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Abstract

Background: The use of porcine cells and organs as a source of xenografts for human patients would vastly increase the donor
pool; however, both humans and Old World primates vigorously reject pig tissues due to xenoantibodies that react with the
polysaccharide galactose a (I,3) galactose (aGal) present on the surface of many porcine cells. We previously examined the
xenoantibody response in patients exposed to porcine hepatocytes via treatment(s) with bioartficial liver devices (BALs),
composed of porcine cells in a support matrix. We determined that xenoantibodies in BAL-treated patients are predominantly
directed at porcine aGal carbohydrate epitopes, and are encoded by a small number of germline heavy chain variable region
(V) immunoglobulin genes. The studies described in this manuscript were designed to identify whether the xenoantibody
responses and the IgV,, genes encoding antibodies to porcine hepatocytes in non-human primates used as preclinical models are
similar to those in humans. Adult non-immunosuppressed rhesus monkeys (Macaca mulatta) were injected intra-portally with
porcine hepatocytes or heterotopically transplanted with a porcine liver lobe. Peripheral blood leukocytes and serum were
obtained prior to and at multiple time points after exposure, and the immune response was characterized, using ELISA to
evaluate the levels and specificities of circulating xenoantibodies, and the production of cDNA libraries to determine the genes
used by B cells to encode those antibodies.

Results: Xenoantibodies produced following exposure to isolated hepatocytes and solid organ liver grafts were predominantly
encoded by genes in the V3 family, with a minor contribution from the V4 family. Immunoglobulin heavy-chain gene (V)
cDNA library screening and gene sequencing of IgM libraries identified the genes as most closely-related to the IGHV3-11 and
IGHV4-59 germline progenitors. One of the genes most similar to IGHV3-11, V,;3-1 [<"°, has not been previously identified, and
encodes xenoantibodies at later time points post-transplant. Sequencing of IgG clones revealed increased usage of the monkey
germline progenitor most similar to human IGHV3-1 1| and the onset of mutations.

Conclusion: The small number of IGV genes encoding xenoantibodies to porcine hepatocytes in non-human primates and
humans is highly conserved. Rhesus monkeys are an appropriate preclinical model for testing novel reagents such as those
developed using structure-based drug design to target and deplete antibodies to porcine xenografts.

Page 1 of 13

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16549031
http://www.biomedcentral.com/1471-2172/7/3
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

BMC Immunology 2006, 7:3 http://www.biomedcentral.com/1471-2172/7/3

A, B.
2.00+ 2.00-
1.75+ c 1.754 -
E 1.50 E 1.50-
8 1.25- 3 1.254
- -
% 1.00+ % 1.00-
d 0.754 g 0.75-
© .50 © o0.50
0.254 0.25+
0.00- o.oo—-i
day0 day14 day28 day60 day90 day0 dayi4 day28 day60 day30
Timepoint Timepoint

B -6 [] =653

o
o

0.D. at 450 nm
0.D. at 450 nm

day0 day14 day28 day60 dayS0 day0
Timepoint

day14 day28 day60 dayS0
Timepoint

0.D. at 450 nm
0.D. at 450 nm

day0 dayl4 day28 day60 day90 " day0 dayld day28 day60 dayS0
Timepoint Timepoint

Disaccharide Trisaccharide - Pentasaccharide

Target

Figure |

ELISA assays demonstrating the induction of a xenoantibody response following infusion with porcine hepato-
cytes. Two rhesus monkeys (#644 and #653) were infused with porcine hepatocytes, and the xenoantibody response was
measured by ELISA. Panels (A.) and (B.) demonstrate the antibody response using pig aortic endothelial cells (PAEC) as anti-
genic targets. (A.) IgM and (B.) IgG. Panels (C.) through (F.) represent the anti-gal antibody response using purified di, tri, or
penta aGal oligosaccharides as the antigenic target. (C.) #644 IgM. (D.) #653 IgM. (E.) #644 1gG. (F.) #653 IgG. Each sample
was run in duplicate. Both IgM and IgG xenoantibodies against all tested antigenic targets were increased in each monkey post-

porcine cell exposure.
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Figure 2

IgG subclass expression with aGal pentasaccharide
as the target antigen. ELISA demonstrating an early
increase in antibodies of the IgG2 and IgG4 subclasses. By
Pl (post-first injection) day 39, these antibodies decreased
and a rise in IgG subclass | levels was detected.

Background

The use of porcine cells, tissues, and organs for transplan-
tation or extracorporeal perfusion would greatly benefit
the 86,000 patients on the United Network for Organ
Sharing transplant waiting list, as well as those considered
medically unsuitable for transplantation of scarce human
organs or tissues [1]. Unfortunately, humans and Old
World primates vigorously reject pig tissues due to
xenoantibodies that react with the polysaccharide galac-
tose o (1,3) galactose (aGal) present on the surface of
many porcine cells. This rejection is the result of two proc-
esses, involving both preformed, circulating xenoantibod-
ies, and those antibodies whose production is stimulated
by the presence of the xenograft [2-4]. Despite this immu-
nological barrier, porcine cells and tissues have been used
clinically: pig heart valves have been utilized since 1967
[5], and islets have been transplanted into at least ten dia-
betic patients [6]. Numerous patients have also under-
gone extracorporeal perfusion using porcine livers to
reduce circulating toxins [7,8], and new perfusion systems
are continually being developed [9,10]. Bioartificial liver
devices (BALs), containing porcine hepatocytes in a filter
cartridge with a semi-permeable membrane, were first
used in emergency situations, and have now entered clin-
ical trials [11-14]. These BALs are primarily designed for
treatment of acute liver failure as a "bridge" while await-
ing a human liver graft for allotransplantation, or until the
damaged liver recovers from injury [15].

We previously examined the xenoantibody response in
patients exposed to porcine hepatocytes via treatment(s)
with BALs [16]. We determined that xenoantibodies in

http://www.biomedcentral.com/1471-2172/7/3

BAL patients are predominantly directed at porcine aGal
carbohydrate epitopes, and are encoded by a small
number of germline heavy chain variable region (Vy)
immunoglobulin genes [17].

In an effort to define the nature of the immune response
to individual hepatocytes and vascularized organ grafts in
a pre-clinical lower primate model, we studied the
xenoantibody response of rhesus monkeys (Macaca
mulatta) to pig hepatocytes as isolated cells and as solid
organ xenografts. This series of experiments allowed us to
confirm that: [1] the immunoglobulin xenoantibody
responses of non-immunosuppressed primates exposed
to porcine hepatocytes were similar, if not identical, to the
response elicited by a vascularized hepatic graft, and [2]
both responses were encoded by alleles of the same germ-
line progenitors as those utilized in humans exposed to
pig hepatocytes via a BAL device. This new information
suggests that the xenograft response in rhesus monkeys
provides an appropriate model for the development of
therapies for clinical application.

Results

Monkeys exposed to porcine hepatocytes show sustained
and elevated xenoantibody levels directed at di-, tri- and
penta-saccharide forms of the gal carbohydrate

Serum samples from monkeys infused with pig hepato-
cytes were tested to determine whether IgM and IgG
xenoantibodies with specificity for aGal carbohydrate and
for pig aortic endothelial (PAEC) xenoantigens were
induced. As shown in Figure 1, there was an increase in
binding of IgM (Fig. 1A.) and IgG (Fig. 1B.) xenoantibod-
ies directed at pig endothelial antigens post-cell infusion.
The increase in IgM levels from day O to day 14 in monkey
#644 and the increase in pre and post infusion levels of
IgG xenoantibodies were significant (p < 0.05). The day
14 timepoint was used to identify the immunoglobulin
genes encoding xenoantibodies later in this study. These
data indicated that the injection of pig hepatocytes was
successful in eliciting humoral IgM and IgG xenoantibody
responses. We also tested the serum from both animals to
identify whether antibodies directed at the di-, tri- and
penta-saccharide forms of aGal were induced (Figure 1
panels C through F). IgM (Figure 1C and 1E) and IgG (Fig-
ure 1D and 1F) levels against all three oligosaccharide
forms of aGal increased after cell infusions. The increase
in anti-gal IgM xenoantibodies shown from day 0 to day
14 were statistically significant for both monkeys. For the
IgG response, (Figure 1F), monkey #653 demonstrated a
significant increase in antibodies directed at gal tri- and
pentasaccharides; the binding for the di-saccharide form
was significant at PFI day 28.

We then identified the subclass of IgG which were ele-

vated during the xenoantibody response. As shown in Fig-
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The Ig repertoire post-exposure to porcine hepato-
cytes demonstrates increased usage of the V,;3 and
V4 families. Semiquantitative PCR (A) and colony filter
hybridization (B) were used to demonstrate an increase in
usage of the V3 and V4 family of genes at day |14 post-infu-
sion with porcine hepatocytes.

ure 2, there was an increase in IgG2 and IgG4 at day 28.
IgG1 became significantly elevated later, and remained
high for the duration of the study. The xenoantibody
responses in rhesus monkeys are consistent with those
seen in humans following exposure to porcine hepato-
cytes during the BAL procedure [16].

Despite the increase in anti-aGal IgM and IgG xenoanti-
body levels following pig hepatocyte exposure, we deter-
mined that there was very little fluctuation in the total
levels of both IgM and IgG during the ninety-day course
of the experiment as shown by ELISA using a standard
curve (data not shown). Our results concur with other
published data showing that the levels of total IgM and
IgG can remain unchanged during the course of experi-
ments in which anti-gal levels fluctuate due to xenoanti-
body depletion and xenoantibody return [18].

Immunoglobulin gene expression was increased in the V,,3
and V4 families

Semi-quantitative PCR was initially performed to deter-
mine the Ig gene families in which elevated expression
could be identified post-exposure to porcine hepatocytes.
The results demonstrated that gene expression in the V;3
family was elevated, and a modest increase in V14 expres-

http://www.biomedcentral.com/1471-2172/7/3

sion was also identified (Figure 3A). These results were
confirmed by colony filter hybridization using V; family
specific primers to quantitate changes in immunoglobu-
lin gene family usage prior to and following porcine hepa-
tocyte exposure (Figure 3B). IgM libraries were then
prepared to identify the germline progenitors encoding
xenoantibodies in non-human primates mounting active
xenoantibody responses to porcine hepatocytes. We
screened for the presence of human genes that encode
xenoantibodies [17,19], and IGHV3-11%10, a cynomolgus
monkey gene that closely matches an allele of IGHV3-11.
This gene was expressed at high levels in cynomolgus
monkeys that have been transplanted with transgenic por-
cine heart grafts (Zahorsky-Reeves, submitted).

We found that IGHV3-11 and IGHV3-119m° were up-reg-
ulated post-exposure in the V,;3 IgM cDNA libraries pre-
pared from both porcine-cell infused animals and liver
lobe-transplanted animals, albeit with different kinetics
(Table 1). The IGHV3-11 gene was expressed with greater
frequency earlier in the course of the experiment, while
IGHV3-119n0usage increased later. In hepatocyte-infused
animals, IGHV3-11 expression rose by day 14 to as much
as 20% of the V,;3 PBL ¢cDNA IgM library. By day 21,
IGHV3-1197m° expression was detected at high levels.
Sequencing of at least 40 clones for each of the cDNA
libraries indicated that no significant expression of any
other V;3 germline progenitors was determined, includ-
ing those V;3 genes shown to encode anti-aGal antibod-
ies in normal individuals [19].

We then transplanted rhesus monkeys with a porcine liver
lobe xenograft to determine whether IgV;; genes encoding
xenoantibodies induced following exposure to a solid
organ graft are similar to those induced following expo-
sure to isolated hepatocytes. A rapid increase in expres-
sion of both IGHV3-11 and IGHV3-119m° V,3 family
genes was detected in the cDNA libraries post-porcine
liver lobe transplantation. At four hours after establish-
ment of circulation through the xenograft, the percent
expression of both IGHV3-11 and IGHV3-1191° had dra-
matically increased, from 5% at the pre-transplant time
point to 12.5%, as identified by colony filter hybridiza-
tion. A marked increase in mRNA expression, occurring
within 30 minutes post-stimulation of B cells, has simi-
larly been reported in other studies [20,21]. The rapid
increase in IGHV3-11 gene expression following exposure
to the porcine liver may be due to the antigenic load of
aGal epitopes, as it is postulated that there were far more
endothelial cells and hepatocytes in the roughly 40 g solid
liver lobe than the approximately 60 million individual
cells given per hepatocyte infusion [2,22-24].

In order to identify the IgV, genes encoding xenoantibod-

ies in the V44 family, we prepared libraries using V4 fam-
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Table I: Percent expression' of IGHV3-119ymo and IGHV3-11 genes in IgM cDNA libraries

Monkey #644 Monkey #653
IGHV3-| | oo IGHV3-11 IGHV3-| oo IGHV3-11
Day 0 @ 94. 5.4 8.9
Day 14 12.0 6.3 20.0
Day 21 26.9 40.0 8.0
Day 28 6.1 18.0 4.0
Day 40 to 45 85 4.0 4.0

I'= defined as the number of IGHV3-1 " and IGHV3-11 clones out of the total number of V|,3 positive clones in each library. Between 100 to 300
V43 positive colonies were represented in each library. 9= days are post-first injection (PI)

ily-specific primers from the peripheral blood of monkeys
at day 0 and at 14 days following porcine hepatocyte
exposure. An increase in the expression of a monkey gene
most similar to the human IGHV4-59 germline gene was
demonstrated. The expression of this gene rose from 4.9%
at day O to 9.8% at PI day 14, as determined by colony-fil-
ter hybridization, and confirmed by nucleic acid sequenc-
ing. Our laboratory recently reported that this germline
progenitor showed an increase in expression in V4 librar-
ies of human BAL patients post-porcine cell exposure [25].
The results of our analysis indicate the IgV,; gene usage in
humans and rhesus monkeys is very similar following
exposure to porcine hepatocytes.

DNA sequences of IgVH genes encoding xenoantibodies in
rhesus monkeys and humans are highly homologous

- DNA sequencing reveals high sequence identity to human IGHV3-
I'l and VH4-59 germline genes

We sequenced multiple IGHV3-11 and IGHV3-11cyno-
positive clones from cDNA libraries prepared at several
time points post-transplantation in all animals studied.
The IgM amino acid sequences for the IGHV3-11 and
IGHV3-119m0 genes encoding xenoantibodies in the por-
cine-cell injected monkeys showed very few changes from
day 0 to PI days 14 or 21 (Figure 4). The consensus nucleic
acid sequence for the IGHV3-11 gene is 97% identical to
human IGHV3-11 (the germline gene HSIGVH22B is the
IGHV3-11 allele that encodes xenoantibodies in BAL
treated humans [17]). The CDR3 "EYLSSL" amino acid
sequence was associated with the IGHV3-11 allele
HSIGVH22B in BAL treated humans [17]. As shown in
Figure 4, the monkey IGHV3-11 sequences selected to
encode xenoantibodies post-infusion used an identical
CDR3. Monkey - specific segments of the Cu and Cy
region of the cDNA clones, however, clearly distinguished
these non-human primate sequences from their human
counterparts.

The closest human immunoglobulin germline gene
match for the consensus rhesus IGHV3-11%no gene is
HSIGVH38, an allele of IGHV3-11, which shares 93%
sequence identity. A "TSTY" amino acid motif in the
CDR2 of IGHV3-119m° appears to be unique; the nucleic

acids encoding this region do not match any known
human or primate germline immunoglobulin genes in
GenBank® [26]. The IGHV3-119m0 clones used the CDR3
segment "GLDGDYGVY", regardless of whether the
xenograft exposure was due to individual pig cells or a
liver lobe graft. This CDR3 was not found in association
with any other V;3 gene that we have sequenced thus far
from these IgM libraries.

The sequence of the IgV,, genes encoding xenoantibodies
in the V4 family were found to be most similar to the
human IGHV4-59 germline progenitor. Sixteen clones
were sequenced from the day 0 and day 14 IgM cDNA
libraries. We generated a day 0 consensus nucleic acid
sequence that showed a sequence similarity of 89% to an
allele of human IGHV4-59, DP71 [26] and a 92% similar-
ity to the macaque V,;4 germline gene MMU5783 [27]
(Figure 5). By PI day 14 there are two amino acid changes
in the consensus sequence in the CDR1 region and one in
the CDR2 region. The day 14 consensus sequence shares
92% nucleic sequence identity with the human DP71
germline gene. Genes encoding xenoantibodies in the V4
family in rhesus monkeys are very similar to those identi-
fied in the human BAL study [17,25].

By day 21, IgG xenoantibodies are expressed at high lev-
els. Genes encoding IgG xenoantibodies were cloned and
sequenced from the V3 libraries prepared at day 0 and
day 21 (Figure 6). Numerous mutations occurred in the
IgG xenoantibodies expressed in these animals compared
with the IgM clones that we had sequenced. The closest
germline match, however, was to the human and rhesus
IGHV3-11 germline progenitor. Similar mutations were
also seen in human IGHV3-11 IgG sequences obtained
from patients at 21 days after BAL treatment [17]. No
clones corresponding to IGHV3-1197m° were detected or
sequenced from either timepoint in the IgG libraries.

Discussion

Multiple experimental studies have led to the develop-
ment of novel anti-rejection techniques designed to elim-
inate the hyperacute and acute xenograft rejection
responses in lower primates by reducing or eliminating
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Figure 4

Comparison of the derived amino acid sequences of IGHV3-11 (A.) and IGHV3-1 I<yn°e (B.) IgM genes encoding
xenoantibodies in two porcine-cell infused animals, with reference to the human IGHV3-11 germline sequence from Gen-
Bank® (HSIGVH22B). * = residue is identical to one immediately above. Letters below the asterisks indicate amino acid substi-
tutions.
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D

Consensus amino acid comparisons of V4 sequences encoding IgM xenoantibodies. MMU57583 (top line) is a
GenBank® macaque gene with high percent identity to many of the rhesus V,;4 sequences. IGHV4-59 (second line) is the V4
family gene shown to be increased post-pig cell exposure in a human BAL study. DP71 (third line) is an allele of IGHV4-59 to
which many of the rhesus V4 sequences match with high percent similarity. Consensus rhesus V4 sequences at both days 0
and 14 show 89 to 92% nucleic acid sequence identity to DP71. * = residue is identical to one immediately above.

xenoantibody circulation and/or production [28-30].
Unfortunately, once treatment is terminated, xenoanti-
body levels rapidly return. If the genetic control of these
antibodies were understood, the B cells encoding them
could be targeted and potentially eliminated [31], ensur-
ing the persistence of low circulating xenoantibody levels
and improved graft survival in the transplant recipient.

For example, a reduction of up to 87% of the cytotoxicity
of baboon xenoantibodies was recently achieved, using
anti-idiotypic antibodies generated against human anti-
aGal antibodies [32]. Our laboratory has focused on
understanding the structure of the xenoantibody binding
pocket and the use of this information to apply computer-
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Figure 6

Amino acid sequences of IGHV3-11 1gG clones. Comparison of the derived amino acid sequences of IGHV3-11 IgG

clones encoding xenoantibodies in two porcine-cell infused animals is shown with reference to the human IGHV3-11 germline
sequence from GenBank®. * = residue is identical to one immediately above. Letters indicate amino acid substitutions.

simulated drug design to identify novel drugs and rea-
gents capable of preventing xenograft rejection.

In this study, we examined the humoral immunoglobulin
response in rhesus monkeys injected with porcine hepato-
cytes, and compared this with the immune response fol-
lowing exposure to hepatocytes transplanted as a solid
organ. We found no significant differences in the humoral
response to hepatocytes expressed as solid organs or iso-
lated cells. Although an analysis of the immune response
in non-human primates placed on a BAL would have most
closely mimicked our prior studies in human patients,
this was not feasible within our experimental design.

We found a statistically significant elevation of xenoanti-
body levels directed at di-, tri- and pentasaccharide forms
of the gal carbohydrate. These results are correlated with a
previous study from our laboratory in which the immune
responses of human patients treated with one or more
BAL devices containing porcine hepatocytes was assessed
[17]. Targets of this response included all forms of aGal.
The subclasses of IgG xenoantibodies induced were simi-
lar to those previously reported in humans [16,33], indi-
cating that an analogous immunoglobulin response is
induced in humans and rhesus monkeys exposed to car-
bohydrate xenoantigens.

Xenoantibodies expressed by patients mounting an active
humoral response are encoded by two V3 family germ-
line genes [17], which appear to be selectively expanded
from a small number of genes that encode anti-aGal anti-
bodies in naive individuals [18]. In our present study, we
detected a similar selective expansion of V43 family genes
that were homologous to those encoding xenoantibodies
in the BAL-treated human patients [17]. Through nucleic
acid sequencing of the IgM libraries, we were able to con-
firm that the genes encoding the majority of xenoantibod-
ies were most closely-related to the human germline
IGHV3-11 gene, while a small proportion of xenoanti-
bodies are encoded by a gene most similar to the human
IGHV4-59 germline gene. The IGHV3-1197"0 gene was not
found to be elevated post-exposure in the human IgM or
IgG libraries when examined up to 21 days post-BAL treat-
ment. Single chain antibodies encoded by this gene, how-
ever, can bind to the gal carbohydrate as shown by the
ability of these antibodies to partially block human natu-
ral antibody binding to gal (Zahorsky-Reeves et. al. sub-
mitted). The lack of expression of this gene in human
patient samples may possibly be due to differences in the
route of exposure to xenoantigens expressed on hepato-
cytes. BAL devices contain pores that limit exposure to
porcine xenoantigens. Although the hepatocyte prepara-
tion we used for our study contained a combination of
porcine hepatocytes and endothelial cells that was compa-
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rable to that found in a BAL device (MultiCell Technolo-
gies, private communication), the route of exposure may
account for the fact that the IGHV3-119m0 gene was not
induced in the study in human patients.

In humans, IgM V,; genes encoding xenoantibodies
induced following xenoantibody exposure were expressed
in germline configuration [17]. A separate study involving
the spectrotypic analysis of human anti-aGal antibodies
reported similar results [34]. This is in agreement with
prior work in our lab demonstrating that genes expressed
in germline configuration encode xenoantibodies in sev-
eral small animal models of xenograft rejection [35-37].
Comparison of nucleic acid sequences to known germline
genes in rhesus monkeys indicates that the closest non-
human primate germline gene is a monkey homolog of
IGHV3-11 (clone 18, AF173920). Since the discovery and
reporting of rhesus monkey germline immunoglobulin
genes is still in the early stages, there are currently insuffi-
cient numbers of nucleic acid sequences for germline pro-
genitors at this time to conclusively determine whether or
not the IgM =xenoantibodies in rhesus monkeys are
expressed in germline configuration [26]. The conserva-
tion in the sequence and structure of the genes encoding
xenoantibodies in humans and non-human primates,
however, suggests that the unique binding pocket formed
by these IgM natural antibodies have an optimal affinity
for carbohydrate xenoantigens.

The structural features of the xenoantibody/gal binding
pocket and the role of the CDR3 in binding specificity for
gal and other carbohydrates are currently under investiga-
tion in our laboratory. The CDR3 region is important as
both its sequence and its length can be indicative of the
level of diversity in the genetic repertoire [38,39], and it
may play a direct role in the formation of the antigen-spe-
cific binding site [39]. Approximately 95% of all IGHV3-
11 clones sequenced from these monkeys used the same
CDR3 as that used by the human patients in the BAL study
[17]. Additionally, 100% of the IGHV3-119m° clones
sequenced post-exposure used the same CDR3 sequence,
which was different than that associated with the IGHV3-
11 gene. The study that had examined the genes used by
naive humans encoding anti-aGal antibodies found the
CDRS3 region to be highly divergent in both composition
and length [18]. Our results suggest that a particular com-
bination of V,; gene and CDR3 is effective in binding with
sufficient affinity to aGal epitopes to be selected for fur-
ther expansion. The relative affinities of the IGHV3-11no
and IGHV3-11 gene products to aGal and/or other struc-
turally-related carbohydrates should provide further
insight into the molecular basis for the selective usage of
these genes encoding xenoantibodies.

http://www.biomedcentral.com/1471-2172/7/3

Conclusion

Our findings show that rhesus monkeys transplanted with
hepatocytes expressed as cells or as a solid organ xenograft
develop a humoral response encoded by similar genes as
those encoding humoral xenograft responses in human
patients [17]. This consistency of response will allow for
the development of clinical therapies in lower primates
that can directly be transferred to humans.

Methods

Animals

All work was approved by both the Animal Care and Use
Committee of the California Regional Primate Research
Center (CRPRC) at the University of California, Davis,
and the Institutional Animal Care and Use Committee
(IACUC) of the University of Southern California (USC).
Young adult male captive-bred rhesus monkeys (Macaca
mulatta) were obtained from the CRPRC primate colony,
where the animals were housed and all surgical and sam-
pling procedures were conducted. We prescreened mon-
keys by ELISA and selected those with relatively low
baseline levels of xenoantibody for these studies.

Porcine cell infusion

Primary pig hepatocytes, containing approximately 7%
endothelial cells [40], were a kind gift from MultiCell
Technologies, Inc. (Providence, Rhode Island, USA). Sixty
million cells were washed, pelleted, and aseptically sus-
pended in 20 cc of sterile normal saline. A surgical mid-
line abdominal approach was performed on two
monkeys, aged 20 months (#644) and 42 months (#653).
In each monkey, hepatocytes were slowly infused into the
portal circulation via a jejunal vein catheter [41]. Each
monkey recovered without complications. This procedure
was repeated twice in each animal, at days 14 and 28 post
infusion (PI). Blood samples were taken at multiple time
points until PI day 90.

Porcine partial liver lobe implantation

The liver and its accompanying vessels were isolated from
a 10 day-old Yorkshire-cross male piglet. A midline
abdominal incision was made into a 4.4 year old rhesus
monkey (#785). The liver was flushed in situ with chilled
preservation solution (Viaspan™, DuPont Pharma, Wilm-
ington, Delaware, USA). The approximately 40 g graft was
harvested from the left liver lobe with intact portal triad
vessels. This graft was implanted heterotopically into the
infrahepatic region of the primate by anastomosing the
graft vena cava end-to-side to the primate's inferior vena
cava, and the grafts' superior mesenteric vein to the right
side of the primate's portal vein. The graft's aortal segment
was implanted laterally on the infra-renal aorta of the
recipient and unclamped, achieving full revascularization.
The graft became discolored and congested within two
hours of graft placement, indicating hyperacute rejection.
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ELISA : Quantitation of whole IgM and IgG

We wished to verify that, over time, there was a steady
level of antibodies present in the monkeys' serum, such
that dilution of 1:20 for all time points would contain
approximately the same concentration (at ng/ml) of
immunoglobulin. We used human IgM and IgG ELISA
Quantitation Kits (Bethyl Laboratories Inc, Montgomery,
Texas, USA), as the antibodies in these kits cross-react with
rhesus serum, according to the manufacturer. Serum sam-
ples were run in duplicate at 1:20 and compared with a
standard curve of known human serum antibodies.

ELISA : Anti-pig aortic endothelial cell (PAEC) binding
ELISAs were used for assessment of both IgM and IgG
binding as previously developed [42]. Serum samples
from porcine-cell infused monkeys from day 0 and at PI
days 10, 14, 28, 60 and 90 were used, with a naiive human
serum sample as a control. Briefly, 96-well microtiter
plates were coated with fixed PAEC and frozen at -80°C
until use. Thawed plates were washed and blocked rou-
tinely with 1% bovine serum albumin (BSA). The plates
were washed after incubation of the serum at room tem-
perature for 1 hour. Secondary antibody was applied at
appropriate dilutions: peroxidase-conjugated AffiniPure
F(ab')2 fragment goat anti-human IgM from Jackson
ImmunoResearch (catalog #109-036-129) (West Grove,
Pennsylvania, USA) or peroxidase-labeled goat anti-
human IgG (y-chain specific), F(ab'),fragment, from
Sigma (catalog # A2290) (St. Louis, Missouri, USA). After
one hour, the plates were again washed and the substrate
(Sure Blue™, KPL, Gaithersburg, Maryland, USA) applied.
After color development, the reaction was stopped by
addition of H,SO,. Each plate was promptly read on a
Perkin Elmer HTS 7000 Plus BioAssay Reader at 450 nm.
Data were organized and analyzed using a standard t test
on Prism software.

ELISA : anti-oGal xenoantibody binding

Serum from porcine-cell infused animals (PI days 0, 14,
28, 60, and 90) were tested for anti-aGal xenoantibodies
by ELISA using plates coated with the di-, tri- and penta-
saccharide forms of aGal at 0.25 pg/well (Dextra Labora-
tories, Reading, UK). The protocol was as described for the
anti-PAEC assay.

ELISA : IgG subclasses

We determined the distribution of the IgG subclasses
expressed in three rhesus monkeys over the course of their
immune responses. Serum from PI days 0, 14, 28, 39, 60
and 90 were used from porcine-cell infused monkeys, and
run in duplicate. Final assays were done using serum in
the absence of additional dilution ("neat") and naive
human serum as a positive control. Briefly, 96-well micro-
titer plates were coated overnight with Gala1-3Galal-
4GIcNAc (aGal pentasaccharide) (Dextra). Blocking and
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serum incubation steps were done as described above.
Sheep anti-human IgG secondary antibodies were added
(The Binding Site, San Diego, California, USA) at the fol-
lowing dilutions: anti-IgG, (catalog #AP006) at 1:400
dilution; anti-IgG, (catalog #AP007) at 1:100; anti-IgG,
(catalog #AP008) at 1:300 and anti-IgG, (catalog
#AP009) at 1:100, and then incubated for one hour at
room temperature. These anti-subclass 1gG antibodies
have all, with the exception of the anti-human IgG3, been
shown to cross-react with macaque IgG immunoglobulins
[43-45]. After final washes, peroxidase substrate color
reaction, plate reading and data analysis were performed
as described above.

cDNA preparation

Peripheral blood leukocytes (PBLs) were extracted at the
CRPRC from whole blood samples, flash frozen and
stored at -80°C. From these samples of approximately 1 to
5 million cells, RNA was routinely extracted (QIAGEN
RNeasy Kit, QIAGEN, Valencia, California, USA). Naive
human PBL samples were prepared in tandem as positive
controls. Double-stranded cDNA was synthesized from
the RNA, using techniques that had been successful previ-
ously for human samples (cDNA Synthesis Kit, Roche,
Basel, Switzerland) [17] and then purified using Microcon
100 columns (Amicon, Millipore, Billerica, Massachu-
setts, USA).

Library construction

cDNA libraries of genes encoding IgM antibodies [17]
were constructed from PBLs isolated from porcine-cell
infused monkeys at PI days O, 10, 14, 21, and 28; libraries
were also created at day 0, post surgery, and at sacrifice (24
hours) for the liver lobe transplanted animal (#785).
PCRs for amplification of both families were performed as
previously described [17]. PCR products were purified
and ligated into a pCR® 2.1 vector (Original TA Cloning
Kit, Invitrogen, Carlsbad, California, USA). Ligation reac-
tions were transformed into INVaF' One Shot™ Compe-
tent Cells (Invitrogen) and plated onto Xgal-containing
LB ampicillin plates. Genes encoding IgG xenoantibodies
from the IgV}, family 3 were cloned from days 0 and 21
using PCR and the primers Monk CGI 5'-GGGITG-
TAGTCC-TTGACCAGGCAG-3' and primer Monk CGII
5'GACCGATGGGCCC TTGGTGGAGGC-3', both specific
for the constant region of IgG. The last PCR reaction was
visualized on a 2% ethidium bromide agarose gel. The
band closest to the predicted size of 425 bp was cut, eluted
by electrolysis with 0.5x TBE-buffer, cloned (Original TA
Cloning Kit, Invitrogen, Carlsbad, CA), and transformed
as above.

Semi-quantitative PCR
An analysis of the V; family repertoire in rhesus monkeys
prior to and following porcine xenoantigen exposure was
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done by semi-quantitative PCR using the following V
family specific 5' primers that recognize untranslated
leader sequences: V1, ATGGACTGGACCIGG; V2,
ATACTITGTTCCACGCTCCT; V3, GAGITTGGGCI-
GAGCTGG; V4, CTGGTGGCAGCTCCCAGA, V,;5 ATC-
CTCGCCCTCCTCCTAGC, and V46
TGTCTCCTTCCTCATCTTCC. These V,; leader sequences
identify immunoglobulin genes in non-human primates
(27,46). The 3' primer (AGGAGAATTCTGAGGAGACG-
GTGACCAGGGT) was based on a consensus sequence for
germline J; genes and has been previously used for semi-
quantitative analysis of immunoglobulin family reper-
toire usage in rhesus monkeys (46). The Ck gene provided
an internal control and was amplified using the primers:5'
ACCAAGGTCGACATCAAACGAACTGTGGCT and 3!
CTGTCTAGCTCTGTGACACTCTCCTGGAG. These prim-
ers cross-react with macaque and human immunoglobu-
lin genes (47,48). PCR runs were performed for 30 cycles
(94°C for 20sec, 58°C for 30sec, and 72°C for 30 sec) in
a Perkin-Elmer Gene Amp 9600 Thermal Cycler. Five
pmol of Vj;and ]}, primers were used in the reaction along
with 2.5 pmol of Ck primers. Reaction products were vis-
ualized on an agarose gel and quantitated using BIORAD
Quantity One Software, Version 4.0.3 (BIORAD, Her-
cules, CA). The V,; family signals were normalized using
the Ck gene (46).

Screening

Vy; family-specific leader primers (described above) were
labeled with digoxigenin and used in colony filter hybrid-
ization experiments to confirm changes in the V,; family
repertoire in the pre and post-exposure peripheral blood
samples. For this purpose, immunoglobulin gene libraries
were amplified using Cu and anchor primers, as previ-
ously published (17). Colony lifts were performed using
nylon membranes (Roche) and a chemiluminescent (dig-
oxigenin) detection protocol (DIG easy Hyb, Roche) [17].
Filters were hybridized with labeled probes and positive
colonies were counted to determine the relative percent-
age of colonies specific for each Vy; gene family in the
cDNA libraries. DNA sequencing was done on selected
colonies to confirm the specificity of the probes. In addi-
tion to the V| family-specific leader probes, oligonucle-
otide probes used for this study also included: the RVH11
(5'TCACTTITCAGTGACTACTACATGAGCTGGA3') probe
that is specific for the CDR1 region of human germline
VH3-11, the probe 193 (5' AGTACTACAAACTATGCGG')
for the CDR2 region of germline VH3-74 and its alleles
(HSIGDP53 and HSIGCOS6), the probe 583IC
(5'TAGTTATGAAATGAACT3') for the CDRI1 region of
germline HSIGDP58, the probe 5431C
(5'AACATAAAGCAAGATGGAS3') for the CDR2 region of
germline VH3-7; and the probe
(5'ATTGGGTATATCTATTACAGTGGGAGCACCAAC3')
for the CDR2 region of germline VH4-59 [17]. These

http://www.biomedcentral.com/1471-2172/7/3

probes also included an oligonucleotide (called CYNO2,
with the sequence
5'CATTAGTAGTACTAGTACTTACATAAACTACGC3') that
was previously designed in our laboratory to detect a
CDR2 region specific for a particular monkey V;;3 gene
(designated V};3-119m0). This gene was expressed with
high frequency post-exposure in cynomolgus monkeys
transplanted with transgenic porcine heart grafts
(Zahorsky-Reeves, submitted).

DNA sequencing

Clones selected on the basis of colony filter hybridization,
or a minimum of 40 clones from each library (IgM and
IgG), were randomly chosen, grown overnight, prepared
using the QIAPrep Spin MiniPrep Kit (QIAGEN) and
sequenced using the ALFexpress™ automated DNA
sequencer and the AutoCycle™ Sequencing Kit (Pharmacia
Biotech, Piscataway, New Jersey, USA). Sequences
obtained included the region from framework 1 (FR1)
through complementarity determining region 3 (CDR3).
Results were analyzed using OMIGA software and the
closest identifiable germline counterparts in the Gen-
Bank® library was determined using BLAST. Nucleotide
sequence data reported are available in the GenBank data-
base under the accession numbers [DQ023238 through
DQ023262 and 986391 through 986394].

Abbreviations
aGal = galactose a (1,3) galactose

BAL = bioartificial liver device

CDR = complementarity determining region
FR = framework

hDAF = human decay accelerating factor

PI = post-first infusion

Vy, = variable-region heavy chain
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