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Abstract

Background: Nucleus or cell detection is a fundamental task in microscopy image analysis and supports many
other quantitative studies such as object counting, segmentation, tracking, etc. Deep neural networks are emerging
as a powerful tool for biomedical image computing; in particular, convolutional neural networks have been widely
applied to nucleus/cell detection in microscopy images. However, almost all models are tailored for specific datasets
and their applicability to other microscopy image data remains unknown. Some existing studies casually learn and
evaluate deep neural networks on multiple microscopy datasets, but there are still several critical, open questions to
be addressed.

Results: We analyze the applicability of deep models specifically for nucleus detection across a wide variety of
microscopy image data. More specifically, we present a fully convolutional network-based regression model and
extensively evaluate it on large-scale digital pathology and microscopy image datasets, which consist of 23 organs (or
cancer diseases) and come from multiple institutions. We demonstrate that for a specific target dataset, training with
images from the same types of organs might be usually necessary for nucleus detection. Although the images can be
visually similar due to the same staining technique and imaging protocol, deep models learned with images from
different organs might not deliver desirable results and would require model fine-tuning to be on a par with those
trained with target data. We also observe that training with a mixture of target and other/non-target data does not
always mean a higher accuracy of nucleus detection, and it might require proper data manipulation during model
training to achieve good performance.

Conclusions: We conduct a systematic case study on deep models for nucleus detection in a wide variety of
microscopy images, aiming to address several important but previously understudied questions. We present and
extensively evaluate an end-to-end, pixel-to-pixel fully convolutional regression network and report a few significant
findings, some of which might have not been reported in previous studies. The model performance analysis and
observations would be helpful to nucleus detection in microscopy images.

Keywords: Nucleus detection, Microscopy images, Deep neural networks

Background
Nucleus/cell detection is usually a prerequisite for
nuclear/cellular morphology computation in microscopy
and digital pathology image analysis. It can enable quan-
titative information measurement to better understand
the biological system or disease progression [1–3]. Man-
ual assessment of object detection is labor intensive
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or even impossible due to the large amount of col-
lected image data, which is rapidly increasing [4, 5],
and thus many computerized methods have been devel-
oped for microscopy image computing [6–8]. In par-
ticular, machine learning techniques have been widely
used to detect individual nuclei or cells in various
microscopy images. Nevertheless, conventional learning
methods heavily rely on appropriate data representations,
which often require sophisticated expertise and domain
knowledge, to achieve desired detection accuracies. In
microscopy imaging, it is not unusual to generate images
that exhibit significant appearance variation (e.g., staining,
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scale, etc.) in a single set of experiments such that design-
ing appropriate data representations would be very dif-
ficult. Furthermore, it might be necessary to re-design
image representations for each new dataset, and this is
a non-trivial task. Therefore, most methods solve the
detection problem only in a limited context or require
substantial effort to adapt themodels to new situations [9].
Recently, deep neural networks (DNNs) have powered

many aspects in computer vision and attracted consid-
erable attention in biomedical image computing [10].
Instead of relying on non-trivial image representation
engineering, DNNs directly deal with raw image data
and automatically learns the representations for differ-
ent tasks. Compared with hand-crafted image features,
learned representations require slight or no human inter-
vention and can better capture intrinsic information for
image description [11, 12]. DNNs have been applied to
nucleus/cell detection in different types of microscopy
images, leading to improved performance compared to
other methods [13]. However, DNNs usually require a
large number of training data, which might be often
unavailable in the medical domain. In particular, super-
vised models like convolutional neural networks (CNNs),
which are the most widely used for object detection in
microscopy image analysis, needmassive individual object
annotation that is more expensive to obtain. Even though
a sufficient number of annotated images are available on
one specific dataset, it is currently common to annotate
new target training images, i.e., label the locations of
individual nuclei or cells, and re-train the models when
applying them to other datasets.

It has been witnessed that CNNs can produce very
powerful generic descriptors for visual recognition tasks
[14, 15]. Feature representations extracted from CNNs,
which are trained on large-scale image datasets such as
ImageNet [16], are readily applicable to different tasks on
a diverse set of datasets [17, 18]. ImageNet pre-trained
CNNs are also fine-tuned or used as feature extractors
on medical image datasets [19–21]. However, there is
very limited literature covering deep model adaptation
and evaluation for nucleus/cell detection on a wide range
of microscopy image data. Although [22] learns a CNN
architecture with multiple-organ tissue images, there are
still several important, open questions to be answered.
Another single CNN is trained with both magnetic reso-
nance (MR) and computed tomography (CT) image data
for multi-task image segmentation [23], but the con-
clusion might not be applicable to nucleus detection in
microscopy images because of different imaging modal-
ities and tasks. In addition, a large amount of previous
work applies CNNs to object recognition with a slid-
ing window strategy, which might not be computationally
efficient for nucleus localization in high-dimensional
pathology andmicroscopy images containing hundreds or
thousands of nuclei or cells.
In this paper, we seek to answer two critical questions

that have not been systematically studied yet: 1) Are deep
nucleus detection models trained with one microscopy
image dataset (i.e., images from one type of organ) appli-
cable to other datasets (i.e., images from other organs),
which are generated using the same staining technique
and microscopy imaging protocol (see Fig. 1)? 2) For one

Fig. 1 Sample images from different organs. Row 1 (from left to right): adrenal gland, bladder and breast; row 2: cervix, colorectum and eye. More
details of data description can be found in the Results section
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specific organ dataset, will the use of image data from
other organs for model training be helpful for a detec-
tion performance improvement? To this end, we present
and extensively evaluate an end-to-end, pixel-to-pixel U-
Net-like network (see Fig. 2) for nucleus detection in
large-scale public pathology image datasets, The Cancer
Genome Atlas (TCGA) [24]. In summary, the contribu-
tions are three-fold:
1) We observe that for a specific target dataset, training

with images from the same types of organs might be usu-
ally necessary for nucleus detection. Although the images
can be visually similar due to the same staining technique
and imaging protocol, deep models learned with images
from different organsmight not deliver desired results and
would require model fine-tuning to be on a par with those
trained with target data.
2)We demonstrate that training with a mixture of target

and other/non-target data does not always mean a higher
accuracy of nucleus detection. A naive pooling of these
two types of data might not be beneficial compared with
target data alone, but learning with proper dataset balanc-
ing via loss function re-weighting could improve nucleus
detection.
3) We conduct extensive experiments on 23 types

of organ images from the publicly available TCGA
pathology archive, which covers image data from differ-
ent organs/cancer diseases and distinct institutions. We
believe the findings from this systematic case study would
be helpful to nucleus/cell detection in microscopy and
digital pathology images.

Related work
Deep networks have been successfully applied to medical
image computing in different kinds of imaging modal-
ities [25–27]. They have proven to be very effective in
various image analysis tasks such as disease classifica-
tion, lesion detection, object segmentation, image regis-
tration, tumor detection, etc [28–33]. DNNs also draw

increasing attention in microscopy image analysis and a
recent review can be found in [13]. Nucleus/cell detec-
tion, which is a critical step of image quantification in
digital pathology and cell biology, is getting involved with
deep learning and improved performance is emerging.
Although different DNN architectures are used inmedical
image computing, CNNs and their variants are the dom-
inant deep networks for object detection in microscopy
images [13].
One straightforward method for nucleus/cell detection

with DNNs is to conduct pixel-wise binary classification.
Cireşan et al. [34] learn multiple CNNs with two types of
small image patches (mitotic nuclei or not) and perform
mitosis detection using a sliding window in hematoxylin
and eosin (H&E) stained breast cancer images. Another
CNN-based mitosis detection approach is presented in
[35], and the difference is that it allows noisy data anno-
tation by dealing with a data aggregation in the learning
process. CNNs are also applied to nucleus/cell detec-
tion in other organ/tissue screening microscopy images
such as brain, pancreas, bowel and circulatory systems
[36–40]. Recently, a three-class CNN [22], which explicitly
models nuclear boundaries, is introduced to detect nuclei
in H&E stained images acquired from multiple organs.
Stacked auto-encoder [41] is also applied to nucleus detec-
tion in breast cancer images, and it is first trained via
unsupervised learning and then fine-tuned towards indi-
vidual object detection. All of these approaches conduct
pixel-wise prediction in a sliding window manner, which
would be computationally expensive for high-dimensional
images such as whole-slide scanned data.
In order to accelerate the algorithms, DNNs can be

utilized to classify only nucleus/cell proposals instead of
all image pixels. Dong et al. [42] apply CNNs to cell
detection on region candidates, which are generated by
a shallow model, support vector machine (SVM); Shkol-
yar et al. [43] first use simple image processing techniques
to extract mitosis proposals and then exploit CNNs to

Fig. 2 Network architecture. The black or red boxes denote feature maps, and the number of feature maps in each layer is also provided. The
connections with different colors between feature maps represent distinct operations
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conduct mitotic cell detection; Liu and Yang [44] assign
CNN-predicted scores to cell candidates and then solves
an inter linear programming problem for final cell detec-
tion in pancreatic neuroendocrine tumor (NET) and lung
cancer images. Instead of relying on shallow models to
extract regions of interest, Chen et al. [45] take advan-
tage of fully convolutional networks (FCNs) followed
by standard CNNs for mitosis detection. These meth-
ods avoid the expensive pixel-wise CNN predictions, but
they require proper candidate collection, which might be
usually challenging for histopathological images. Alter-
natively, a sparse kernel technique is incorporated into
CNNs to reduce redundant computation [46, 47], and it
has been applied to cell detection in lung cancer images.
Instead of performing independent pixel-wise classi-

fication, CNNs can take advantage of spatial topology
to perform regression-based detection. Xie et al. [48]
have replaced the classification layer with a structured
regression in a conventional CNN such that the pre-
diction can take into consideration adjacent informa-
tion in the label space. This approach has been suc-
cessfully applied to cell detection in multiple datasets
including NET, breast cancer, and cervical cancer images.
Another similar CNN-based spatial regression is pre-
sented in [49] for nucleus detection in colon cancer
images and a CNN-based voting method is reported in
[50], which learns an implicit codebook based on neigh-
boring information for cell localization in NET pathol-
ogy images. Regression modeling is also formulated with
FCNs [51], which allow arbitrary-sized image inputs
and enable efficient model inference, for fast cell detec-
tion in microscopy images [52, 53]. More recently, an
FCN network with two sibling branches is proposed for
simultaneous nucleus detection and classification [54]
and the joint learning allows both tasks to benefit from
each other. Another FCN-based cell detection method
can be found in [55], where it introduces deconvolu-
tional layers to the ResNet [56] such that the output
probability map has an identical dimension as the input
image.

Results
Implementation details
We implement the model with PyTorch [57] on a PC
machine with a 3.50 GHz Intel i7 CPU and an Nvidia
GeForce GTX 1080 Ti GPU. We train the model using
stochastic gradient descent with Nesterov momentum
and set the parameters as: learning rate=0.01, momen-
tum=0.9, weight decay=10−6, batch size=4 and number of
iterations=105. The learning rate will decrease by a factor
of 10 if the performance on the validation sets does not
improve for 104 iterations until it is smallar than 10−4. We
set α = 3, d = 15 in Eq. (1) and λ = 5 in Eq. (2). Following
[52, 53], we scale the proximity values by a factor (i.e., 5) to

facilitate training. The hyperparameter of the exponential
linear unit (ELU) is set as 1. Dropout [58] with a rate of
0.5 is used after the convolution operations in the last two
residual blocks of the downsampling path.
For model training, we randomly crop four 200×200×3

image patches from each training image to form the train-
ing sets. We normalized the patches by stracting mean
and dividing standard deviation in each image channel.
We adopt data augmentation including random rotation,
shifting, mirroring and elastic distortion to prevent over-
fitting. In order to save storage space, we dynamically crop
image patches within each iteration.

Datasets
We collect 23 types of H&E stained tissue image data
from the public TCGA Research Network [24], with each
containing 50 images and in total 1128 images (only 35,
44 and 49 images available for bile duct, lymph nodes
and stomach respectively), one per patient. Each category
corresponds to one specific organ/cancer disease, and it
covers image data from multiple institutions. Thus, in
total we have 23 different image datasets. For one patient
of each dataset, only one 500 × 500 × 3 image patch
(in this paper, we simply use images for description) is
cropped from the whole-slide image, which is generated
with digital microscopy imaging at 40x magnification. A
few example images are displayed in Fig. 1, which exhibit
significant challenges including background clutter, inho-
mogeneous intensity, nucleus touching/overlapping, scale
variation, etc. For each dataset, we randomly split the
image data into two halves, one for training and the other
for testing. We further randomly select 20% of train-
ing data (i.e., 5 images) as a validation set. There is no
overlapping between any two sets of training, validation
and testing. For all the images, the gold-standard nucleus
centers are manually annotated.

Evaluation metrics
We use the evaluation metrics [52] in the experiments.
Specifically, we define the circular region with a 16-pixel
radius centered at each annotated nucleus centroid as
its gold-standard region. For a test image, the detected
points within the gold-standard regions are matched with
corresponding annotated nucleus centroids by using the
Hungarian algorithm [59], which is to find an assignment
of detections to annotations with a minimal cost. The cost
of a detection to a human (or gold-standard) annotation
is defined as the Euclidean distance between these two
points. After the assignment, the detections matched with
human annotations are considered true positives (TP),
and those detections not matched with any annotations
are false positives (FP). The human annotations that do
not have matched detections are viewed as false nega-
tives (FN). Based on these definitions, we report detection
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accuracy using precision (P), recall (R) and F1 score: P =
TP

TP+FP , R = TP
TP+FN , F1 = 2×P×R

P+R .

Nucleus detection evaluation
Baseline experiments
To set up a baseline, we train the proposed FCN regres-
sion model, referred to as MicroNet, on all the 23 datasets
and compare it with other recent state-of-the-art deep
methods such as FRCN [52], FCRNA [53], FCRNB [53],
U-Net [60] and FCN [51]. Here we select these pixel-to-
pixel learning and inference models for a fair comparison.
We evaluate each method on the testing sets, where the
optimal value for ξ is determined by calculating the best
F1 score on the validation set in each dataset. Additionally,
we measure the detection using the Euclidean distance
(ED) between TP and matched gold-standard annota-
tions. Table 1 shows the mean and standard deviation of
each metric for different methods over all the 23 datasets.
As we can see, MicroNet produces the highest F1 score
and the lowest ED. In particular, MicroNet outperforms
FCRNB, U-Net and FCN by a large margin in terms of
the F1 score, which is a unary measurement for object
detection. Interestingly, the pixel-wise classification mod-
els, U-Net and FCN, produce significantly lower recall
compared with the regression models, probably due to a
high FN rate. FCRNA and FCRNB exhibit better recall
but lower precision, and the recent deep regression model
FRCN provides a good tradeoff between precision and
recall. MicroNet provides a slightly better F1 score than
FRCN but a much lower ED, which means MicroNet can
deliver more accurate nucleus localization. These obser-
vations demonstrate that MicroNet is readily suitable for
further study. Figure 3 shows qualitative results of nucleus
detection using MicroNet on several example images.

Generalization on different datasets
For each dataset, we train one individual MicroNet model
and apply it to the testing sets from both the same
and other datasets. In other words, we test MicroNet
using images from not only the same types of organs
but also distinct ones, which are not used for model
training. Figure 4 shows the F1 score of MicroNet on

Table 1 Nucleus detection (mean ± standard deviation) over
the 23 datasets in terms of precision, recall, F1 score, and
Euclidean distance

Precision (%) Recall (%) F1 score (%) Euclidean Distance

FCN 79.7±6.4 74.0±8.2 76.4±5.7 5.05±0.92

U-Net 83.0±6.6 71.7±7.0 76.6±4.5 6.01±0.72

FCRNA 73.7±8.3 86.6±6.8 79.3±5.4 4.12±0.84

FCRNB 68.6±9.4 87.5±6.8 76.5±6.9 4.36±1.19

FRCN 75.4±6.4 88.2±3.8 81.2±4.5 5.17±0.52

MicroNet 76.7±7.5 87.8±4.6 81.6±4.9 3.49±1.04

each individual dataset. For most datasets, models trained
and tested on the same categories of organs, denoted
by MicroNetsame, produce better detection accuracies
than those trained and tested on different organ images,
denoted by MicroNetdiff . Interestingly, for adrenal gland,
bile duct, kidney, lymph nodes, and pleura datasets, there
are models trained on certain other organ images provid-
ing slightly higher F1 scores than MicroNetsame; however,
MicroNetsame produces competitive performance to the
best models on these datasets. We also observe that for
each individual dataset, the F1 score of MicroNetsame is
much higher than the average F1 score of MicroNetdiff
across all the other datasets, and manyMicroNetdiff mod-
els provide much lower accuracies than MicroNetsame.
This suggests for one specific dataset, learning with other
organ images is not necessary to deliver desired nucleus
detection results, although all the tissue images are gen-
erated with H&E staining and digital microscopy. The
precision-recall curves of MicroNet models on all 23
datasets are provided in Additional file 1: Figure S1.
We further explore whether training on one dataset can

be beneficial to nucleus detection on other datasets via
model fine-tuning. To this end, we compare MicroNet
fine-tuning to learning from scratch on different datasets.
Due to the large number of combinations from the entire
set of all data, we choose a subset of data to conduct exper-
iments. Specifically, we randomly select 3 target datasets
and 6 base datasets, each two corresponding to one tar-
get dataset. Based on Fig. 4, we also choose the non-target
datasets that produce the highest and lowest F1 scores for
each target dataset as two additional base training sets,
as shown in Table 2. For simplifying descriptions, these
two types of datasets are called the best and worst base
datasets for each target data respectively. We train one
MicroNet model on each base dataset and then fine-tune
it towards the corresponding target data. Here we fine-
tune the entire neural network instead of freezing some
layers. We compare these models to those directly learned
from scratch on target data in the first row of Fig. 5. We
note that model fine-tuning can perform as good as learn-
ing from scratch with much less training time, no matter
from which base dataset it conducts the fine-tuning. It
means model fine-tuning might have a lower requirement
of the number of iterations for training convergence.
The second row of Fig. 5 compares model fine-tuning

to learning from scratch on different numbers (i.e.,
10%, 20%, 40%, 60%, 80% and 100%) of target training
data. With the increasing of target training data, both of
these two learning strategies improve the nucleus detec-
tion accuracies, and this suggests learning with more
target data is beneficial. More important, fine-tuning
can achieve a desired detection accuracy with less target
training data than learning from scratch. In particu-
lar, only 20% of eye target training images to obtain
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Fig. 3 Qualitative results of MicroNet. Nucleus detection is marked with green dots on example images. These images exhibit the difficulty of
nucleus localization due to significant challenges, such as background clutter, inhomogeneous intensity, object touching/overlapping, dense
object clustering, scale and shape variations of objects, etc

Fig. 4 The F1 score of MicroNet on different data. Blue stars denote models trained and tested on the same datasets (MicroNetsame), i.e., images from
the same types of organs across different patients. The boxes represent models trained on one dataset but tested on another and the orange
triangles denote the average performance (MicroNetdiff -average) over these models



Xing et al. BMC Bioinformatics          (2019) 20:472 Page 7 of 16

Table 2 Base datasets for model fine-tuning

Target data Base data (random) Base data (worst) Base data (best)

Eye Pancreas, Uterus Kidney Thymus

Soft tissue Esophagus, Pleura Thymus Breast

Thymus Prostate, Stomach Kidney Uterus

a 0.80 F1 score for fine-tuning from the uterus base
dataset, while learning from scratch needs 80% of the eye
training images. These experimental results demonstrate
fine-tuning MicroNet could achieve a specific nucleus
detection accuracy with limited training data. Therefore,

it can reduce human effort for training data annotation
and enable high-throughput image quantification when
applying MicroNet to different datasets.
We also explore when it is ready for MicroNet model

fine-tuning. If early transfer can provide competitive per-
formance to fine-tuning from the optimal base models,
it might significantly reduce the computational cost of
training on base datasets. This would be particularly help-
ful when base datasets are large. Specifically, we take a
snapshot of models trained on base datasets at every 2000
iterations and then fine-tune these base models towards
corresponding target datasets, as shown in the third row

Fig. 5 Performance of MicroNet fine-tuning. From top to bottom, each row represents the F1 score of model fine-tuning with respect to the
number of training iterations (row 1), the percentage of target training data (row 2), the stage of base models (row 3) and the number of fixed
learning blocks during fine-tuning (row 4). For a comparison, the F1 score of learning from scratch is also provided in each plot
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of Fig. 5. We find that fine-tuning early-stage base models
(e.g., no more than 6000 iterations) can provide similar
performance to those learned from scratch. For most
cases, early transfer is competitive to late transfer. Mean-
while, fine-tuning late-stage models from the best base
datasets always outperforms learning from scratch in the
selected datasets.
In order to evaluate the transferability of network layers

on nucleus detection, we freeze the first several learning
blocks during model fine-tuning. Figure 2 shows that in
addition to the downsampling and upsampling paths, each
of which has four residual learning blocks, MicroNet has
one input (one convolutional operation) and one output
(two convolutional operations) transition blocks. From
input to output, we label all the blocks from 1 to 10. The
fourth row of Fig. 5 demonstrates the F1 scores of model
fine-tuning with keeping different blocks frozen. For most
cases (except fine-tuning from esophagus towards soft
tissue), fine-tuning only the last 2 or 3 blocks provides
lower accuracies than learning from scratch. On the other
hand, fine-tuning can improve the performance with less
blocks fixed. When only the first 2 blocks are frozen, fine-
tuning can compete with or even outperform learning
from scratch.

Training with auxiliary datasets
In this experiment, we evaluate whether training with a
mixture of different datasets is beneficial. To this end, we
randomly choose 3 target datasets, i.e., cervix, colorectum
and kidney, and mix each training data with correspond-
ing auxiliary data. For one target dataset such as cervix,
all the other 22 non-cervix datasets are pooled to form
the auxiliary training data, fromwhich we randomly select
1%, 2%, 5%, 10%, 20% and 50% to mix with the target
training data respectively.We train oneMicroNet for each
of these mixed training data (denoted by MicroNetmix)
and compare it to the one learned with only the target
training set (denoted by MicroNettarget), as shown in the
top row of Fig. 6. For cervix and colorectum datasets,
the F1 score of MicroNetmix decreases as the increasing
of auxiliary training data and becomes lower than that
of MicroNettarget ; for kidney, the score of MicroNetmix
first decreases and then increases to be higher than that
of the counterparts. These observations suggest that a
mixture of target and non-target datasets might not be
always helpful for nucleus detection on one specific tar-
get dataset, even though all the images are generated with
the same microscopy imaging protocol and H&E staining
technique.
In order to explore whether training with auxiliary

data is helpful when target data are limited, we train
multiple models with different numbers of target train-
ing images. For each of the aforementioned 3 target
datasets, we randomly generate multiple training sets with

10%, 20%, 40%, 60%, 80% and 100% of the original train-
ing data respectively; meanwhile, we randomly select 5%
and 50% of auxiliary training data and mix each with the
generated target training data to form new training sets.
The bottom row of Fig. 6 shows a comparison between
training with and without auxiliary data. Clearly, for the
10%, 20% and 40% target training sets, training with only
target data produces poor performance probably due to
overfitting, while learning with a mixture of target and
auxiliary data provides significantly better results. How-
ever, learning with too much auxiliary data (i.e., 50%)
might overwhelm the target data such that the detection
accuracy would decrease, as illustrated in the plot for the
cervix dataset in Fig. 6.
In the previous experiments above, the auxiliary data

can have a much larger size than the target data and
dataset balancing during model training might be helpful
for performance improvement. Thus, we further evaluate
nucleus detection based on dataset balancing with weight-
ing the loss. Specifically, we minimize the weighted sum
of two losses, L = γLT + LA, where LT and LA are
target and auxiliary losses respectively, and both of them
use the definition in Eq. (2). γ is a control parameter bal-
ancing the contributions from the two data sources. For
each target dataset, we use all of its training images as
the target training set and randomly select 5% and 50% of
auxiliary training data as the auxiliary training set respec-
tively. The top two rows of Fig. 7 show the precision-recall
curves with respect to different γ values. We can see
that for either 5% or 50% of auxiliary data, a small γ

value (e.g., less than 1.0) leads to poor performance, espe-
cially for cervix and colorectum datasets, perhaps because
model training mainly relies on the auxiliary data. The
performance improves with the increasing of γ values. In
addition, compared to the naive pooling (i.e., γ = 1.0)
of target and auxiliary training sets, learning with larger
weights on target data (i.e., γ > 1.0) can produce better
nucleus detection. We also find that there is no signif-
icant performance variation for the kidney dataset with
50% of auxiliary data. This observation is consistent with
those in Fig. 6, where models learned with auxiliary data
is helpful for nucleus detection in kidney data and actually
slightly outperforms the models trained with only target
data. Figure 8 shows the F1 scores with different γ values.
As expected, learning with more emphasis on auxiliary
data, i.e., γ < 1.0, leads to lower detection accuracies
than those trained with naive data pooling or only tar-
get data (denoted by MicroNettarget). However, learning
with a proper weighting of target data might improve the
performance and be on a par with or even outperform
MicroNettarget .
We also evaluate learning with a single auxiliary data

source and compare it to those with the mixed multi-
source auxiliary data above. For each target data, i.e.,
cervix, colorectum and kidney, we select the base datasets
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Fig. 6 Comparison between MicroNet learning with and without auxiliary data. For each target dateset (i.e., cervix, colorectum or kidney) in the top
row, all its training data are mixed with different numbers of auxiliary training data (x-axis represents the percentage of auxiliary training data). In the
bottom row, a fixed number (i.e., 5% and 50%) of auxiliary training data are used to mix with different numbers of target training data, as shown in
the x-axis

that producing the lowest and highest F1 scores in Fig. 4 as
two single-source auxiliary data: kidney/breast for cervix,
kidney/cervix for colorectum, and colorectum/pancreas
for kidney. The bottom two rows of Fig. 7 show the
precision-recall curves with different γ values on these
single-source auxiliary data. Similar to learning with
multi-source auxiliary data, it exhibits poor performance
when γ < 1.0 and the detection accuracy improves as the
increasing of γ values. Meanwhile, training with higher
weights on target data (γ > 5.0) leads to better perfor-
mance. We also observe for single-source auxiliary data,
learning with a proper γ value (e.g., larger than 1.0) might
outperform thosemodels learned with only target training
data.

Effects of parameters
The parameter λ in Eq. (2) plays an important role on
nucleus localization. We randomly select 3 datasets, i.e.,
lung, lymph nodes and pancreas, to evaluate its effects.
Figure 9 shows the precision-recall curves with different
λ values: λ = 0, 0.005, 0.05, 0.5, 5 and 50. We do not
include the performance for λ = 500 and λ = 5000 due to
the exploding gradient problem. As we can see, themodels
with λ ≤ 0.5 are outperformed by those with λ ≥ 5.0; in
particular, the model with λ = 0, which indicates no addi-
tional penalty on the regions with nonzero values in the
proximity maps, exhibits significantly worse performance

than those with large λ values. This might be because for
a single training image, a dominant portion of its prox-
imity map has zero values and a penalty on the central
regions of nuclei would enforce model learning to pay
more attention to these nonzero-value regions. In this
scenario, model inference would be encouraged to avoid
trivial solutions and predict nonzero values on the central
regions of nuclei.

Evaluation of other deepmodels
We further explore whethter other deep nucleus detection
models exhibit similar performance. Here we choose a
very recent state-of-the-art model, FRCN [52], to evaluate
its generalization on different datasets. Specifically, we
train one FRCN model for each type of organ data and
apply it to nucleus detection on the same- and different-
organ images. Figure 10 shows the F1 score of FRCN
on all the datasets. Similar to MicroNet, FRCNsame pro-
duces better performance than many FRCNdiff on each
dataset, and its F1 score is significantly higher than the
average F1 score of FRCNdiff . This observation is consis-
tent with that for MicroNet, i.e. training models with a
specific dataset might not provide desired results on other
datasets and learning with the same type of organ might
be usually preferred. We also evaluate whether learning
FRCNmodels with auxiliary datasets is helpful for nucleus
detection. Following the experimental setting in Fig. 6 (the
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Fig. 7 Precision-recall curves with different γ values on different training data. The top two rows represent 5% (row 1) and 50% (row 2) of mixed
auxiliary data respectively, and the bottom two rows denote two different single-source auxiliary data respectively, which are the base datasets
producing the lowest (row 3) and highest (row 4) F1 score on the target data in Fig. 4. Each curve is generated by varying the threshold ξ . x/y-axis
represents recall/precision. For each curve label of “A+B", A and B represent target and auxiliary data respectively

top row), we compare the models trained with target data
only to those learned with mixed datasets, which contain
all target training data and different numbers of auxiliary
images. Figure 11 shows that learning FRCN models with
a mixture of target and non-target data might not always
improve nucleus detection, and this is also consistent with
the study of MicroNet above.

Discussion
On the basis of Figs. 4 and 5, we observe that mod-
els learned on one type of organ images might perform

poorly in other organ datasets; however, model fine-
tuning from other organ data can provide similar per-
formance to those directly trained with target data from
scratch in a relatively shorter period of time. In addition,
fine-tuning models from the best base datasets requires
slightly smaller iteration numbers than learning from the
worst base datasets, e.g., 2000 versus 5000. For the target
datasets, fine-tuning usually achieves stable performance
within only 5000 iterations, while training from scratch
needs over 15000 iterations. These observations show
model fine-tuning is more efficient when base models
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Fig. 8 The F1 score with different γ values on different training data. x/y-axis represents F1 score/log(γ ). For each curve label of “A+B", A and B
represent target and auxiliary data respectively

trained with other datasets are available, and this condi-
tionmight be usually satisfied in real applications.We also
find that compared with learning from scratch and fine-
tuning from the worst base datasets, fine-tuning from the
best base datasets provide slightly better detection accu-
racies, especially when insufficient target training data are
available. This suggests a proper selection of base datasets
might be important for model fine-tuning from limited
target data. Interestingly, the F1 score might decrease
when fine-tuning late-stage models from the worst base
datasets, as shown in soft tissue and thymus subplots (row
3 of Fig. 5). This might be because these base models are
well trained and too specific to the base datasets.
From Figs. 6, 7 and 8, we find that learning with mixed

target and auxiliary data might be not always benefi-
cial. However, using a certain amount of auxiliary data to
assist model training for nucleus detection might be help-
ful when only a small target training set is available. We
also observe that for either multi-source or single-source

auxiliary data, it is critical to balance the datasets dur-
ing model training. Interestingly, learning with the best
auxiliary data (row 4 of Fig. 7) provides better nucleus
detection than the other single-source auxiliary learning
(row 3 of Fig. 7), especially when γ < 1.0, as shown in
Fig. 8. This suggests it might be critical to choose auxiliary
dataz when using a single auxiliary source, which has a
similar size to the target set.

Conclusions
In this paper, we address several important but previ-
ously understudied questions on deep models for nucleus
detection in microscopy images. We present and evalu-
ate an end-to-end, pixel-to-pixel FCN model for nucleus
detection on a wide variety of digital pathology image
data, which cover 23 types of different organs/diseases.
All images are H&E stained and digital microscopy at 40×
magnification. The datasets are collected from multiple
institutions and should be sufficiently diverse. We find

Fig. 9 Precision-recall curves with different λ values. Each curve is generated by varying the threshold ξ . x/y-axis represents recall/precision
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Fig. 10 The F1 score of FRCN on different data. Blue stars denote models trained and tested on the same datasets (FRCNsame), i.e., images from the
same types of organs across different patients. The boxes represent models trained on one dataset but tested on another and the orange triangles
denote the average performance (FRCNdiff -average) over these models

that for a specific target dataset, i.e., images from one type
of organ, training with images from different organs might
not deliver desired results, even although the images are
generated using the same staining technique and imag-
ing protocol. Our experiments further demonstrate model
fine-tuning or transfer learning is more efficient com-
pared to training from scratch. To achieve a desired object
detection accuracy, model fine-tuning requires less target
training data or a smaller number of training iterations.
We also observe learning with auxiliary data might be

helpful for nucleus detection, but it does not always mean
higher accuracies. When there are limited target training
data, a naive mixture of target and auxiliary data would
be helpful since it could address the overfitting problem;
however, this naive data pooling might not be always ben-
eficial if sufficient target training data are available. On the
other hand, learning with dataset balancing can provide

better nucleus detection than training with a simple pool-
ing of target and auxiliary data. With an appropriate data
weighting, it would be able to provide competitive or even
higher detection accuracies than training with only target
data. We also show learning with more emphasis on the
central regions of nuclei is helpful for nucleus detection in
microscopy images.

Methods
Network architecture
Our model is shown in Fig. 2, which can be viewed as
a variant of FCNs. It is mainly inspired by the residual
regression network [56] andU-Net [60], and themajor dif-
ference is that we aggregate different levels of contextual
information for robust pixel-wise prediction. The net-
work consists of four basic paths: downsampling, upsam-
pling, concatenation and multi-context aggregation. The

Fig. 11 Comparison between FRCN learning with and without auxiliary data. For each target dateset (i.e., cervix, colorectum or kidney), all its
training data are mixed with different numbers of auxiliary training data (x-axis represents the percentage of auxiliary training data)
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downsampling path aims at extracting hierarchical fea-
tures from input images, while the upsampling path maps
feature representations into the input space for dense
prediction. In order to preserve the high-resolution infor-
mation for object localization, low-layer feature maps
from the downsampling path are copied and concatenated
with corresponding representations in the upsampling
path. Finally, a multi-context aggregation is introduced to
ensemble contextual information such that the model can
handle scale variation of nuclei.
The downsampling path consists of a stack of residual

learning blocks [56], which learn feature representations
via a residual mapping instead of the original underly-
ing mapping such that gradients would not vanish in
backpropagation. Specifically, a shortcut connection is
used to realize an identity mapping, which is added to a
non-linear mapping (i.e., convolution followed by an acti-
vation) for residual learning in an element-wise way. A
strided convolution with a stride of 2 is exploited to down-
sample feature maps between adjacent residual blocks.
Batch normalization [61] is applied after each convolu-
tion and strided convolution. Subsequently, an ELU [62]
is used for the non-linear transform after each batch nor-
malization and element-wise addition. After the input
transition block that consists of one convolutional layer,
four residual blocks are stacked to learn high level abstrac-
tion information by following the rules [63]: 1) double
the number of convolutional filters when the feature map
size is halved (except for the last residual block) and 2)
the filter size is set as 3 × 3 with the padding being 1 in
each residual block. The upsampling path is also built with
four cascaded residual blocks, but in a converse direction
of the downsampling configuration. A transposed con-
volution [64] instead of a strided convolution is applied
to the connection of residual blocks, aiming at increas-
ing the resolution of learned high-level feature maps for
pixel-wise prediction.
In order to compensate for high-resolution information

loss due to strided convolutions, we use concatenation
connections [60] to combine feature maps from both
downsampling and upsampling paths. Specifically, down-
sampled outputs are copied and linked to corresponding
upsampled outputs such that a successive layer can learn
to fuse this information for precise object localization. It is
worth noting that these feature mapsmight not be directly
concatenated with each other, because the downsampling
and upsampling layers could be not exactly symmetric. For
instance, a 75 × 75 feature map after downsampling with
a factor of 2 would have a dimension of 37 × 37 (without
loss of generality, the floor operation is used); however, a
37 × 37 feature map after upsampling would have a size
of 74 × 74. In order to preserve a proper output size, we
pad upsampled outputs with zeros tomatch downsampled
ones for information fusion.

Due to object scale variation, network prediction based
on a single-sized receptive field might not well localize all
the nuclei. Inspired by [65], we introduce a multi-context
aggregation path to assemble different levels of feature
maps for final pixel-wise prediction. Since downsampled
outputs in different layers correspond to distinct-sized
receptive fields and those in deeper layers have larger
receptive fields, we can take advantage of this contextual
information by combining the hierarchical feature repre-
sentations. More specifically, we directly apply transposed
convolutions to the downsampled outputs at certain layers
(see Fig. 2) and aggregate the generated feature repre-
sentations to form a multi-context feature map, which
is fed to the output transition block (consisting of two
convolutional layers) for final output prediction.

Model formulation
In this paper, nucleus detection is formulated as a regres-
sion problem. Compared to binary classification, regres-
sion modeling can employ additional context during the
learning stage for more accurate detection [52, 66]. Our
goal is to learn an FCN regressor to predict an identical-
sized proximity map given an input image, where each
predicted pixel value measures how proximal this pixel
is to its closet nucleus center. To this end, we define
gold-standard proximity maps (or structured labels) based
on the Euclidean distance. For a w × h training image
xi ∈ R

w×h×c with human annotation of nucleus centers,
where c is the number of image channels, we generate its
corresponding proximity map yi ∈ R

w×h as follows

yiuv =
⎧
⎨

⎩

eα(1−Diuv
d )−1

eα−1 if Di
uv ≤ d

0, if otherwise,
(1)

where yiuv represents the value of yi at pixel (u, v), and Di
uv

denotes the Euclidean distance between pixel (u, v) and its
closet annotated nucleus center. d is a distance threshold
and α controls the proximity value decay.With this defini-
tion, the structured label has continuous values and only
a small region (controlled by d) around the nucleus cen-
ter has positive values, as shown in Fig. 12. In this way, the
model can learn to predict higher values for pixels in the
central regions of nuclei.
Let � denote the FCN parameters to be learned and

�(·) represent the nonlinear mapping from network
inputs to outputs. Given a set of training images and cor-
responding proximity maps {xi, yi}Ni=1, we estimate the
parameters by minimizing the prediction error between
network outputs oi = �(xi;�) and gold-standard prox-
imity maps yi, i = 1, 2, ...,N . To optimize this problem,
one straightforward choice of the objective loss function
is the mean squared error (MSE); however, this loss might
not be suitable for our case, because a dominant portion
of each proximity map has zero values and a plain MSE
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Fig. 12 Proximity map generation. From left to right: the original image, manual annotation (green dots) of nucleus positions and proximity map,
where the central regions (light blue) of nuclei have continuous, nonzero values and all the other regions are assigned zero values (dark blue)

might lead to a trivial solution such that the predictions
for all the pixels can be simply assigned zeros [67]. Thus,
we adopt a weighted MSE loss that enforces model learn-
ing to pay more attention to the central regions of nuclei.
Formally, the loss for the i-th training image is defined as

L(oi, yi) = 1
2

∑

(u,v)∈yi
(yiuv + λȳi)(oiuv − yiuv)2, (2)

where λ controls the weights of the losses for different
image regions. ȳi is the mean value of yi and allows the
model to automatically adjust the contribution of each
individual image. In practice, the L(oi, yi) is normalzied
by the number of image pixels and the overall loss is the
average over the entire training set.
The loss function is differentiable with respect to � and

the FCN regression model is trained with the standard
gradient-based backpropagation [68]. Denote ai the input
of the last layer for training image xi. The derivative of
(2) with respect if ai can be written as (if the sigmoid
activation function is chosen in the last layer)

∂L(oi, yi)
∂aiuv

= (yiuv + λȳi)(oiuv − yiuv)a
i
uv(1 − aiuv). (3)

The derivative of the loss function with respect to the
network parameters can be calculated using the chain rule
for model training. During testing, the model predicts a
proximity map p for each unseen image. Those pixels with
small values, i.e., less than ξ · max(p) where ξ ∈[ 0, 1], are
suppressed. Thereafter, nucleus centers are localized by
identifying local maxima on the processed proximity map.

Additional file

Additional file 1: Supplementary document. This supplementary
document contains the precision-recall curves of nucleus detection using
MiocroNet on all the 23 datasets. (PDF 153 kb)
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