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Abstract

Proteins perform most cellular functions in macromolecular complexes. The same protein often 

participates in different complexes to exhibit diverse functionality. Current ensemble approaches 

of identifying cellular protein interactions cannot reveal physiological permutations of these 

interactions. Here, we describe a single molecule pull-down (SiMPull) assay that combines the 

principles of conventional pull-down assay with single molecule fluorescence microscopy and 

enables direct visualization of individual cellular protein complexes. SiMPull can reveal how 

many proteins and of which kinds are present in the in vivo complex, as we show using protein 

kinase A. We then demonstrate a wide applicability to various signaling proteins found in cytosol, 

membrane, and cellular organelles, and to endogenous protein complexes from animal tissue 

extracts. The pulled down proteins are functional and are used, without further processing, for 

single molecule biochemical studies. SiMPull should provide a rapid, sensitive and robust 

platform for analyzing protein assemblies in biological pathways.

Dynamic interactions between proteins guide almost every aspect of cellular function1. 

Understanding how the macromolecules in living cells interact, holds the key to deciphering 

their roles in cellular function and regulation2, 3. Individual proteins are also part of diverse 
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sets of protein networks, making it very challenging to tease apart various permutations of 

protein-protein interactions occurring in the cellular context4. Currently, the gold standard 

for determining interactions between proteins is the co-immunoprecipitation assay5–7 which 

relies on affinity-based co-purification of interacting proteins, followed by identification via 

Western blot (WB) or mass spectrometry. It is however difficult to determine how many 

copies of which proteins are present in the physiological complex using the conventional 

immunoprecipitation. In addition, many hours and multiple steps that often exist between 

sample preparation and measurements present uncertainties over the extent to which in vivo 

interactions are preserved prior to analysis.

In situ imaging methods based on resonance energy transfer8, 9, fluorescence correlation 

spectroscopy10, 11, two-hybrid methods12, 13 and bimolecular fluorescence complementation 

assay14 are other popular tools for studying pair-wise protein interactions. However, these 

methods cannot be applied to endogenous proteins and are, in general, blind to 

heterogeneous interactions between proteins and their stoichiometry.

Here we present a simple, direct and sensitive method to study cellular protein complexes 

with single complex resolution. We call this method single molecule pull-down or SiMPull 

because physiological macromolecular complexes are pulled down from cell or tissue 

extracts directly to the imaging surface of single molecule fluorescence microscopy.

Experimental strategy and YFP pull-down

The key requirement for pull-down assays is the selective capture of a protein of interest 

(bait), which will bring along its binding partners (prey). We constructed a flow chamber 

using a microscope slide and a cover slip, passivated with mPEG (methoxy polyethylene 

glycol)15 to prevent non-specific adsorption of cell extracts and antibodies, which should 

minimize false positives7. The imaging surface was also doped with biotinylated PEG and 

streptavidin, followed by biotinylated antibodies against the bait protein (Fig. 1a–d, 

Supplementary Fig. 1). When cell extracts are infused in the flow chamber, the surface 

tethered antibody captures the bait protein together with any interacting partners. After 

washing away the unbound cell extract, co-immunoprecipitated prey proteins are visualized 

either through immunofluorescence labeling (Fig. 1a) or using genetically encoded 

fluorescent protein tags (Fig. 1b). This approach is extendable to multi-protein complexes 

via multi-color labeling and has the potential to differentiate between multiple sub-

complexes and configurations (Fig. 1c). When proteins are fluorescently labeled with a fixed 

ratio, photobleaching events yield stoichiometric information16, 17 (Fig. 1d).

We first validated the SiMPull assay for specific pull-down of yellow fluorescent protein 

(YFP) from cell extracts. When the crude lysate from cells over-expressing (His)6-tagged 

YFP was infused into the flow chamber coated with anti-His antibody, we observed single 

YFP molecules (Fig. 1e, f), similar to the analysis performed using purified protein18 

(Supplementary Fig. 2). Binding of YFP to the antibody was stable over two hours 

(Supplementary Fig. 3). The blank slide surface showed ~30 fluorescent spots per imaging 

area, 2,500 µm2, possibly due to surface impurities. The number of fluorescent spots per 

imaging area, Nf, due to specifically pulled down proteins was 10–20 fold over the 
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background; we could maintain > 10 fold signal to noise ratio by controlling the lysate 

dilution factor. Control experiments with YFP lysate on non-specific antibody and lysate 

without YFP expression showed the same Nf as blank. Even lysate with 10-fold higher 

concentration of YFP yielded only ~30 additional spots relative to the blank, implying less 

than 0.5% contribution from non-specifically adsorbed proteins (Fig. 1e, f). Nf increased 

monotonically as the cell lysate concentration is increased over three orders of magnitude 

(Supplementary Fig.4), showing that SiMPull can provide a quantitative estimate of protein 

concentration in cell lysate.

Single molecule photobleaching analysis performed using the monomeric YFP and tandem 

dimeric YFP constructs (Supplementary Fig. 5, 6) showed that accurate stoichiometric 

information can be obtained from the pulled down proteins when we account for the fact that 

about 75% of YFP is fluorescently active16.

Two-color SiMPull of PKA complex

Next, we demonstrate the ability to pull-down single protein complexes from cell extracts 

using cyclic adenosine monophosphate (cAMP) dependent protein kinase, PKA, as our 

model system. PKA is a ubiquitous serine/threonine kinase that acts downstream of the G-

protein coupled receptor (GPCR) pathway19. In the inactive state, PKA is a tetrameric 

complex consisting of two regulatory (R) and two catalytic (C) subunits. In the presence of 

cAMP, the complex dissociates, thereby activating the enzyme. We prepared C-HA-YFP 

and R-Flag-mCherry constructs (Fig. 2a).

When only C-HA-YFP was expressed in HEK293 cells, we could specifically pull-down the 

protein from the cell lysate using surface immobilized antibodies against HA- or YFP-

epitope (Fig. 2b). As expected, these samples did not show any detectable fluorescence 

above background in the mCherry detection channel (Supplementary Fig. 7).

When the two subunits, R and C, were co-expressed, WB showed that R and C 

coimmunoprecipitate20 and they dissociate when cAMP is added to the lysate, confirming 

that the modified constructs retain the known properties of PKA (Fig. 2a). In a similar 

fashion, when we pulled down R-Flag-mCherry with anti-Flag antibody, we could detect 

both YFP and mCherry fluorescence spots. The number of fluorescent spots in mCherry and 

YFP channels was similar, indicating, on average, a one-to-one association (Fig. 2c, d). 57% 

of YFP spots colocalized with a corresponding mCherry, as shown by individual images and 

their overlay (Fig. 2d). Incomplete colocalization may arise from basal tonic activation of 

PKA, inactive chromophores16, 21 or unbalanced expression of two proteins in individual 

cells. Adding cAMP analog to the flow channel or pre-incubating the lysate with cAMP 

resulted in a greatly reduced number of C subunit (YFP spots) without a significant change 

in R subunit (mCherry spots) (Fig. 2c, e). After the reaction, only 4% of remaining YFP 

molecules colocalized with a corresponding mCherry.

Intracellular levels of cAMP can be increased by stimulating GPCRs for activation of 

adenylyl cyclases. When the cells over-expressing the PKA complex were stimulated with 

forskolin, an agonist for adenylyl cyclase for cAMP production, the amount of active PKA 

in cells increased as seen via dissociation of PKA in WB (Supplementary Fig. 8). Similarly, 
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in our SiMPull assay, the number of C subunit (YFP molecules) pulled down through R 

subunit decreased significantly (Fig. 2c).

We explored the stoichiometry of PKA via photobleaching analysis. When C-HA-YFP was 

expressed alone and pulled down using HA-antibody, 91% of YFP traces exhibited one-step 

photobleaching indicating a monomeric population (Fig. 2f). When C-HA-YFP and R-Flag-

mCherry were co-expressed and pulled down using anti-Flag antibody, 47% of YFP traces 

displayed two photobleaching steps (Fig. 2g) while 51% molecules bleached in one step. 

Assuming a 75% active fraction of YFP16, this is consistent with the known stoichiometry 

of two catalytic subunits in each PKA. We did not perform photobleaching-based 

stoichiometry analysis for mCherry due to its inferior photophysical properties22.

Applications of SiMPull

Next, we examined the applicability of SiMPull to protein complexes from various cellular 

environments using different capture and detection configurations (Fig. 3).

Receptor pull-down

Membrane protein complexes are particularly difficult to analyze using conventional 

methods, thus motivating new approaches23, 24. Their stoichiometry cannot be determined 

via photobleaching in the cell unless the areal density of protein complexes is low enough 

for single molecule detection16, 25, 26. SiMPull should be able to detect individual complexes 

if membrane patches containing one complex can be isolated. As a test, we applied SiMPull 

on β2 adrenergic receptor (β2AR), a prototypical GPCR. HEK293 cells were transfected with 

Flag-YFP-β2AR and membrane proteins were solubilized. We could specifically pull-down 

the receptor using antibodies against YFP or Flag (Fig. 3a–c). 29% of the traces displayed 

two distinct bleaching steps (Supplementary Fig. 9a), indicating a ~51% dimer population, 

assuming 75% of active fluorophores. Less than 3% of the traces showed 3 or more 

photobleaching steps. Our observation of β2AR homo-dimerization is consistent with 

previous studies27, 28. To test if β1AR may form heterooligomers with β2AR28, we co-

expressed mCherry-β1AR and YFP-β2AR. Using antibody against mCherry-β1AR, we could 

pull-down YFP-β2AR and vice versa (Supplementary Fig. 9b–e). The two fluorophores 

colocalized with ~42% overlap, consistent with heterooligomer formation.

Mitochondrial protein pull-down

MAVS (mitochondrial antiviral signaling) is a mitochondrial outer membrane protein 

involved in innate immune response29. When isolated mitochondrial fraction from cells 

over-expressing YFP-MAVS30 was applied to a surface with anti-YFP, we observed bright 

fluorescent structures (Fig. 3e, left), indicating the presence of multiple YFP molecules. 

Upon pre-solubilizing the mitochondrial preparation using mild detergent, we observed 

isolated single YFP spots (Fig. 3e, center), 86% of which displayed single photobleaching 

steps (Supplementary Fig. 10), supporting monomeric state of solubilized MAVS. This 

observation suggests that the bright fluorescent structures observed in unsolubilized 

preparations are due to immunoprecipitated mitochondrial membrane patches or whole 

mitochondria. It may be possible to specifically immobilize cellular organelles or their 
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components using antibodies against suitable marker proteins and perform single molecule 

measurements in a physiologically relevant context.

Immunofluorescence detection of single complexes

We extended the assay to detection via antibodies using mammalian target of rapamycin 

complex 1 (mTORC1) as a model system. mTORC1 is a key signaling complex that 

regulates cell growth and metabolism in response to nutrient availability to the cells31, 32. In 

addition to mTOR (mammalian target of rapamycin), a defining component of mTORC1 is 

Raptor (regulatory associated protein of mTOR), which associates with mTOR at an 

equimolar ratio31, 33. We expressed Flag-mTOR and HA-Raptor in HEK293 cells. Flag-

mTOR was pulled down using biotinylated Flag-antibody; Raptor was detected using HA-

antibody followed by fluorescently labeled secondary antibody (Fig. 3g). When both Flag-

mTOR and HA-Raptor were co-expressed, we observed the detection antibody binding as 

fluorescent spots whereas background level of fluorescence was detected when only one of 

the two proteins was expressed (Fig. 3h, i), demonstrating antibody-based detection in 

SiMPull.

Pull-down of endogenous complexes in native tissues

Exogenous expression may lead to non-physiological associations between proteins. Pull-

down of endogenously expressed proteins, though desirable, is challenging due to low 

abundance, high background interaction with other cellular proteins, and general lack of 

high affinity antibodies. We tested if SiMPull can be used to detect interactions between 

endogenous proteins. A kinase anchoring proteins (AKAPs) bind to PKA and confine it to 

discrete locations in the cell34. Fig. 3k shows AKAP150 can be co-immunoprecipitated with 

PKA from mouse brain extract.

Primary antibodies against proteins are often expensive and difficult to label with biotin or 

fluorophores. Thus, to keep our approach general, we used biotin labeled secondary 

antibody to immobilize the antibody against the bait (PKA), and applied mouse brain 

extract. On probing for the prey protein (AKAP150) using its primary antibody and 

fluorescently labeled secondary antibody, we observed 10-fold more fluorescent spots in the 

channel with PKA antibody as compared to the control channel (Fig. 3l, m). SiMPull 

required a 20-fold lower sample volume as compared to the corresponding WB. This 

sensitivity allowed detection of PKA-AKAP binding from mouse heart tissue, which was 

below the detection limit of the conventional WB under the same conditions (Supplementary 

Fig. 11).

SiMPull as a preparatory tool

A key advantage of SiMPull is that protein complexes can be directly observed from a fresh 

cell lysate, bypassing purification procedures. We tested if SiMPull can be used for 

functional analysis of pulled down proteins. PcrA, a superfamily 1 helicase, is an ATP 

driven motor protein that binds and translocates on single stranded DNA (ssDNA)35. (His)6-

tagged PcrA was pulled down from bacterial lysate using anti-His antibody and 

fluorescently labeled DNA molecules were added to the flow channel (Fig. 4a). Fluorescent 
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spots due to labeled DNA binding appeared in the flow channel with pulled down PcrA, 

while the control channel showed minimal DNA binding (Fig. 4b, c).

When PcrA binds to a partial duplex DNA with a 5’ overhang, it anchors itself to the 

junction and repetitively reels-in the ssDNA35. By labeling the DNA with a donor at the tail 

end and an acceptor at the junction (Fig. 4a), we could observe the reeling-in activity as a 

gradual increase in fluorescence resonance energy transfer (FRET) (Fig. 4d). Once PcrA 

reaches the end of ssDNA, it runs off the ssDNA track and repeats the process from the 

junction over and over, resulting in cyclic increases and decreases in FRET. 86% (161 of 

188) of bound FRET-labeled DNA molecules exhibited repetitive cycling. On increasing the 

ATP concentration, translocation became faster (Supplementary Fig. 12a), and in the 

absence of ATP, DNA remained bound but no reeling-in activity was observed 

(Supplementary Fig. 12b). The mean translocation time matched well with the data obtained 

with purified protein (Fig. 4e, f). Thus, SiMPull can pull-down functional macromolecules 

directly from cell extracts for subsequent single molecule biochemistry in situ.

Discussion

We have established a single molecule platform for analyzing cellular association of 

macromolecules. SiMPull can be used as an extension of commonly used WB analysis 

without requiring additional sample preparation (Supplementary Fig. 13) and confers several 

key advantages. 1) It can provide quantitative data on sub-populations of different 

association states. 2) It provides information on complex stoichiometry if the proteins can be 

stoichiometrically labeled. 3) The high sensitivity allows the studies of complexes of low 

abundance and a suitable calibration (Supplementary Fig. 4) should make it possible to 

determine the expression level of protein complexes in cell lysate. 4) The whole assay took 

about 30 minutes, considerably shorter than conventional WB. In a pilot experiment, we 

could dilute the cell lysate, pull-down and quantify YFP in 2.5 min (Supplementary Fig. 14). 

Therefore, it should be possible to analyze even relatively weak protein complexes as long 

as the dissociation rate constant koff is equal to or smaller than 0.01 s−1. Combining this with 

microfluidics platform, cross-linking methods or zero mode waveguide36 may extend the 

method to complexes with even higher koff.

Cellular processes are under a tight spatio-temporal regulation. In order to overcome 

ensemble averaging over heterogeneous cell populations, SiMPull may be combined with 

fluorescence aided cell sorting to selectively analyze a subpopulation or may even be pushed 

to the single cell level. In a preliminary experiment, we could pull-down and quantify 

proteins from 10 cells obtained through cell sorting (Supplementary Fig. 15) compared to 

~5000 cells usually required for a WB37. Single cell SiMPull may enhance the recently 

demonstrated ability to quantify proteins and RNA numbers in single cells38. As in 

conventional WB, the sensitivity and specificity of SiMPull are determined by the quality of 

capture and detection antibodies. The assay may be combined with recent developments in 

labeling strategies39 for further improvement in sensitivity and labeling efficiency.

Post-translational modifications play an important role in cellular processes but are difficult 

to reproduce in recombinant proteins. In addition, the necessary co-factors or ligands for a 
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protein of interest are often unknown. SiMPull as a preparatory tool provides a possibility to 

study these modified proteins or protein complexes that cannot be purified using 

conventional methods.

Methods summary

Flow chambers were prepared on mPEG passivated quartz slides doped with biotin PEG15. 

Biotinylated antibodies were immobilized by incubating ~10 nM of antibody for 10 min on 

NeutrAvidin (Thermo) coated flow chambers. Prism type total internal reflection 

fluorescence (TIRF) microscope was used to acquire the single molecule data40. Samples 

with fluorescent protein tag were serially diluted to obtain well-isolated spots on the surface 

upon 20 min of incubation over immobilized antibody surface. All dilutions were made 

immediately before addition to the flow chamber in 10 mM Tris-HCl pH 8.0, 50 mM NaCl 

buffer with 0.1 mg/ml bovine serum albumin (New England Biolabs), unless specified. 

Unbound antibodies and sample were removed from the channel by washing with buffer 

twice between successive additions. For immunofluorescence detection, immunoprecipitated 

complexes were incubated with a different antibody against prey protein (~10 nM) for 20 

min and fluorescent-dye-labeled secondary antibody (2–5 nM) for 5 min before imaging. 

Single molecule analysis was performed using scripts written in Matlab.

Methods

Overview

Flow chambers were prepared on mPEG passivated quartz slides doped with biotin PEG15. 

Biotinylated antibodies were immobilized by incubating ~10 nM of antibody for 10 min on 

NeutrAvidin (Thermo) coated flow chambers. Prism type total internal reflection 

fluorescence (TIRF) microscope was used to acquire the single molecule data40. Samples 

with fluorescent protein tag were serially diluted to obtain well-isolated spots on the surface 

upon 20 min of incubation over immobilized antibody surface. All dilutions were made 

immediately before addition to the flow chamber in 10 mM Tris-HCl pH 8.0, 50 mM NaCl 

buffer with 0.1 mg/ml bovine serum albumin (New England Biolabs), unless specified. 

Unbound antibodies and sample were removed from the channel by washing with buffer 

twice between successive additions. For immunofluorescence detection, immunoprecipitated 

complexes were incubated with a different antibody against prey protein (~10 nM) for 20 

min and fluorescent-dye-labeled secondary antibody (2–5 nM) for 5 min before imaging. 

Single molecule analysis was performed using scripts written in Matlab.

Single molecule imaging and spot counting

Prism type TIRF microscope was used to acquire single molecule data40. YFP was excited 

at 488 nm; mCherry was excited at 532 or 568 nm. Narrow band-pass filters were used to 

avoid cross-talk between channels (HQ 535/30 from Chroma Technology for YFP and BL 

607/36 from Semrock Inc. for mCherry). All experiments were performed at room 

temperature (22 – 25 °C) unless specified. Single molecule analysis was performed as 

described earlier15. Mean spot count per image (imaging area 2500 µm2) and standard 

deviation were calculated from images taken from 20 or more different regions.
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Photobleaching analysis

Single molecule fluorescence time traces of surface immobilized YFP-tagged proteins were 

manually scored for the number of bleaching steps16. To avoid false colocalization, samples 

were immobilized at an optimal surface density (~300 molecules in 2500 µm2 imaging area). 

The number of photobleaching steps (single frame intensity drops of equal size) in each 

trace was manually determined, following published procedures16. Fluorescence trace of 

each molecule was classified as having 1–4 bleaching steps or was discarded if no clean 

bleaching steps could be identified (Supplementary Fig. 5). Some fluorescent protein 

molecules exhibited blinking but under most circumstances, distinct fluorescence intensity 

levels could still be readily determined in spite of blinking (Supplementary Fig. 5a, b). 

Separate counts were maintained for each case. At least 500 molecules were analyzed for 

each sample. The probability of missed bleaching events, due to simultaneous bleaching of 

both FPs within the same imaging window is ~5%. The population distribution of observed 

bleaching events and discarded traces is reported in Supplementary Table 1. For future 

extensions to complexes with many more copies of the same protein, automated algorithms 

for scoring photobleaching steps would be required41.

Single molecule co-localization

Co-localization between YFP and mCherry was performed using a method similar to 

Ulbrich et al.42. Briefly, we took two separate movies of the same region using YFP and 

mCherry excitation. The fluorescent spots in both images were fit with Gaussian profiles to 

determine the center positions of molecules to half-pixel accuracy. Next, for each molecule 

in YFP image, we determined the mCherry molecules with center within 2 pixel (~300 nm) 

distance. The number of molecules where this co-localization occurred divided by the total 

number of YFP molecules was presented as overlap %.

YFP constructs and pull-down

As YFP has been shown to dimerize, monomeric YFP was generated through site directed 

mutagenesis of alanine 207 to lysine using pEYFP-C1 as DNA template (Clontech). For 

bacterial expression, monomeric YFP was cloned into Sal I and Xho I sites of pET-28b(+) 

vector. BL21 DE3 cells were transformed with YFP construct and induced by 0.2 mM IPTG 

for protein expression. Cells were resuspended in lysis buffer (50 mM NaH2PO4, 300 mM 

NaCl, 10 mM imidazole pH 8.0) and sonicated. The lysate was centrifuged at 15,000g for 20 

min to collect supernatant used for SiMPull.

For expression in mammalian cells, YFP-(His)6 was generated through addition of a 6xHis-

tag to the C-terminal of YFP and subcloned into Xho I and Xba I sites of pCDNA3.1(+). A 

second YFP was subcloned into the Hind III and EcoR I sites of pCDNA3.1-YFP-(His)6 to 

make a tandem dimeric YFP construct. Monomeric and dimeric YFP constructs were 

transiently expressed in HEK293 cells and purified using standard Ni-NTA chromatography. 

Proteins were detected by WB using GFP antibody (Clontech) or Penta-His antibody 

(Qiagen). For single molecule analysis, samples were immobilized on biotinylated anti-

Penta-His antibody (Qiagen) or on biotinylated polyclonal anti-GFP antibody (Rockland 

Immunochemicals, Inc.).
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Protein kinase A (PKA) constructs and pull-down

HEK293 cells were transfected with R-Flag-mCherry and C-HA-YFP constructs. The 

regulatory subunit used was PKA RIIβ, and the catalytic subunit is the Cα isoform. After 24 

hr expression, cells were harvested into lysis buffer (10 mM Tris pH 7.5, 1% NP-40, 150 

mM NaCl, 1 mM EDTA, 1 mM benzamidine, 10 µg/ml leupeptin, 1 mM NaF, 1 mM 

Na3VO4). This lysate was centrifuged at 14,000g for 20 min and used for SiMPull. For bulk 

immunoprecipitation, anti-Flag M2 beads were added to the lysate for 3 hr at 4 °C. Proteins 

were separated by SDS-PAGE and transferred onto nitrocellulose membranes for blot with 

anti-HA antibody and anti-mCherry antibody.

cAMP treatment: A non-hydrolysable analog (8-Br-cAMP, Sigma), was used to activate 

PKA. For in vivo stimulation in cells, R-Flag-mCherry and C-HA-YFP were transiently 

expressed in HEK293 cells for 24 hr. Cells were pre-treated for 10 min with 10 µM 3-

Isobutyl-1-methlxanthine (IBMX, Sigma) and 5 min stimulation with 10 µM Forskolin 

(Sigma). Cells were immediately washed with cold PBS and lysed as described earlier.

Adrenergic receptor constructs and pull-down

Flag-YFP-β2AR, HA-YFP-β2AR, Flag-mCherry-β1AR and HA-mCherry-β1AR were 

transiently expressed in HEK293 cells for 24 hr. Cells were harvested into hypotonic lysis 

buffer (10 mM Tris pH 7.4, 1 mM EDTA, 1 mM benzamidine, 10 µg/ml leupeptin, 0.3% 

DDM (n-dodecyl-beta-D-maltoside), and incubated for 30 min before centrifugation at 600g 

for 10 min. Supernatants were collected and used for SiMPull with antibodies as indicated.

Mitochondria preparation and MAVS pull-down

HEK293 cells were transiently transfected with YFP-MAVS30. Intact mitochondria were 

isolated using MITOISO2 kit (Sigma) and diluted in the storage buffer supplied with the kit. 

Mitochondrial preparation was immobilized on slides either directly or after solubilization 

by adding 1% DDM to the storage buffer. We obtained similar results using whole cell 

lysates prepared using several different lysing solutions. YFP-MAVS or mitochondria were 

immunoprecipitated using biotinylated antibody against GFP.

mTORC1 construct and pull-down

Flag-mTOR was stably transfected in HEK293 cells to obtain near endogenous expression 

levels of mTOR. For mTORC1 pull-down, Flag-mTOR stable cell lines were transiently 

transfected with HA-Raptor. HA-Raptor only lysate was obtained by transiently transfecting 

HEK293 cells with HA-Raptor. Cells were lysed using CHAPS detergent buffer (40 mM 

HEPES pH 7.5, 0.3% CHAPS, 150 mM NaCl, 2.5 mM sodium pyrophosphate, 1 mM β-

glycerophosphate, 1 mM EDTA), with protease inhibitor cocktail. Lysate was diluted in the 

buffer without CHAPS for SiMPull with biotinylated anti-Flag antibody (Sigma). Co-

immunoprecipitated HA-Raptor was detected using Goat-anti-HA antibody (Genscript) and 

Donkey-anti-Goat secondary antibody (Rockland Immunochemicals, Inc.) labeled with Cy3.
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Endogenous protein pull-down

Mouse brain and heart extracts were prepared from two-week-old FVB mice after 

anesthetization. Both sample were homogenized in lysis buffer (20 mM HEPES pH 7.4, 

0.5% Triton X-100, 150 mM NaCl, 10% glycerol, 5 mM EDTA, 5 µg/ml pepstatin, 1 mM 

PMSF, 1 mM NaF, 1 mM Na3VO4), incubated at 4 °C for one hr followed by centrifugation 

at 16,000g for 10 min to collect the supernatant. These samples were directly used for 

SiMPull. For bulk immunoprecipitation, protein-A beads were added to pre-clean the lysate 

(2 hr incubation at 4 °C). PKARII antibody was then added to the lysate for overnight 

immunoprecipitation followed by 1 hr incubation with protein-A beads. Control rabbit IgG 

was added at final concentration 2 µg/ml. The immunoprecipitated proteins were separated 

by SDS-PAGE and transferred onto nitrocellulose membranes for immunoblot analysis with 

AKAP150 and PKARII antibodies.

PcrA pull-down and functional assay

(His)6-tagged PcrA purified protein and cell lysate were prepared as previously described35. 

The protein was immobilized on slides via antibody against polyhistidine tag. A Cy3 and 

Cy5 dual-labeled partial duplex DNA (Integrated DNA Technologies, Inc.) with a 5’ tail 

was added to immobilized protein. The sequence of DNA used was: 5’Cy3-(dT)40-GCC 

TCG CTG CCG TCG CCA-3’ + 5’- TGG CGA CGG CAG CGA GGC-3’-Cy5.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic for SiMPull assay. Immunoprecipitated protein complexes are visualized using 

TIRF microscopy via (a) fluorophores-labeled antibody or (b) fluorescent protein tags. (c) 

Multi-color colocalization can distinguish between subcomplexes (e.g. AB+AC vs. ABC). 

(d) Photobleaching analysis can provide stoichiometric information. A simulated 

photobleaching trajectory for a trimeric protein. (e) TIRF images for YFP pulled down from 

cells expressing (His)6-YFP (YFP) and control cells (Con) using His-tag or a control (Flag-

tag) antibody. (−) indicates no antibody or sample. Scale bar is 5 µm. (f) Average number of 

fluorescent molecules per imaging area, Nf. Error bars denote s. d. (n > 20).
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Figure 2. 
PKA pull-down. (a) Schematic of PKA construct. In WB, C-HA-YFP is pulled down via R-

Flag-mCherry; on adding cAMP, PKA dissociates. (b) Nf for C-HA-YFP (C) as a function 

of lysates and antibodies demonstrate the specificity of pull-down. (c–e) PKA complex pull-

down. (c) Nf for YFP (C) and mCherry (R) spots. (d) Images of single PKA complexes, YFP 

(left), mCherry (center) and overlay (right). (e) On adding cAMP, YFP spots decrease 

significantly. Photobleaching step distribution (f) for C-HA-YFP only lysate and (g) for C-

HA-YFP pulled down via R-Flag-mCherry. Error bars denote s. d. (n > 20). Scale bar is 5 

µm.
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Figure 3. 
Applications of SiMPull assay. (a–c) β2AR-YFP pull-down. (d–f) MAVS pull-down. 

Mitochondrial fraction from cells over-expressing YFP-MAVS was added either directly or 

after detergent solubilization (g–i) mTORC1 pull-down. Lysate from cells expressing Flag-

mTOR, HA-Raptor or both was applied on chambers with Flag antibody, and probed 

through primary antibody against HA and labeled secondary antibody. (j–m) Endogenous 

PKA-AKAP complex pull-down from mouse brain extract. (k) WB shows AKAP 

immunoprecipitation with PKA antibody. (l) Immunofluorescence images of AKAP150 

pulled down through PKA antibody. (c, f, i, m) show Nf. Scale bars are 5 µm. Error bars 

denote s. d. (n > 20).
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Figure 4. 
PcrA pull-down and activity test (a) schematic, (b, c) labeled DNA binding to 

immunoprecipitated PcrA. Scale bar is 5 µm. Error bars represent s. d. (n > 20). (d) A typical 

time trace of repetitive reeling-in activity of PcrA monitored by FRET. The distribution of 

translocation times (Δt) and its mean, <Δt>, (e) for purified PcrA and (f) for PcrA pulled 

down from cell extracts, at 1 mM ATP concentration.
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