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Purpose: Gastric cancer (GC) is a product of multiple genetic abnormalities,
including genetic and epigenetic modifications. This study aimed to integrate various
biomolecules, such as miRNAs, mRNA, and DNA methylation, into a genome-wide
network and develop a nomogram for predicting the overall survival (OS) of GC.

Materials and Methods: A total of 329 GC cases, as a training cohort with a random of
150 examples included as a validation cohort, were screened from The Cancer Genome
Atlas database. A genome-wide network was constructed based on a combination of
univariate Cox regression and least absolute shrinkage and selection operator analyses,
and a nomogram was established to predict 1-, 3-, and 5-year OS in the training
cohort. The nomogram was then assessed in terms of calibration, discrimination,
and clinical usefulness in the validation cohort. Afterward, in order to confirm the
superiority of the whole gene network model and further reduce the biomarkers for the
improvement of clinical usefulness, we also constructed eight other models according
to the different combinations of miRNAs, mRNA, and DNA methylation sites and made
corresponding comparisons. Finally, Gene Ontology (GO), and Kyoto Encyclopedia of
Genes and Genomes (KEGG) analyses were also performed to describe the function of
this genome-wide network.

Results: A multivariate analysis revealed a novel prognostic factor, a genomics score
(GS) comprising seven miRNAs, eight mRNA, and 19 DNA methylation sites. In the
validation cohort, comparing to patients with low GS, high-GS patients (HR, 12.886;
P < 0.001) were significantly associated with increased all-cause mortality. Furthermore,
after stratification of the TNM stage (I, II, III, and IV), there were significant differences
revealed in the survival rates between the high-GS and low-GS groups as well
(P < 0.001). The 1-, 3-, and 5-year C-index of whole genomics-based nomogram were
0.868, 0.895, and 0.928, respectively. The other models have comparable or relatively
poor comprehensive performance, while they had fewer biomarkers. Besides that,
DAVID 6.8 further revealed multiple molecules and pathways related to the genome-wide
network, such as cytomembranes, cell cycle, and adipocytokine signaling.
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Conclusion: We successfully developed a GS based on genome-wide network, which
may represent a novel prognostic factor for GC. A combination of GS and TNM
staging provides additional precision in stratifying patients with different OS prognoses,
constituting a more comprehensive sub-typing system. This could potentially play an
important role in future clinical practice.

Keywords: gastric cancer, genome-wide network, miRNA, mRNA, DNA methylation, nomogram

BACKGROUND

Gastric cancer (GC) is one of the most common malignant
human tumors and the third leading cause of cancer-related
mortalities worldwide. Reports estimate that nearly one million
new cases and 800,000 deaths occur each year across the world
(Torre et al., 2015). Despite the rapid research advancement, GC-
related impacts on human life remain high around the globe.
According to the global cancer burden data, hundreds of billions
of dollars in economic losses are incurred each year due to GC.
At the same time, stomach cancer has been reported to cause 19.1
million disability-adjusted life years, with 98% of these resulting
from years of life lost and 2% from years lived with disability
(Global Burden of Disease Cancer Collaboration et al., 2019).

Despite major breakthroughs in GC prevention, diagnosis,
and treatment therapies reported over the past decade, prognosis
remains a challenge at different TNM stages (Jiang et al., 2018a;
Sun et al., 2019a,b). Notably, patients with similar clinical
features and at the same tumor stage who receive uniform
treatment have exhibited varying clinical outcomes (Bang et al.,
2012; Jiang et al., 2018b). Such evidence indicates the existing
challenges to traditional TNM staging (Serra et al., 2019), possibly
due to a lack of molecular tools for effectively predicting the
prognosis and the therapeutic effect of GC patients. Therefore,
more rigorous and reliable systems that accurately reflect the
heterogeneity of different patients and guide the development of
treatment approaches are urgently needed (Duarte et al., 2018;
Serra et al., 2019).

Tumors are a product of multiple genetic mutations, including
genetic (gene expression) and epigenetic (DNA methylation and
histone modification) modifications, as well as deregulations
of tumor-suppressor genes and proto-oncogenes (Anna et al.,
2018; Choi et al., 2019). In addition, changes in a set of genetic
materials have been closely associated with cancer outcomes
(Anna et al., 2018; Choi et al., 2019). Therefore, to effectively
predict the prognosis of tumors, such as GC, a single biomarker
is insufficient, necessitating the need for a gene network.

A variety of mRNAs have been associated with GC prognosis
(Camargo et al., 2019), with microRNAs (miRNAs) also
implicated in tumor prediction in the recent years (Li et al.,
2010; Ueda et al., 2010; Camargo et al., 2019). These small,
non-coding RNAs, comprising 22 nucleotides, primarily function
to regulate protein translation by inhibiting the expression
of target messenger RNAs (mRNAs). Apart from genetics,
epigenetics is currently receiving considerable research attention.
DNA methylation is the most common epigenetic event
associated with cancer development and progression (Anna et al.,
2018). Consequently, numerous studies have implicated DNA

methylation in the diagnosis and the prognosis of various tumors,
including GC (Camargo et al., 2019; Choi et al., 2019). Although
these studies have revealed several biomarkers that have proved to
be prognostic predictors in GC, only a handful have been adopted
in clinical therapies or are used to build predictive models for
the disease (Anna et al., 2018; Duarte et al., 2018; Camargo et al.,
2019; Choi et al., 2019; Serra et al., 2019).

Previous studies have identified and recommended numerous
biomarkers for GC. However, since malignant tumors often
involve multiple layers and different levels of genetic changes,
including the genome, transcriptome, and proteome, or even
epigenetic content, selecting reasonable candidate factors from
tens of thousands of biomarkers and comprehensively analyzing
them as an independent feature is imperative to effectively
develop a suitable prognostic target. Therefore, genetic networks
containing a panel of abnormal factors from different regulatory
levels represent the best chance for achieving prognostic value.

The whole genome-wide network analysis is reported in
several other cancers, such as colorectal cancer, breast cancer, and
lung cancer (Hou et al., 2018; Zhang et al., 2018), and it shows
great value in differentiating the prognosis of these patients.
Therefore, it is feasible and advantageous to apply genome-wide
network analysis to GC.

In the current study, we performed a series of sophisticated
statistical analyses and identified 33 genetic molecules that were
highly correlated with the prognosis of GC. Specifically, we
screened The Cancer Genome Atlas (TCGA), a genome project
with 33 types of cancer, including gene expression, and DNA
methylation as well as other biological information. Furthermore,
we extended these independent prognostic factors to the
“omics” concept. Then, a genome-wide network was constructed.
Interestingly, the genomics score (GS) obtained herein could
supplement TNM staging and enhance the prognostic value of
different patients. Moreover, we developed multiple prognostic
models, then validated, and compared them to ascertain their
strengths and weaknesses. Finally, we performed pathway
enrichment and gene oncology annotation analyses to elucidate
the function of this gene network.

MATERIALS AND METHODS

Data Acquisition and Preprocessing
Level 3 data were downloaded from the TCGA database
using TCGA-Assembler Module A, in January 2019, which
was then pretreated with Module B. The dataset comprised of
clinical variables from 443 patients, including age, sex, stage,
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primary site, grade, treatment, and survival, as well as associated
genome-wide data. In addition, the expression levels of 1,871
miRNAs, 20,531 mRNA, and 485,577 DNA methylation sites
(Illumina methylation 450) were obtained from 384, 377, and
394 patients, respectively. Afterward, an intersection with a total
of 332 samples was eventually retained. Furthermore, patients
with missing active follow-up data were excluded from the
analysis, leaving 329 patients in the final cohort (Figure 1).
Moreover, genome-wide level 3 data whose expression levels
for miRNAs, mRNA, and DNA methylation sites were missing
in more than 50% of all samples were excluded from the final
analysis. Finally, 329 GC patients with 566 miRNAs, 17,963
mRNA, and 396,081 DNA methylation sites were chosen for
further analysis.

Genome-Wide Network Analysis
Gene expression and DNA methylation data were normalized
using R package before subsequent processing. Univariate and
least absolute shrinkage and selection operator (LASSO) Cox
regression models were combined and used to identify the
most useful prognostic factors in miRNAs, mRNA, and DNA

methylation sites associated with survival. Firstly, univariate Cox
regression was performed on each candidate miRNA, mRNA, and
DNA methylation site to elucidate its role in patient survival,
then signatures with P value less than 0.05 were retained for
subsequent analysis. Thereafter, the LASSO Cox regression model
was applied to select and shrink the data (Supplementary
Figure S3; Tibshirani, 1997). Finally, a GS, based on a genome-
wide network comprising seven miRNAs, eight mRNAs, and 19
DNA methylation sites, was constructed for predicting survival.
A summary of the whole screening process is displayed in
Supplementary Figure S1.

Development and Comparison of
Individualized Prediction Models
The TCGA cohort with 329 cases was used as the training
set, with a random 150 cases from the total cohort included
as a validation group. The random number is 1,356. Firstly,
we developed the original GS based on 34 biomarkers (seven
miRNAs, eight mRNAs, and 19 DNA methylation sites). Then,
considering the complexity of the original GS and difficult
clinical application, in order to obtain a more concise and

FIGURE 1 | A Venn diagram displays the patients’ screening process.
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effective GS, we also constructed eight other models according
to the different combinations of miRNAs, mRNA, and DNA
methylation and made corresponding comparisons. Finally, a
total of nine GS models based on the genome-wide network
from LASSO were adopted to screen for the most appropriate
markers. These included the following models: genomics (seven
miRNAs, eight mRNA, and 19 DNA methylation sites), miRNAs
(seven miRNAs), mRNA (eight mRNA), methylation (19 DNA
methylation sites), miRNAs + methylation (seven miRNAs
and 19 DNA methylation sites), miRNAs + mRNA (seven
miRNAs and eight mRNA), mRNA + methylation (eight
mRNA and 19 DNA methylation sites), Cox-model 1 (two
miRNAs, six mRNA, and nine DNA methylation sites), and
Cox-model 2 (one miRNA, one mRNA, and seven DNA
methylation sites). Among them, markers from Cox-model
1 were separately detected from miRNAs, mRNA, or DNA
methylation sites using multivariate Cox regression analysis after
LASSO (Supplementary Tables S2–S4). On the other hand,
markers from Cox-model 2 depended on signatures from a
multivariate Cox regression analysis combining the genome-
wide network and the clinical characteristics (Supplementary
Table S5). Thereafter, we constructed several nomograms by
incorporating significant (P < 0.05) GS variables and other
clinical features following multivariate Cox regression (Iasonos
et al., 2008), and a clinical nomogram was built as a blank control.
The equations used for calculating the GS of these models are
listed in Supplementary Table S6.

To calculate the discrimination and the stability of different
Cox regression models, we applied C-statistics and calibration.
Additionally, we performed an analysis of time-dependent
receiver operator characteristics (ROC), based on the 1-, 3-,
and 5-year survival endpoints, to assess the prognostic accuracy
of the different nomograms. Furthermore, we evaluated the
potential net benefit of different predictive models using decision
curve analysis (DCA). DCA compares the clinical usefulness of
different indicators by calculating the potential net benefit of each
decision strategy at each threshold probability. Thus, DCA was
a significant novel approach for comparing the old and the new
models (Vickers and Elkin, 2006).

Screening for Potential miRNA Target
Genes
We predicted the potential target genes of the seven miRNAs,
from LASSO, by screening the miRTarBase, miRDB, and
TargetScan databases. Common genes from each miRNA across
the three databases were then used for subsequent studies. More
than 90% of the miRNAs showed negative regulation to target
genes. Consequently, the expression data from TCGA were used
to perform a batch of correlation analysis of each miRNA,
with corresponding target genes, and the three genes with the
largest absolute negative correlation were retained as the most
likely targets. Additionally, at least three potential target genes
from miRTarBase, which is co-expressed with miRNAs, were
considered as equally important and were subjected to Cytoscape
(version 3.7.2) for identification of miRNA–target genes co-
expression network analysis (Supplementary Figure S2).

Functional Enrichment Analysis
The potential target genes that were negatively correlated with
miRNAs in TCGA, as well as the coding sequences for mRNA
and DNA methylation sites, were used for functional enrichment
analysis using the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway and Gene Ontology (GO) using DAVID 6.8
(Supplementary Figure S2). Functional enrichment analysis
indicates why the gene network produces images on the survival
of GC from a molecular mechanism. Visualization was then done
using the “ggplot2” package implemented in R.

Statistical Analysis
The patients were divided into low-risk and high-risk groups
by the median GS as the cutoff point. Survival estimates were
obtained according to the Kaplan–Meier method and compared
using the log-rank test. Variables that reached significance, with
P < 0.05, were entered into the multivariable analyses using
the Cox proportional hazards model, with an entry stepwise
approach to identify covariates associated with increased all-
cause mortality, and then hazard ratio with 95% confidence
intervals (CIs) of each variable was achieved. All the statistical
significance values were set as two-sided (P < 0.05). LASSO
Cox regression was performed through the “glmnet” package.
Time-dependent ROC analysis at different follow-up times was
implemented using the “timeROC” package of R project in order
to further expound the performance of different GS models,
and DCA was used to compare their clinical use by “rmda”
package. Finally, nomogram based on the Cox regression model
was constructed using the “rms” package. C-index and calibration
to calculate the discrimination and the stability of these models
were performed using c-statistics and Bootstrap sample. Harrell’s
concordance index (C-index) indicated a better prognostic model
if its value was closer to 1, and the calibration diagram showed
that the better the prediction if the closer the correction line was
to the diagonal. All statistical methods are applied to both the
training group and the validation group. Statistical analyses were
performed using SPSS statistical software (version 18.0) and R
software (version 3.5.3).

RESULTS

Patient Characteristics
Among the 329 GC patients analyzed in this study, 212 (64.4%)
were male, whereas 117 (35.6%) were female. The average age
of the entire study population was 65.0 ± 10.6 years. In terms
of pathological stage, 38 (11.6%) cases were identified as stage
I, 117 (35.6%) were stage II, 155 (47.1%) were stage III, and 19
(5.8%) were at stage IV. With regards to treatment, 303 (92.1%)
patients received surgery (280 cases of R0 surgery, 14 R1, and nine
R2), whereas 146 (44.4%) were subjected to fluorouracil-based
chemotherapy. The genomic nomogram classified 165 samples
into low GS (GS ≤ -0.137) and 164 into high GS (GS > -
0.137) groups based on the median cutoff (Figure 2). A detailed
description of tumor location, pathology grade, and Lauren
classification is outlined in Supplementary Table S1, while a
heat map of the genomic scores layered by clinicopathological
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FIGURE 2 | Distribution of patient cases and density based on genomics score (GS) in the total The Cancer Genome Atlas cohort (A,B). Scatter plots of genomics
scores regarding the classification of low and high GS (C,D), and the bold line represents the median.

factors is illustrated in Supplementary Figure S4. The median
(mean; 95% CI) survival time for OS was 1,043 (670.2–1,415.8)
days in the total cohort, 466 (370.6–561.4) days in the high-
GS group, and 2,613 (mean; 2209.4–2017.5) days in the low-GS
group (Supplementary Figure S5). Toward the last follow-up,
a total of 129 deaths and 200 censoring were recorded. The
estimated cumulative 1-, 3-, and 5-year OS in the total cohort
were 78.9, 48.4, and 36.7%, respectively, although these rates
increase to 95.1, 74.2, and 68.5%, respectively, in the low-
GS group. Conversely, the 1-, 3-, and 5-year OS decreased to
63.3, 23.6, and 15.4%, respectively, in the high-GS group. The
baseline information of the validation cohort is also listed in
Supplementary Table S1 and Supplementary Figure S6.

Survival Analysis
We identified a basic genome-wide network comprising
seven miRNAs, eight mRNAs, and 19 DNA methylation
sites as the prognostic factor for OS, from hundreds of
thousands of univariate Cox regression and LASSO analyses.
This network was then classified as other models in the
training and the validation groups. Among the 34 features
identified, poor prognosis was significantly associated with
a high expression of seven miRNAs (hsa-mir-100, hsa-mir-
1304, hsa-mir-136, hsa-mir-193b, hsa-mir-22, hsa-mir-653,
and hsa-mir-6808), six mRNAs (NRP1|8829, RNF144A|9781,
ZNF22|7570, DUSP1|1843, CPNE8|144402, MAGED1|9500,
and LOC91450|91450), and seven DNA methylation sites
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(cg07020967, cg08859156, cg12485556, cg15861578, cg15861578,
cg25161386, and cg22740006). Conversely, poor prognosis was
strongly associated with a low expression of SOX14|8403 and
12 DNA methylation sites, including cg02223323, cg00481239,
cg14791193, cg15486740, cg20100408, cg20350671, cg22395807,
cg24361571, cg25361506, cg22813794, cg26014401, and
cg26856948 (Table 2). Univariate analysis performed on
clinical characteristics revealed a significant association between
age, pathological stage, TNM, and surgery with OS (Table 1).
On the other hand, results from multivariable Cox regression
showed that age, pathological stage, and GS were significantly
associated with all-cause mortality in GC (Table 1 and Figure 3).
Furthermore, stratification of the pathological stage (I, II, III,
and IV) revealed significant differences in survival rates between
the high-GS and the low-GS groups (Figure 3). A similar
result was found when the data were stratified by demographic
variables (sex and age), clinical characteristics (primary site,
grade, and Lauren classification) as well as treatments (surgery
and chemotherapy; Supplementary Figures S7, S8). On
the other hand, categorizing GS into high or low groups,
using the median value across different models, indicated
that the genomics nomogram had the highest HR value.
Interestingly, HR was almost equal to miRNAs + methylation,
mRNA + methylation, Cox-model 1, and Cox-model 2
nomograms, which contained fewer gene features. Moreover,
the HR value showed a marked decrease in miRNAs, mRNA,
methylation, and miRNAs+mRNA nomograms, which included
the least characteristics (Table 3).

Nomograms Based on Genome-Wide
Network
A genomics nomogram was first constructed based on the
genome-wide network, comprising 34 gene features (Figure 4).
To obtain a more concise and effective nomogram, we also built
a Cox-model 1 (17 gene features) and Cox-model 2 (nine gene
features) nomograms (Supplementary Figures S9, S10). Next,
a clinical nomogram, based on stage and age, was built as a
control (Supplementary Figure S11). Thereafter, we performed
internal and external validation to evaluate the feasibility of all
nomograms using a three-grouped random bootstrap sampling
(Figure 5 and Supplementary Figures S9–S11). We observed
good predictive performance in the first three nomograms, but
not in the simple clinical model.

Validation of the Nomograms Using ROC
and DCA
To ensure a good comparison across different GS nomograms,
we performed a time-dependent ROC (at 1, 3, and 5 years of
follow-up) as well as DCA. In the validation group, genomics
nomogram revealed the best comprehensive performance, with
1-, 3-, and 5-year area under the curve (AUC) values of 0.868,
0.895, and 0.928, respectively (Table 4), and Cox-model 1,
miRNAs + methylation, and mRNA + methylation nomograms
had a comparable performance, with 1-, 3-, and 5-year AUC
values of 0.856–0.873, 0.884–0.905, and 0.907–0.919, respectively,
but it had fewer biomarkers (Table 4). Although the Cox-model 2

nomograms had the least biomarkers, including miRNA, mRNA,
and DNA methylation sites, it had a relatively poor performance
with 1-, 3-, and 5-year AUC values of 0.835, 0.859, and 0.785,
respectively. Besides that, the miRNA, mRNA, methylation,
miRNAs + methylation, and miRNAs + mRNA nomograms
recorded 1-, 3-, and 5-year AUC values of 0.729–0.877, 0.656–
0.805, and 0.721–0.894, respectively. Finally, we found that,
compared to miRNA (0.641, 0.729, and 0.736) and mRNA
nomogram (0.806, 0.785, and 0.843), methylation nomogram
had higher 1-, 3-, and 5-year AUC values of 0.866, 0.877, and
0.894. Nevertheless, all of them showed better performance than
the clinical nomogram, which recorded 1-, 3-, and 5-year AUC
values of 0.638, 0.598, and 0.721, respectively (Figures 6A,B and
Supplementary Figure S12). The C-index based on different
nomograms exhibited a similar effect (Supplementary Table S8).
Additionally, DCA showed that the genomics, Cox-model 1,
mRNA + methylation, and methylation nomograms had a
significant net benefit compared to other GS models and the
clinical nomogram (Figures 6C,D).

Potential miRNA Target Genes
A total of 72 hsa-mir-22, 39 hsa-mir-100, 56 hsa-mir-136,
58 hsa-mir-193b, 23 hsa-mir-653, 96 hsa-mir-1304, and 285
hsa-mir-6808 potential target genes were identified from the
miRTarBase, miRDB, and TargetScan databases (Supplementary
Figure S14). We then performed a correlation analysis between
each target gene and miRNAs and finally generated a miRNA–
potential target gene plot (Supplementary Figure S15A) as well
as a miRNA–target gene co-expression network (Supplementary
Figure S15B) using Cytoscape.

Functional Analysis of Genome-Wide
Network
We imported the 301 potential target genes, mRNA, and
DNA methylation site-coding sequences, identified above, into
DAVID for KEGG and GO analyses and identified biological
processes, molecular functions as well as cellular components
(Figures 7A–C). Their corresponding KEGG pathways were also
plotted (Figure 7D).

DISCUSSION

GC can be divided into two types or four main categories,
according to the Lauren and World Health Organization
(WHO) classifications (Lauren, 1965; Nagtegaal et al., 2019),
although neither of these classifications is based on molecular
markers. In the last decade, however, three novel molecular-
based classification systems have been suggested for GC. The
Singapore-Duke Group was the first to describe a classification
with two intrinsic genomic subtypes, G-INT, and G-DIF, which
had different gene expression (Tan et al., 2011; Serra et al.,
2019). The subtypes have different levels of resistance to various
chemotherapy drugs and show limited prognostic value. Later,
TCGA used molecular evaluation to propose a new classification
with four subtypes: EBV, MSI, GS, and CIN. The identification of
these subtypes has provided a roadmap for patient stratification
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TABLE 1 | Univariable and multivariable analyses of the genomics score and the clinicopathological characteristics for overall survival in the training group and the
validation group.

Variables Training group, n = 329 Validation group, n = 150

Univariable analysis Multivariable analysis Univariable analysis Multivariable analysis

HR 95% CI P value HR 95% CI P value HR 95% CI P value HR 95% CI P value

Age at diagnosis, tears

<65 1 1 NA 1 1 NA 1 1 NA 1 1 NA

≥65 1.674 1.167–2.402 0.005 2.043 1.407–2.966 <0.001 1.464 0.856–2.505 0.164 2.029 1.086–3.789 0.026

Pathological stage

I 1 1 NA 1 1 NA 1 1 NA 1 1 NA

II 1.627 0.784–3.377 0.192 1.644 0.777–3.481 0.194 1.412 0.510–3.905 0.507 1.377 0.480–3.951 0.552

III 2.240 1.116–4.496 0.023 1.880 0.924–3.825 0.082 1.637 0.635–4.219 0.308 1.926 1.344–2.487 0.878

IV 7.801 3.247–18.745 <0.001 5.119 1.832–14.303 0.002 8.106 2.527–26.005 <0.001 9.364 2.267–38.672 0.002

Surgery

R0 1 1 NA 1 1 NA 1 1 NA 1 1 NA

R1 1.556 0.755–3.209 0.231 1.214 0.578–2.547 0.608 1.240 0.286–5.372 0.774 0.937 0.209–4.209 0.932

R2 6.944 3.163–15.246 <0.001 1.686 0.615–4.621 0.310 12.906 3.796–43.886 <0.001 1.316 0.285–6.075 0.725

Unknown 2.373 1.347–4.182 0.003 2.006 1.115–3.607 0.020 2.309 1.030–5.175 0.042 2.000 0.852–4.693 0.111

Genomics scorea

Low 1 1 NA 1 1 NA 1 1 NA 1 1 NA

High 6.304 4.079–9.744 <0.001 6.093 3.910–9.493 <0.001 10.906 5.452–21.817 <0.001 12.886 6.158–26.963 0.000

T staging

T1 1 1 NA 1 1 NA

T2 7.604 1.022–56.585 0.048 5.008 0.638–39.304 0.125

T3 7.278 1.003–52.802 0.050 3.895 0.524–28.976 0.184

T4 9.473 1.312–68.368 0.026 3.951 0.536–29.143 0.178

N staging

N0 1 1 NA 1 1 NA

N1 1.424 0.869–2.335 0.161 1.563 0.722–3.393 0.257

N2 1.642 0.930–2.898 0.087 1.612 0.658–3.953 0.296

N3 2.200 1.369–3.535 0.001 2.509 1.252–5.029 0.009

M staging

M0 1 1 NA 1 1 NA

M1 4.224 2.309–7.726 <0.001 5.499 2.446–12.364 <0.001

Sex

Female 1 1 NA 1 1 NA

Male 1.449 0.989–2.123 0.057 1.126 0.648–1.956 0.674

Primary site

Cardia 1 1 NA 1 1 NA

Fundus/body 0.844 0.543–1.312 0.451 0.605 0.320–1.144 0.122

Antrum 0.822 0.530–1.274 0.380 0.763 0.394–1.476 0.422

Unknown 0.183 0.025–1.343 0.095 0.152 0.003–0.254 0.976

Pathology grade

I–II 1 1 NA 1 1 NA

III–IV 1.361 0.939–1.971 0.103 1.590 0.902–2.805 0.109

Unknown 1.881 0.673–5.257 0.228 2.534 0.854–7.524 0.094

Lauren classification

Intestinal type 1 1 NA 1 1 NA

Diffused type 1.245 0.805–1.925 0.326 1.416 0.728–2.756 0.305

Unknown 1.156 0.770–1.736 0.484 1.923 1.061–3.485 0.031

Chemotherapy

Yes 1 1 NA 1 1 NA

No 1.305 0.919–1.852 0.136 1.361 0.806–2.299 0.249

aBased on 34 biomarkers: seven miRNAs, eight mRNAs, and 19 DNA methylation sites.
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TABLE 2 | miRNAs, mRNA, and DNA methylation whose expression levels showed a significant association with overall survival in least absolute shrinkage and
selection operator.

Molecular (probe) ID (reference gene) Coefficient HR 95% CI SE z value p value

miRNAs hsa-mir-100 0.234 1.263 1.102–1.449 0.070 3.345 <0.001

hsa-mir-1304 0.113 1.120 1.006–1.247 0.055 2.060 0.039

hsa-mir-136 0.235 1.265 1.097–1.458 0.072 3.243 0.001

hsa-mir-193b 0.241 1.272 1.116–1.450 0.067 3.612 <0.001

hsa-mir-22 0.248 1.281 1.101–1.490 0.077 3.210 0.001

hsa-mir-653 0.148 1.160 1.046–1.287 0.053 2.804 0.005

hsa-mir-6808 0.180 1.197 1.027–1.396 0.078 2.297 0.022

mRNA NRP1|8829 0.291 1.338 1.178–1.519 0.065 4.492 <0.001

RNF144A|9781 0.313 1.367 1.186–1.576 0.073 4.313 <0.001

ZNF22|7570 0.302 1.353 1.160–1.579 0.079 3.843 <0.001

SOX14|8403 −0.464 0.629 0.470–0.841 0.148 −3.126 0.002

DUSP1|1843 0.360 1.434 1.240–1.657 0.074 4.874 <0.001

CPNE8|144402 0.342 1.407 1.203–1.646 0.080 4.269 <0.001

MAGED1|9500 0.291 1.338 1.165–1.537 0.071 4.112 <0.001

LOC91450|91450 0.278 1.320 1.156–1.509 0.068 4.083 <0.001

cg02223323 MAP7D2 −0.360 0.697 0.590–0.824 0.085 −4.225 <0.001

cg00481239 SHC4;EID1 −0.668 0.513 0.338–0.777 0.212 −3.153 0.002

cg07020967 TMEM117 0.380 1.462 1.215–1.759 0.094 4.026 <0.001

cg08859156 RPS4X 0.409 1.505 1.305–1.736 0.073 5.609 <0.001

cg12485556 PREP 0.435 1.545 1.196–1.994 0.130 3.333 <0.001

cg14791193 C1orf144 −0.400 0.671 0.581–0.773 0.073 −5.496 <0.001

cg15861578 ZC3H10 0.329 1.390 1.169–1.652 0.088 3.731 <0.001

cg15486740 ACOT13;TTRAP −0.363 0.695 0.573–0.843 0.098 −3.697 <0.001

cg20100408 HLA-DPB1 −0.357 0.700 0.605–0.810 0.074 −4.799 <0.001

cg20350671 IL1RAPL1 −0.390 0.677 0.561–0.817 0.096 −4.080 <0.001

cg22395807 ATXN10 −0.443 0.643 0.476–0.867 0.153 −2.898 0.004

cg24361571 MIR365-2 −0.340 0.712 0.611–0.829 0.078 −4.374 <0.001

cg25361506 Unconfirmed −0.362 0.696 0.587–0.825 0.087 −4.167 <0.001

cg25622155 Unconfirmed 0.331 1.392 1.176–1.647 0.086 3.851 <0.001

cg25161386 NUFIP2 0.305 1.357 1.159–1.590 0.081 3.787 <0.001

cg22740006 PC;LRFN4 0.342 1.407 1.149–1.723 0.103 3.303 <0.001

cg22813794 STYXL1;MDH2 −0.351 0.704 0.508–0.976 0.166 −2.106 0.035

cg26014401 Unconfirmed −0.430 0.651 0.539–0.786 0.097 −4.453 <0.001

cg26856948 GOLGA3 −0.334 0.716 0.609–0.842 0.083 −4.042 <0.001

as well as targeted therapeutic trials (Cancer Genome Atlas
Research, 2014). However, initial data on disease outcomes from
this cohort did not show differences in survival among the
four groups. A series of positive studies on prognosis based
on TCGA classification was also reported (Sohn et al., 2017).
In addition, the Asian Cancer Research group divided GC
into four subtypes, MSI, EMT, MSS/TP53+, and MSS/ TP53-,
based on gene expression data and found significantly different
survival outcomes across them (Cristescu et al., 2015; Serra
et al., 2019). Despite the significant milestones of these studies,
they are all mainly based on the analysis of gene expression
(mRNA). Besides that, a 2019 study proposed a five-miRNA
model, while it had a C-index of 0.72 only (Zhang et al.,
2019). In the current study, we included methylation data and
performed functional enrichment analysis, making our work
stronger. The aforementioned classifications are also complicated
and need further optimization to increase clinical applicability.

Furthermore, they focused on typing and finding new targets,
whereas our study reports on prognostic analysis.

Some of the biomarkers we identified herein, including hsa-
mir-22, hsa-mir-100, hsa-mir-136, hsa-mir-193b, hsa-mir-1304,
NRP1, DUSP1, and MAP7D2 (cg02223323), have previously
been reported in GC (Grandclement and Borg, 2011; Chen
et al., 2014; Mu et al., 2014; Zuo et al., 2015; Zheng et al.,
2017; Chen et al., 2018; Kurata and Lin, 2018; Liu K.T. et al.,
2018; Song et al., 2018; Teng et al., 2018; Liu et al., 2019;
Pan et al., 2019; Wang et al., 2019). Others, such as CPNE8,
MAGED1, RNF144A, SOX14, ACOT13 (cg15486740), EID1
(cg00481239), RPS4X (cg08859156), and TTRAP (cg15486740),
have been identified in various tumors other than GC (Kamio
et al., 2010; Zeng et al., 2012; Zhou et al., 2013; Kuang et al.,
2017; Stanisavljevic et al., 2017; Liu X. et al., 2018; Tosic et al.,
2018; Nagasawa et al., 2019; Yang et al., 2019). The remaining
biomarkers, including hsa-mir-653, hsa-mir-6808, LOC91450,
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FIGURE 3 | Kaplan–Meier curve of overall survival in all patients, then stratified by genomics score (GS), pathological stage, and age. Survival analysis in the low-
and high-GS groups was further divided based on stages (stages I–IV).

ZNF22, C1orf144 (cg14791193), GOLGA3 (cg26856948),
HLA-DPB1 (cg20100408), LRFN4 (cg22740006), MDH2
(cg22813794), MIR365-2 (cg24361571), NUFIP2 (cg25161386),
PREP (cg12485556), STYXL1 (cg22813794), TMEM117
(cg07020967), ZC3H10 (ZC3H10), IL1RAPL1 (cg20350671), PC
(cg22740006), SHC4 (cg00481239), and ATXN10 (cg22395807),
have not been previously reported.

Currently, focus has been directed on identifying prognostic
miRNAs for GC. Particularly, one miRNA can regulate multiple
targets, while multiple miRNAs can regulate a single mRNA.
Therefore, a single miRNA may play an opposite role in
cancer progression by regulating different target genes. For
example, Mir-22 and Mir-100 were found to be tumor
suppressors in various cancers, including GC (Chen et al., 2014;

Zuo et al., 2015). Similarly, a high expression of Mir-136 was
found to promote proliferation and invasion in GC cell lines
by inhibiting PTEN expression (Chen et al., 2018), while a
contrasting result was reported when HOXC10 was targeted
(Zheng et al., 2017). Similarly, Mir-193b reportedly induced
GC proliferation or apoptosis by mediating different mRNA
expressions (Mu et al., 2014; Song et al., 2018), whereas a high
Mir-1304 expression in GC was reported as a negative predictor
for prognosis of lung and thyroid cancers (Kurata and Lin, 2018;
Liu et al., 2019; Pan et al., 2019). However, the function of Mir-653
and Mir-6808 has not been previously reported. In the current
study, we found an association between a high expression of all
miRNAs and poor survival. Different outcomes may be observed
in our study, relative to previous reports, owing to the huge
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TABLE 3 | Comparison of different genomics score models (based on the median value) for overall survival in the training group and the validation group.

Variables Training group, n = 329 Validation group, n = 150

Hazard ratio 95% CI P value Hazard ratio 95% CI P value

Genomics nomogram

Age 1.897 1.322–2.724 0.001 1.547 0.903–2.652 0.112

Pathological stage 1.489 1.155–1.920 0.002 1.267 0.846–1.897 0.252

Genomics scorea 6.153 3.971–9.535 <0.001 10.141 5.011–20.520 <0.001

Clinical nomogram

Age 1.760 1.225–2.528 <0.002 1.778 1.025–3.085 0.041

Pathological stage 1.754 1.349–2.282 <0.001 1.788 1.194–2.677 0.005

miRNAs nomogram

Age 1.664 1.157–2.392 0.006 1.597 0.917–2.780 0.098

Pathological stage 1.748 1.345–2.273 <0.001 1.771 1.181–2.656 0.006

Genomics scoreb 2.011 1.402–2.883 <0.001 2.474 1.416–4.324 0.001

mRNA nomogram

Age 2.140 1.484–3.086 <0.001 1.862 1.076–3.222 0.026

Pathological stage 1.716 1.314–2.241 <0.001 1.610 1.058–2.449 0.026

Genomics scorec 3.222 2.209–4.700 <0.001 4.834 2.671–8.781 <0.001

Methylation nomogram

Age 1.798 1.253–2.580 0.001 1.834 1.070–3.144 0.027

Pathological stage 1.599 1.231–2.078 <0.001 1.362 0.903–2.055 0.140

Genomics scored 4.627 3.058–7.002 <0.001 7.271 3.694–14.313 <0.001

miRNAs + methylation nomogram

Age 1.750 1.220–2.511 0.002 1.692 0.987–2.899 0.056

Pathological stage 1.539 1.193–1.986 0.001 1.414 0.954–2.096 0.084

Genomics scoree 5.009 3.291–7.624 <0.001 9.080 4.399–18.739 <0.001

miRNAs + mRNA nomogram

Age 1.932 1.343–2.778 <0.001 1.824 1.057–3.148 0.031

Pathological stage 1.676 1.291–2.177 <0.001 1.546 1.027–2.326 0.037

Genomics scoref 2.894 1.993–4.203 <0.001 3.431 1.969–5.979 <0.001

mRNA + methylation nomogram

Age 1.939 1.351–2.784 <0.001 1.768 1.032–0.3.031 0.038

Pathological stage 1.523 1.181–1.965 0.001 1.322 0.882–1.979 0.176

Genomics scoreg 5.050 3.330–7.658 <0.001 7.553 3.911–14.586 <0.001

Cox-model 1 nomogram

Age 1.908 1.329–2.740 <0.001 1.878 1.091–3.233 0.023

Pathological stage 1.642 1.276–2.112 <0.001 1.688 1.126–2.530 0.011

Genomics scoreh 5.034 3.334–7.601 <0.001 9.334 4.671–18.652 <0.001

Cox-model 2 nomogram

Age 2.033 1.415–2.921 <0.001 1.777 1.030–3.067 0.039

Pathological stage 1.647 1.261–2.151 <0.001 1.722 1.142–2.595 0.009

Genomics scorei 5.481 3.602–8.341 <0.001 8.679 4.347–17.325 <0.001

aBased on 34 biomarkers (seven miRNAs, eight mRNA, and 19 DNA methylation sites). bBased on seven miRNAs. cBased on eight mRNA. dBased on 19 DNA methylation
sites. eBased on seven miRNAs + 19 DNA methylation sites. fBased on seven miRNAs + eight mRNA. gBased on eight mRNA + 19 DNA methylation sites. hBased on
two miRNAs + six mRNA + nine DNA methylation sites. iBased on one miRNAs + one mRNA + seven DNA methylation sites.

number of corresponding miRNA target genes herein and lack
of evidence on their role in GC development.

Messenger RNAs have been reported to play an essential
role in GC cancer. For example, high NRP1 expression and
hypermethylation were associated with poor GC prognosis
(Wang et al., 2019), whereas another study indicated that
it could be an anti-tumor target (Grandclement and Borg,
2011). In addition, high DUSP1 expression levels were found
to promote progression, drug resistance, and poor prognosis
of GC (Teng et al., 2018). On the other hand, SOX14

showed opposite prognostic values in cervical cancer and
leukemia, with anti-tumor and carcinogenic effects, respectively
(Stanisavljevic et al., 2017; Tosic et al., 2018). Studies have also
implicated CPNE8, MAGED1, and RNF144A in ovarian and
breast cancers (Zeng et al., 2012; Nagasawa et al., 2019; Yang
et al., 2019). However, LOC91450 and ZNF22 have not been
reported in cancer.

Accumulating evidence indicates that DNA methylation plays
a significant role in cancer progression. However, only a handful
of studies have described the relationship between levels of
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FIGURE 4 | Genomics nomogram to predict the probability of 1-, 3-, and 5-year overall survival (OS) in the training cohort (A) and the validation cohort (B): to
determine how many points for each variable to the probability of OS, locate the variable on its axis, draw a line straight upward to the point axis, repeat this process
for each variable, sum up the points achieved for each of the risk factors, locate the final sum on the total point axis, and draw a line straight down to find the
patient’s probability of OS.

single-site methylation and GC prognosis. Particularly, high
expressions of MAP7D2, ACOT13, EID1, RPS4X, and TTRAP
have been associated with poor prognosis in gastric, lung, and
pancreatic cancers as well as hepatic carcinoma, respectively,
while a high TTRAP expression reportedly inhibits the growth
of osteosarcoma (Kamio et al., 2010; Zhou et al., 2013; Kuang
et al., 2017; Liu K.T. et al., 2018; Liu X. et al., 2018). Notably, the
relationship between methylation levels and corresponding gene
expression profiles is unknown, necessitating further research.
Furthermore, the remaining DNA methylation sites and their
corresponding genes have not been reported. Lastly, no study
has described the prognostic significance using a genome-
wide network.

Last but not least, in general, no study concerning their
prognostic significance as a genome-wide network has
been reported yet.

Tumorigenesis involves multiple interacting biological
processes. In addition, an integrated genetic network is better
at reflecting intra-tumor heterogeneity compared to a single
biomarker. In the current study, we identified a novel, prognostic,
signature genome-wide network, consisting of seven miRNAs,
eight mRNA, and 19 DNA methylation sites after screening the
entire TCGA cohort using training and random cohorts. This
network was further divided into several other models.

Our results revealed that the integrative signature was
an independent prognostic factor for survival in GC
patients and performed better than any single biomarker

or clinical characteristic. Moreover, stratification by other
clinicopathological features, such as stage, age, sex, primary site,
pathology grade, Lauren classification, and treatments, revealed
significantly different prognosis values based on different GSs.
In addition, staging was still an effective prognostic factor
after dividing into low- and high-genomics-score groups,
suggesting that GS and traditional staging can complement each
other, and the genetic network could add prognostic value to
traditional staging. Exclusion of patients with I staging showed
that chemotherapy is a significant prognostic factor because
I staging does not always need additional chemotherapy for
effective prognosis.

We also developed and validated nomograms based on the
GS. Particularly, results from ROC and DCA indicated that
all of them had significantly better predictive performances
than the traditional clinical nomogram. Comprehensive property
(similar C-index) was not significantly different in genomics
nomogram and Cox-model 1 nomogram, and compared to
the genomics nomogram, Cox-model 1 nomogram had fewer
biomarkers. In addition, Cox-model 1 nomogram performed
well, with a higher positive net reclassification improvement
(NRI). Therefore, Cox-model 1 nomogram might be more
suitable for clinical application, which deserved further study.
Besides that, the Cox-model 2 nomogram had the least
feature (nine biomarkers) including miRNAs, mRNA, and DNA
methylation sites for constructing a genome-wide network, while
it had a lower C-index and a negative NRI. The other six
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FIGURE 5 | Time-dependent receiver operating characteristic curves on 1, 3, and 5 years of genomics nomogram. Calibration plot showing 1-, 3-, and 5-year
overall survival (OS) probability: the nomogram-estimated OS is plotted on the x-axis, and the actual OS is plotted on the y-axis. The diagonal dotted line is a perfect
estimation by an ideal model, in which the estimated outcome perfectly corresponds to the actual outcome. The solid line is the performance of the nomogram: A
closer alignment with the diagonal dotted line represents a better estimation. Decision curve analysis for genomics nomogram and clinical nomogram: the y-axis
measures the net benefit. The gray line or the horizontal black line represents a follow-up of all patients or no patients. The model makes more benefit with a higher
position in curve.

TABLE 4 | The area under the curve (AUC) values of different genomics score models in the training group and the validation group.

Models Training group, n = 329 Validation group, n = 150

1-year OS 3-year OS 5-year OS 1-year OS 3-year OS 5-year OS

AUC (95% CI) AUC (95% CI) AUC (95% CI) AUC (95% CI) AUC (95% CI) AUC (95% CI)

Genomics nomogram 0.815 (0.787–0.843) 0.823 (0.785–0.861) 0.855 (0.799–0.911) 0.868 (0.832–0.900) 0.895 (0.851–0.939) 0.928 (0.886–0.970)

Clinical nomogram 0.609 (0.571–0.647) 0.615 (0.573–0.657) 0.642 (0.582–0.702) 0.638 (0.577–0.699) 0.598 (0.528–0.659) 0.721 (0.626–0.816)

miRNAs nomogram 0.621 (0.582–0.660) 0.656 (0.610–0.703) 0.717 (0.650–0.779) 0.641 (0.581–0.701) 0.729 (0.670–0.788 0.736 (0.656–0.817)

mRNA nomogram 0.747 (0.713–0.781) 0.711 (0.666–0.756) 0.728 (0.65.6–0.79.8) 0.806 (0.761–0.851) 0.785 (0.724–0.846) 0.843 (0.766–0.918)

Methylation nomogram 0.799 (0.768–0.830) 0.813 (0.774–0.852) 0.845 (0.781–0.909) 0.866 (0.827–0.905) 0.877 (0.830–0.923) 0.894 (0.821–0.966)

miRNAs + methylation
nomogram

0.796 (0.765–0.827) 0.819 (0.781–0.857) 0.850 (0.787–0.911) 0.856 (0.817–0.895) 0.895 (0.854–0.939) 0.908 (0.856–0.961)

miRNAs + mRNA
nomogram

0.743 (0.710–0.776) 0.731 (0.687–0.775) 0.771 (0.707–0.835) 0.803 (0.758–0.848) 0.825 (0.772–0.878) 0.883 (0.826–0.939)

mRNA + methylation
nomogram

0.819 (0.791–0.847) 0.818 (0.780–0.856) 0.849 (0.794–0.904) 0.873 (0.837–0.909) 0.884 (0.836–0.932) 0.919 (0.867–0.971)

Cox-model 1 nomogram 0.833 (0.804–0.862) 0.851 (0.821–0.881) 0.833 (0.778–0.888) 0.869 (0.832–0.906) 0.905 (0.866–0.944) 0.907 (0.858–0.956)

Cox-model 2 nomogram 0.795 (0.764–0.826) 0.805 (0.767–0.843) 0.736 (0.662–0.810) 0.835 (0.793–0.877) 0.859 (0.797–0.921) 0.785 (0.667–0.903)

models showed a relatively poor performance in ROC or DCA,
with limited application value. What is more, it is possible that
DNA methylation was the highest contributor to the survival

prediction of this gene network. We suspect that this may be
related to the larger number of DNA methylation sites compared
to miRNA and mRNA.
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FIGURE 6 | Time-dependent receiver operating characteristic curves on 1, 3, and 5 years of each nomogram and decision curve analysis for each nomogram.

We adopted GO and KEGG analyses to assess the influence
of genome-wide network in the prognosis of GC. Generally,
biological processes mainly involve various biological functions,
such as methylation, phosphorylation, and endocrine regulation.
Methylation pathway was related to the occurrence and the
development of GC, which was consistent with our results.
Besides that, functional enrichment analysis revealed that
phosphorylation pathway was significantly enriched as well,
which got more and more attention these years. On the other
hand, the main components of participation included organelles,
cytomembranes, extrinsic to membranes, nuclear and synapses,
whereas molecular functions comprise nucleoside, ATP, RNA,
and transcription factor binding as well as activity of various
enzymes. Abnormal cell composition is closely related to the

development of tumor. The abnormal protein may act on
the nucleus, membrane, or cell matrix, thereby leading to the
progression of cancer, such as NRP1 protein (Wang et al.,
2019). In the current study, KEGG analysis indicated that the
gene network function was a relevant pathway in cancer, cell
cycle, and adipocytokine signaling, while the other pathways
had been reported in small cell lung and bladder cancers.
Further experiments to reveal the biological function of this gene
network are needed.

We also employed a series of complex statistical analyses
to construct and validate a genome-wide network based on
different biomarkers and then divided it into different models.
We recommend the resulting GS despite it not being an
absolute representative of tumor heterogeneity. This network
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FIGURE 7 | Gene enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways for the genome-wide network. The biological process (A),
molecular function (B), cellular component (C), and KEGG pathways (D).

could complement the deficiency of traditional staging and
generate a more accurate prediction of survival rates in GC
patients. Additionally, it effectively distinguishes patients who
could benefit from chemotherapy, thereby reducing unnecessary
treatments. It is also possible that the network could be used to
identify novel therapeutic targets for GC, although this requires
further investigation.

Limitation
This study had several limitations. Firstly, information relating to
patient co-morbidities and performance status was not available
in the TCGA database. Secondly, the systemic chemotherapy
regimens were not uniform, and most of them were based on
fluoropyrimidines. Thirdly, the gene network contains too many
biomarkers, increasing the difficulty of clinical use. Lastly, this

was a retrospective study, without any independent external
patient datasets as test. Despite some limitations, it was the first,
to the best of our knowledge, to integrate miRNAs, mRNA, and
DNA methylation sites as a genome-wide network to predict the
OS of patients with GC, and we would try to design a validation
in our hospital.

CONCLUSION

In summary, we used a TCGA cohort to develop and validate
a novel genome-wide network comprising seven miRNAs, eight
mRNAs, and 19 DNA methylation sites for the prognosis of GC.
A combination of GS and TNM staging enhances its prognostic
value, proposing a more comprehensive sub-typing system. The
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developed network is expected to aid in predicting GC patients
who may benefit from chemotherapy to some degree.
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