and between the left medial temporal lobe and the left inferior 

parietal cortices (t=-3.32, P=0.001). The abnormal FC strengths between the DMN subregions 

did not correlate with the clinical features.

Conclusion: PIs showed disrupted FC within the DMN subregions.

Keywords: insomnia, functional connectivity, default mode network, functional magnetic 

resonance imaging, resting-state, blood oxygenation level dependent

Introduction
Primary insomnia (PI), one of the most prevalent health complaints worldwide, 

characterized by difficulties in initiating or maintaining sleep, or non-restorative sleep 

in the absence of any related medical or psychiatric condition, has been associated with 

cognitive deficits, including the attention, memory, decision making, and executive 

function.1,2 In spite of a recent increase in the neuroimaging research into the PI, it 

has yet to establish a consistent conclusion about its neuropathology,3 especially the 

structural studies of the brain volume alterations.4–10 On the functional imaging aspects, 

the studies are too few and diverse in methodology to yield any general conclusions. 

Altena et al concluded that patients with PI (PIs) are cognitively compromised, as 

shown by hypoactivation in the left prefrontal cortex and left inferior frontal gyrus 

during task performance.11 Drummond et al12 further investigated the cognitive impair-

ments in the PIs, they found less activation in the thalamus, fronto-parietal cortex, and 

cerebellum, and these brain regions normally associated with the working memory and 

the motor and visual processing during the cognitive tasks compared with the good 

sleepers (GSs).12 Previous study found that the aberrant activation of the insula, which 
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integrates temporal and bodily states, in arousal networks 

may underlie the misperception of sleep quality and subjec-

tive distress in insomnia.13 Our previous study found that 

both female and male PIs showed different regional homo-

geneity in the temporal cortex, cingulate cortex, cerebellum, 

and frontal gyrus.2 Although these studies provided insights 

into the neural events occurring in the PIs, there was far less 

evidence for the neuromechanism changes.

It is proposed that the resting-state functional mag-

netic resonance imaging (rs-fMRI), one of the hot areas in 

neuroimaging and one that is suitable for the mechanism 

research of central nervous system, can detect the spontane-

ous neuronal activity of the human brain and provide new 

insights into the pathophysiology of disease, because of its 

advantages in not requiring exposure to radioactive tracers, 

accurate positioning, and ease of combining functional imag-

ing with structural imaging. Functional connectivity (FC) that 

is an important part of the rs-fMRI has been widely used as 

a technique for unbiased analysis of the brain’s functional 

connectome.14,15 Previous studies demonstrated that the PIs 

relative to the GSs showed reduced FC between the left 

orbitofrontal cortex and the left caudate head,16 and between 

the parietal lobe and the frontal lobe.17 Huang et al found 

decreased FC mainly between the amygdala and the insula, 

striatum, and thalamus, and increased FC mainly between the 

amygdala and the premotor cortex and sensorimotor cortex 

in the PIs compared with the GSs.18

The “default-mode network” (DMN) is an organized 

functional network of several brain regions. Anatomically, 

the DMN spans the bilateral inferior parietal cortices (IPC), 

posterior cingulate cortex, precuneus, medial prefrontal 

cortex (MPFC), retrosplenial cortex, and parts of the hip-

pocampal formation and medial temporal lobe (MTL).19,20 

Recent researches have suggested that the DMN might be 

associated with the collection and evaluation of information,21 

self-referential mental activity,22 extraction of episodic 

memory,23 emotion and anxiety,24,25 mind wandering or 

daydreaming,26 and autobiographical memory retrieval and 

envisioning the future when individuals are not focusing on 

the external environment.27–29 More and more researches 

have been devoted to exploring the DMN changes in vari-

ous kinds of diseases, including the sleep deprivation,30,31 

cognitive impairment,32 and autism.33 However, far less is 

still known about the effect of PIs on the intrinsic DMN node 

connectivity. In this study, we examined the FC changes of 

the paired DMN subregions in the PIs using the seed-based 

region-to-region FC method to explore its possible neural 

mechanisms.

Materials and methods
Forty-two PIs (15 males and 27 females; mean age: 

49.24±12.26) who had sleep onset and/or maintenance 

insomnia were recruited from the Psychiatry Department of 

our Hospital, and forty-two GSs (18 males and 24 females; 

mean age: 49.14±10.20) who were age, sex, and education 

status-matched to the PIs were recruited from the community 

via a newspaper advertisement. Twenty-three PIs (seven 

males and 16 females) were not the first-time visitors and 

had taken hypnotic medications or psychoactive medica-

tions before, the other nineteen PIs (eight males and eleven 

females) were first-time visitors and had never taken medi-

cations before. The medication history duration was from 1 

month to 5 years. Before the tests, the PIs were asked to stop 

taking any medications for at least 2 weeks before the data 

collection and for the duration of the study; however, three 

PIs only stopped taking agents 2–4 days before the test.

The PIs met the following criteria as in our previous study 

where the regional homogeneity results of a group of 24 PIs 

from the 42 PIs in our study were reported:2 conformity to 

the pertinent diagnostic criteria as defined by the Interna-

tional Classification of Sleep Disorder-2,34 higher duration 

of insomnia than 2 months, higher score of Pittsburgh Sleep 

Quality Index (PSQI) than 5, a sleep diary for at least 2 weeks’ 

duration, and right-handedness. All GSs met the following 

criteria: a good sleeping habit and good sleep onset and/or 

maintenance, a regular dietary habit, no consumption of any 

stimulants, medications, tea or coffee for at least 3 months 

before the study, lower score of PSQI than five, and lower 

score of Hamilton Depression Rating Scale (HAMD) and 

Hamilton Anxiety Rating Scale (HAMA) scores ,7.

The exclusion criteria for both groups comprised patho-

logical brain MRI findings, inborn or other acquired diseases, 

any foreign implants in the body, present, or past psychiatric 

or central nervous system disorders, substance dependency 

or substance abuse (including heroin, nicotine, or alcohol 

addiction for GSs), foreign implants in the body, any history 

of swing shift, shift work, sleep complaints or other sleep 

disorder, including the hypersomnia, parasomnia, sleep-

related breathing disorder, sleep-related movement disorder, 

or circadian rhythm sleep disorder.

Research design and procedures
An experienced psychiatrist evaluated the PIs with the Diag-

nostic and Statistical Manual of Mental Disorders, version 4 

(DSM-IV)35 for the life history of psychiatric disorders, as 

well as an unstructured clinical interview for the history of 

medical and sleep disorders. To evaluate the sleep status, the 

www.dovepress.com
www.dovepress.com
www.dovepress.com


Neuropsychiatric Disease and Treatment 2015:11 submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

3087

Functional connectivity of paired DMN subregions in primary insomnia

PIs were asked to wear a Fitbit Flex tracker (http://help.fitbit.

com) for two consecutive nights and the GSs for 1 week. Dur-

ing the time, the total sleep time, sleep onset latency, sleep 

efficiency, and number of awakenings were recorded.

The volunteers were instructed to wear black blinders 

and sponge earplugs, and fix the head, to avoid audiovisual 

stimulus during the rs-fMRI scans. They were told to relax 

and not to think of anything, and not to fall asleep in particu-

lar. A simple questionnaire was administered immediately 

after the scans to determine whether the subjects were awake 

during the session. The data of the subjects who were asleep 

during the scans were excluded. This study was approved by 

The Human Research Ethics Committee of our Hospital. All 

volunteers participated voluntarily and were informed of the 

purposes, methods, and the potential risks, and all signed an 

informed consent form.

Questionnaires
All volunteers were asked to complete a number of ques-

tionnaires, including the PSQI,36 Insomnia Severity Index,37 

HAMD,38 HAMA,39 Self-Rating Depression Scale,40 Self 

Rating Anxiety Scale,41 Self-Rating Scale of Sleep, and 

Profile of Mood States.42,43

MRI parameters
MRI scanning was performed on a 3-Tesla MR scanner 

(Trio, Siemens, Erlangen, Germany). High-resolution 

T1-weighted images were acquired with a three-dimensional 

spoiled gradient-recalled sequence in an sagittal orien

tation: 176 images (repetition time  =1,900 ms, echo 

time =2.26 ms, thickness =1.0 mm, gap =0.5 mm, acquisi-

tion matrix =256×256, field of view =250 mm ×250 mm, 

flip angle =9°) were obtained. Finally, an 8-minute rs-fMRI 

scan was obtained with eyes closed. A total of 240 func-

tional images (repetition time =2,000 ms, echo time =30 ms, 

thickness =4.0 mm, gap =1.2 mm, acquisition matrix =64×64, 

flip angle =90°, field of view =220 mm ×220 mm, 29 axial 

slices with Gradient-Recalled Echo-Planar Imaging pulse 

sequence) covering the whole brain were obtained.

Data preprocessing
Functional data were checked by MRIcro software (www.

MRIcro.com) to exclude the defective data. The first ten 

time points of the functional images were discarded due 

to the possible instability of the initial MRI signal and the 

participants’ adaptation to the scanning environment. On the 

basis of MATLAB2010a (Mathworks, Natick, MA, USA), 

the rest of the data pre-processing was performed by the 

DPARSFA (http://rfmri.org/DPARSF) software, including 

digital imaging and communications in medicine form trans-

formation, slice timing, head-motion correction, spatial nor-

malization, and smooth with a Gaussian kernel of 6×6×6 mm3 

full-width at half-maximum. The participants who had more 

than 1.5 mm maximum translation in x, y, or z and 1.5° of 

motion rotation were rejected. The Friston six head-motion 

parameters were used to regress out head-motion effects 

based on recent work, showing that higher-order models 

were more effective in removing head-motion effects.44,45 

Linear regression was also applied to remove other sources 

of spurious covariates along with their temporal derivatives, 

including the signal from a ventricular regions of interest, and 

the signal from a region centered in white matter.27 Of note, 

the global signal was not regressed out in the present data, 

as in our previous studies,2,46,47 for the reason that there is 

still a controversy concerning removing the global signal in 

the preprocessing of resting-state data.27,48 After the head-

motion correction, the align fMRI images were spatially 

normalized to the Montreal Neurological Institute space and 

re-sampled at a resolution of 3 mm ×3 mm ×3 mm. After the 

pre-processing, the time series for each voxel was linearly 

detrended and filtered (bandpass 0.01–0.08 Hz) to reduce the 

low-frequency drift, high-frequency physiological respiratory 

and cardiac noise.49

Definition of DMN seed regions
According to the previous studies,50–52 we defined the eight 

canonical core regions within the DMN: posterior cingulate 

cortex, MPFC, bilateral hippocampal formation, bilateral 

MTL, and bilateral IPC (Table 1, Figure 1). The average 

time courses of these eight regions were defined by placing 

spherical seeds (r=6 mm) and then extracted from each 

subject.

Table 1 The coordinate of the definition of the DMN subregions

Region Abbreviation MNI

X Y Z

Posterior cingulate cortex PCC 0 -53 26
Medial prefrontal cortex MPFC 0 52 -6
Hippocampal formation HF.L -24 -22 -20

HF.R 24 -20 -22
Inferior parietal cortex IPC.L -43 -74 28

IPC.R 47 -57 20
Medial temporal lobe MTL.L -29 26 -28

MTL.R 29 26 -28

Note: The coordinate of the eight canonical core regions within the DMN.
Abbreviations: DMN, default mode network; MNI, Montreal Neurological Institute;  
R, right; L, left.
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FC analysis
For each subject, a correlation map was produced by com-

puting the correlation coefficient (r score) between each 

pair of the DMN regions, totally yielding the 28 paired con-

nectivity. Correlation coefficients were then converted to 

z-values using Fisher’s r-to-z transform to standardize the 

statistic analysis because the correlation coefficient r is not 

normally distributed.

Correlation analysis
To investigate the relationships between the clinical measures 

and the FC strength of the region-to-region within the DMN 

in PIs, the z-values of the temporal correlation coefficients 

of the different paired connectivity between the PIs and the 

GSs were correlated with the clinical questionnaires using 

the Pearson correlation analysis. The threshold was set at a 

significance level of P,0.05.

Statistical analysis
For the clinical measures, two-sample Student’s t-test (homo-

scedasticity) and Mann–Whitney U-test (heteroscedasticity) 

were used for the continuous data. All the results are quoted 

as two-tailed P-values. P,0.05 was considered as statisti-

cally significant. All the statistical analyses were performed 

using IBM SPSS version 21.0 statistical software.

Within each group, a random-effect one-sample t-test was 

performed on the individual z-value maps of the 28 pairs of 

DMN subregions. A corrected significance level of P,0.05, 

using an false-positive adjustment, was performed for the 

multiple comparison corrections.53,54 The two-sample t-test 

was performed on the individual z-value maps of the 28 pairs 

of DMN subregions to determine the FC differences between 

the PIs and the GSs with the age, sex, and education as 

covariates. A corrected significance level of individual voxel 

P,0.05, using the false-positive adjustment, was used to 

determine the statistical significance.

Results
Demographic and clinical questionnaires
Demographic and clinical questionnaires of each group are 

summarized in Table 2. No significant differences were found 

in age (t=-0.996; P=0.322), sex (χ2=0.645; P=0.422), and 

education (t=-0.408; P=0.684) between the PIs and the GSs 

(P.0.05). Compared with the GSs, the PIs showed higher 

PSQI score (P,0.001), shorter total sleep time (P,0.001) 

and lower sleep efficiency (P,0.001), had worse subjective 

Figure 1 Regions of interest within the DMN.
Notes: The red spots in the axial slices represent the DMN subregions (radius =6 mm). The z-value represents the Z direction of the MNI coordinate.
Abbreviations: PCC, posterior cingulate cortex; MPFC, medial prefrontal cortex; HF, hippocampus formation; IPC, inferior parietal cortices; MTL, medial temporal lobe; 
DMN, default mode network; MNI, Montreal Neurological Institute.

Table 2 Demographics and characteristics of the PIs and GSs

PIs GSs

Demographics (n=42)
Mean age, years 49.24±12.26 49.14±10.20
Sex (male, female) 42 (15, 27) 42 (18, 24)
Education, years 6.16±5.33 7.83±3.34

Sleep questionnaires (n=42)
Duration of insomnia, hours 5.44±5.23 N/A
PSQI score 15.17±2.16 2.50±0.89
PSQI total sleep time, hour 3.78±1.13 7.51±0.57
PSQI sleep efficiency, % 46.55±14.34 87.8±5.7
SRSS score 34.90±4.59 15.29±1.66
ISI score 18.43±2.96 N/A
HAMA 8.14±3.57 1.38±1.15
HAMD 9.48±4.67 1.83±0.99
SAS 41.27±8.43 26.36±3.16
SDS 48.26±9.55 30.12±3.44
POMS total score 117.93±23.92 82.79±5.85

Fitbit Flex tracker (38 PIs and 35 GSs)
Total sleep time, hours 4.99±0.7 6.79±0.49
Sleep efficiency, % 64.56±8.48 85.18±4.81
Sleep onset latency, minutes 67.26±43.53 8.89±2.01
Number of awakenings 8.8±4.2 4.31±1.25

Notes: Compared with the GSs, the PIs showed significant differences in the sleep 
characteristics and Fitbit Flex tracker data (P,0.001). No significant differences 
were found in age, sex, and education between the PIs and the GSs (P.0.05).
Abbreviations: PIs, patients with primary insomnia; GSs, good sleepers; N/A, not 
applicable; PSQI, Pittsburgh Sleep Quality Index; SRSS, Self-Rating Scale of Sleep;  
ISI, Insomnia Severity Index; HAMA, Hamilton Anxiety Rating Scale; HAMD, 
Hamilton Depression Rating Scale; SAS, Self Rating Anxiety Scale; SDS, Self-Rating 
Depression Scale; POMS, Profile of Mood States.
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Figure 2 Correlation matrix of average time series of pair-wise subregions in DMN.
Note: The pictures represent the FC results of the 28 pairs of DMN subregions in PIs (A) and GSs (B), respectively by one-sample t-test.
Abbreviations: PIs, patients with primary insomnia; GSs, good sleepers; DMN, default mode network; FC, functional connectivity; PCC, posterior cingulate cortex;  
MPFC, medial prefrontal cortex; HF, hippocampus formation; IPC, inferior parietal cortices; MTL, medial temporal lobe; R, right; L, left.

sleep estimate as measured by the Self-Rating Scale of Sleep 

(P,0.001), and demonstrated disturbed mood state as mea-

sured by the HAMA (P,0.001), HAMD (P,0.001), Self 

Rating Anxiety Scale (P,0.001), Self-Rating Depression 

Scale (P,0.001), and Profile of Mood States (P,0.001). The 

Fitbit Flex tracker found that the no significant difference 

in the total sleep time (P=0.862) between the PIs and the 

GSs, but the PIs showed lower sleep efficiency (P,0.001), 

longer sleep onset latency (P,0.001), and more number of 

awakenings (P,0.001) compared with the GSs.

FC results
Figure 2 shows the FC results of the 28 pairs of DMN subre-

gions in the PIs and the GSs, respectively. In each group, all 

these DMN regions were strongly connected to each other. 

Compared with the GSs, the PIs demonstrated two signifi-

cant decreased FC regions, that is, between the MPFC and 

the right MTL (MTL.R) (t=-2.275, P=0.026), and between 

the left MTL (MTL.L) and the left IPC (IPC.L) (t=-3.32, 

P=0.001) (Figure 3). No other region-to-region connectivi-

ties were found.

No correlation results
There were no significant correlations between the region-

to-region FC strength within the DMN and the clinical 

questionnaires (P.0.05).

Discussion
To the best of our knowledge, this study was the first to 

use the region-to-region FC method to investigate the FC 

differences of the DMN subregions, so as to better understand 

the underlying neural mechanisms of the PIs. Fortunately, 

in the present study we found that the PIs showed decreased 

FC between the MPFC and the right MTL, and between the 

left MTL and the left IPC compared with the GSs. Although 

no significant correlations were found between the abnormal 

paired FC subregions and the clinical measurements, the PIs 

showed more negative emotions compared with the GSs.

Recent researches indicate that the prefrontal cortex is 

particularly sensitive to the sleep, and has a major role in 

mediating sleep physiology.55–57 Several neuropsychological 

studies have revealed that the PIs had impaired performance 

in tests involving the prefrontal cortex.58,59 The MPFC, 

as a core region of the DMN, associated with the social 

cognitive processes, is related to decision making and self-

regulations.60,61 Koenigs et al found that the focal injuries to 

the left DMPFC are associated with the sleep initiation and 

maintenance.62 Joo et al found that the PIs showed significant 

decreased gray matter volume in the MPFC compared with 

the GSs.10 Our previous study found that male PIs showed 

lower regional homogeneity in the MPFC compared with 

male GSs.2 These studies demonstrated that the PIs had a 

disturbed function and structure in the MPFC.

The MTL, which consists of several critical memory-

related structures, including the hippocampus, amygdala, 

cingulate gyrus, and the surrounding hippocampal areas 

(such as the entorhinal, perirhinal, and parahippocampal 

cortices),63 was associated with a variety of sensory infor-

mation integration. The MTL is considered as a sensi-

tive predictor for conversion to Alzheimer’s disease.64–66 
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Nofzinger et al reported that the PIs have a smaller reduction 

in relative metabolism from wakefulness to non-rapid eye 

movement sleep in the hippocampus, parahippocampal, and 

amygdaloid.67 Our previous study found that the PIs showed 

lower regional homogeneity area in the MTL.2 These studies 

demonstrated that the PIs had a functional disorder in the 

MTL. Furthermore, previous studies showed that the MTL 

(entorhinal cortex, parahippocampal cortex, and perirhinal 

cortex), connected via the medial dorsal nucleus of the 

thalamus to the medial, orbital, and lateral prefrontal cortex, 

which is essential to the declarative memory.68–70 Therefore, 

we speculated that the decreased FC between the MPFC 

and the right MTL in our study may be associated with the 

cognitive deficits in PIs.

The IPC, a large and heterogeneous region, is obligato-

rily or unintentionally engaged in the recall, consolidation, 

and retrieval of episodic memory information,71–73 as well 

as being implicated in diverse cognitive operations74 that 

include bodily awareness,75 generating a sense of personal 

responsibility,76 and moral decision making,77 action, lan-

guage, and mathematical problem solving.78,79 Chee and 

Chuah found that the sleep deprivation reduced IPL deactiva-

tion during a visual short-term memory task.80 Horovitz et al 

revealed reductions in the IPC-MPFC FC during deep 

sleep and after partial sleep deprivation.81,82 De Havas et al 

also found that the IPC node of the DMN was consistently 

impaired and might represent an early marker for the effects 

of 24-hour sleep deprivation, as well as serving as an indica-

tor of hitherto-unexplored behavioral impairments.83 Gao et al 

found acute sleep deprivation showed decreased amplitude of 

low frequency fluctuation in the IPC.84 A previous regional 

homogeneity study found little decreased spontaneous brain 

activity in the IPC in patients with obstructive sleep apnea.85 

Our previous sleep deprivation study found that a total of 

72 hours sleep deprivation disturbed the spontaneous activity 

of the IPC area and its connectivity pattern with other DMN 

subregions.30 These studies showed consistent evidence that 

the IPC had abnormal spontaneous activity and connectivity 

pattern in the sleep disorders.

Recent studies suggest a role of DMN parietal regions dur-

ing retrieval of information, which in concert with the medial 

temporal structures.86 Meanwhile, Tessitore et al revealed that 

the reduced FC between the MTL and the IPC may play a role 

in the development of cognitive decline in the Parkinson’s dis-

ease, and the functional abnormalities precede the structural 

abnormalities.87 In this study, our findings demonstrated that 

Figure 3 FC differences within the DMN between the PIs and the GSs.
Notes: Comparison of FC within the DMN in the PIs versus the GSs, The PIs showed decreased FC between the MPFC and the MTL.R, and between the MTL.L and the 
IPC.L compared with the GSs. Undirected edges correspond to the significance of differences (t-values).
Abbreviations: FC, functional connectivity; DMN, default mode network; PIs, patients with primary insomnia; GSs, good sleepers; PCC, posterior cingulate cortex;  
MPFC, medial prefrontal cortex; HF, hippocampus formation; IPC, inferior parietal cortices; MTL, medial temporal lobe; R, right; L, left.
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the PIs compared with the GSs had decreased FC between the 

MPFC and the right MTL, and between the left MTL and the 

left IPC. These abnormal connectivities may be a potential 

functional basis of the emotional, memory, and cognitive 

decline in the PIs. Although no significant correlations were 

found between the abnormal paired FC subregions and the 

clinical measurements, these findings demonstrated the FC 

impairment of the intrinsic DMN subregions and help us know 

more about the underlying mechanism of the PIs.

Conclusion
Using the resting-state seed-based FC method, we found 

decreased region-to-region FC between the MPFC and the 

right MTL, and between the left MTL and the left IPC. These 

findings will help us insight into a deeper understanding of 

the neural mechanism of the PIs. However, there are several 

limitations that should be paid attention to. First, a larger 

sample size should be studied. Second, future studies should 

go beyond examining limited DMN to make a comprehensive 

analysis. Third, some PIs were selected without reference to 

the polysomnogram, although all PIs were asked to wear a 

Fitbit Flex tracker to monitor their sleep quality.
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