
TYPE Review

PUBLISHED 10 October 2022

DOI 10.3389/fcvm.2022.987104

OPEN ACCESS

EDITED BY

Georges Nemer,

Hamad bin Khalifa University, Qatar

REVIEWED BY

Jason Bazil,

Michigan State University,

United States

Padhmanand Sudhakar,

KU Leuven, Belgium

*CORRESPONDENCE

Mohammad R. K. Mofrad

mofrad@berkeley.edu

SPECIALTY SECTION

This article was submitted to

Cardiovascular Genetics and Systems

Medicine,

a section of the journal

Frontiers in Cardiovascular Medicine

RECEIVED 05 July 2022

ACCEPTED 20 September 2022

PUBLISHED 10 October 2022

CITATION

Aminian-Dehkordi J, Valiei A and

Mofrad MRK (2022) Emerging

computational paradigms to address

the complex role of gut microbial

metabolism in cardiovascular diseases.

Front. Cardiovasc. Med. 9:987104.

doi: 10.3389/fcvm.2022.987104

COPYRIGHT

© 2022 Aminian-Dehkordi, Valiei and

Mofrad. This is an open-access article

distributed under the terms of the

Creative Commons Attribution License

(CC BY). The use, distribution or

reproduction in other forums is

permitted, provided the original

author(s) and the copyright owner(s)

are credited and that the original

publication in this journal is cited, in

accordance with accepted academic

practice. No use, distribution or

reproduction is permitted which does

not comply with these terms.

Emerging computational
paradigms to address the
complex role of gut microbial
metabolism in cardiovascular
diseases
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Department of Bioengineering and Mechanical Engineering, University of California, Berkeley,

Berkeley, CA, United States

The human gut microbiota and its associated perturbations are implicated

in a variety of cardiovascular diseases (CVDs). There is evidence that the

structure and metabolic composition of the gut microbiome and some of its

metabolites have mechanistic associations with several CVDs. Nevertheless,

there is a need to unravel metabolic behavior and underlying mechanisms

of microbiome-host interactions. This need is even more highlighted

when considering that microbiome-secreted metabolites contributing to

CVDs are the subject of intensive research to develop new prevention and

therapeutic techniques. In addition to the application of high-throughput

data used in microbiome-related studies, advanced computational tools

enable us to integrate omics into di�erent mathematical models, including

constraint-based models, dynamic models, agent-based models, and

machine learning tools, to build a holistic picture of metabolic pathological

mechanisms. In this article, we aim to review and introduce state-of-the-art

mathematical models and computational approaches addressing the link

between the microbiome and CVDs.

KEYWORDS

cardiovascular diseases, microbiome, systems biology, genome-scale metabolic
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Introduction

Dwelling in the human gut is a complex microbial community made up of

various cell types spanning a wide range of taxa (1). This diverse microbial habitat is

demonstrated to strongly contribute to food metabolism, particularly the digestion of

compounds that are hardly degradable by human cells, such as vitamins and amino

acids (2–4), as well as non-digestible molecules such as complex carbohydrates (5, 6).

It is widely believed that the metabolic function of microbiota plays a salient role in

maintaining the integrity of intestinal mucosa (7), establishing a homeostatic state in the

gut ecosystem (8), and preserving overall health. Besides food digestion, gut microbes
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are influential in drug metabolism by facilitating the

biotransformation of exogenous compounds into biologically

active products, thereby regulating host pathways for xenobiotic

transport (9–13). Considering the broad role of the microbiome

in health, deciphering microbial metabolic pathways is a subject

of immense scientific interest.

The essential role of microbiota entails the digestion of food

and drugs in the intestine before they enter the bloodstream

and reach the target tissue (14–16), where a complex metabolic

process involving the interaction between the host and the

microbiota takes place (17). Although this association is

symbiotic in nature, it is highly susceptible to perturbation by

various environmental factors. Metabolites produced within the

gut, for instance, vary according to changes in diet and nutrition

which could, in some cases, adversely affect the host function.

Microbially-produced short-chain fatty acids including acetate

and butyrate, for example, can impair the metabolism of glucose

(18), and themicrobial endotoxin lipopolysaccharide can elevate

the intestinal epithelial permeability, causing leaky gut (19).

Changes in environmental factors could have more permanent

effects when they modify the gut microbiome composition

to become richer in detrimental phenotypes, resulting in an

unbalanced microbiome composition (20, 21). An abnormal gut

microbiome can undermine immunity and trigger a wide range

of chronic immune-mediated disorders such as inflammatory

bowel diseases depending on specific genetic characteristics of

the host and the environment.

The effect of incongruous gut microbiota is not usually

limited to the gut but permeates beyond the gastrointestinal tract

(GI) in the form of notorious diseases like liver fibrosis and

cirrhosis (22). Once the food enters the bloodstream, it enters

the liver through the portal vein, where undesirable metabolites

interfere with normal hepatic functions. For example, dietary

precursors, such as choline and carnitine, which are converted

into trimethylamine (TMA) by the gut microbiota via specific

genes (23), can be metabolized in the liver into Trimethylamine-

N-oxide (TMAO) by host hepatic flavin monooxygenases (24)

(see Figure 1). TMAO, in turn, has been reported to increase the

severity of non-alcoholic fatty liver disease (25). Additionally,

ethanol, a common product of microbial fermentation, is shown

to increase enzymatic activity, leading to series of inflammatory

reactions in the liver (26). Some compounds, such as short-chain

fatty acids, can have opposing roles. While stearic acid induces

inflammatory signaling (27), short-chain fatty acids have been

reported to delay non-alcoholic fatty liver disease development

and reduce blood pressure (28). Such trade-off correlations

between metabolites make the identification of synergic effects

of metabolites more complicated (29).

Even after hepatic digestion, numerous microbiome-derived

compounds or the byproducts of their digestion circulate via the

blood and spark serious disruptive effects in other organs. The

cardiac system is a major site where these metabolites can give

rise to severe health consequences by inducing cardiovascular

diseases (CVDs) (30–32). TMAO has been realized to enhance

plaque accumulation inside the arteries (atherosclerosis) (33),

platelet reactivity and blood coagulation (thrombosis) potential

(34, 35), blockage of arteries in coronary artery disease (36), the

risk of heart failure, vascular inflammation (37, 38), as well as

abdominal aortic aneurysm (39) (Figure 1). Some studies have

shown that elevated levels of TMAO could also increase the

accumulation of macrophage cholesterol and upregulate several

macrophage scavenger receptors associated with atherosclerosis

(40) [for more information on gut phage-bacteria interplay

and the interactions of bacterial metabolites in cardiometabolic

diseases, see (41)]. The microbiota could also modulate the

metabolism of lipids and glucose by contributing to the synthesis

of bile acids, the products of cholesterol via an interwoven

metabolic network in the liver (42). The synthesis rate of bile

acids, can be down-regulated by the gut microbiota, leading

to an increase in the levels of low-density lipoprotein and

eventually atherosclerosis (43).

Despite the significance of CVDs and their emerging

etiological link to the microbiome (44), many questions on

the microbiome-rooted pathologies remain to be addressed.

Notably, the molecular mechanisms of microbe-microbe

and microbe-host interactions must be elucidated to reveal

dysregulation mechanisms mediated by the microbiome and

discover new therapeutics (29). Conventional purely data-

driven experimental approaches, such as measurement of

metabolites in body fluids, are challenging to implement

on a large scale, especially when expensive equipment with

high selectivity is required to detect trace metabolites. These

methods fail to provide a mechanistic picture of diseases.

Furthermore, despite the rapid growth in microbiome research,

the links between the microbiota and CVD pharmacology have

remained underexplored. Systems pharmacology has garnered

attention toward the detection of CVD risk factors by which

drugs with amicable or adverse impacts are identified. Some

antiretroviral therapy drugs could promote CVD through

regulatory gene networks (45). While a framework focusing

on gene-set enrichment analysis can be used to determine

potential pathways with off-point drug effects, such approaches

are often challenged by multiple variants affecting complex drug

mechanisms in the microbiome (46). In situations where a

great deal of influence is exerted by the microbiome on the

human phenotypes, more robust investigations at the interface

of microbiome and systems biology are called for.

Omics methods provide a more in-depth metabolic

signature of diseases, yet they are inadequate to draw concrete

mechanistic conclusions. Comprehensive systematic views,

which involve systems-oriented techniques and computational

modeling, complement experimentation to unveil the

microbiome causality of CVDs. Herein, we aim to review

the state-of-the-art computational approaches proposed to

determine microbiome-CVDs interplay. Given the importance

of data-driven omics approaches, we briefly review the recent
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FIGURE 1

Overall representation of gut microbiota as a regulator of the cardiovascular systems of the body. As an example, TMA produced by the

microbiome is transported to the liver through the portal vein and readily metabolized by host hepatic flavin monooxygenases into

trimethylamine-N-oxide (TMAO). TMAO is then released into the bloodstream, leading to severe cardiovascular diseases.

advances in this topic, followed by an elaborate discussion of

common approaches that can build on these technologies to

model microbiome-based pathologies.

High throughput data for
characterization of the microbiome
features

Advances in omics technologies have offered great insights

into the biochemical processes interacting with the microbiome

and CVDs by proving useful information on the regulatory

role of different components, underpinning the equilibrium

between human organs and the gut microbiota. Studies, for

instance, have indicated that a variety of biological processes

are regulated by microRNAs (miRNAs). miRNAs serve a

key role in the host immunological response to counteract

infections caused by bacterial pathogens (47, 48). Corroborating

the role of miRNA in host-pathogen interplay, mounting

evidence suggests that miRNAs can be overexpressed or under

expressed by the microbiota in organs beyond the gut (49).

Moreover, non-coding small RNAs (sRNAs) have been found

to be important gene expression signals that regulate the

microbiome. Allen et al. (50) reported that sRNAs trafficked

by low-density lipoproteins can induce atherosclerosis. On

the other hand, high-density lipoproteins that convey sRNAs,

derived mostly from the microbial species within the gut,

can act as biomarkers for atherosclerotic cardiovascular

diseases (51).

Recent bioinformatics methodologies have boosted the

capabilities of integrating data and identifying biomarkers

and drug targets, presenting a new picture of treating

gastrointestinal disorders including dietary interventions and

their consequences on CVDs. The improvement of high-

throughput technologies and culture-independent genomic

methods over the past few years made it particularly possible

to characterize the microbial ecology in great detail (52, 53).

These approaches have fostered better diagnostic strategies by

analyzing species abundance (54).

Microbiome composition and function have been

determined with high-throughput omics technologies, such as

metagenomics (55), metaproteomics (56), metabolomics (57),

and metatranscriptomics (58, 59), which are currently obtained

from colon biopsies, fecal samples, and colonic lavage [further
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discussion on the challenges in sample collection of clinical

studies in the works of Kazemian et al. (60) and Ahmad et al.

(61)]. There is abundant evidence of spatial heterogeneity in

microbiota detected in the colon tissue and stool samples (62),

resulting in the development of spatial multi-omics techniques,

including deterministic barcoding in tissue for spatial omics

sequencing (DBiT-seq) (63). DBiT-seq, derived from genome-

wide expression measurements at high spatial resolution (64),

is an organ-on-chip-based technique used to identify mRNA

transcriptomes and protein markers.

To more specifically profile the bacterial composition,

novel approaches like shotgun metagenomics sequencing

have been employed. Metagenomics has revealed constructive

information on the impacts of the microbiome on the health

and disease status of hosts (31). Metatranscriptomics and

metaproteomics are emerging as complementary methods of

characterizing the active gene and protein repertoires within

the gut microbiota. Analysis of fecal 16S data from different
participants with CVDs indicated that a small number of

informative bacterial taxa improves diagnostic classification

and alleviates computational costs (65). On the other hand,

metabolomic approaches have gained significant traction with

advancement in mass spectrometry techniques. Metabolomics

enables the study of host-dietary component interplay by

providing a plethora of data from the desired organism,

which serves as fingerprints of a physiological state (66).

Besides, advanced machine learning tools and artificial neural

networks assist researchers in the interpretation of genomics and

raw metabolomics data. The application of a random forest-

type machine learning classification method implemented on

metagenomic sequencing of more than 1,200 bacteria from

1,098 individuals emphasized the association of microbial

biomarkers of obesity with circulating blood metabolites as

the indicators of cardiac diseases (67) [for more information

see (68)].

Constraint-based modeling of
microbial crosstalk

Genome-scale metabolic models (GEMs; see Box 1 for

a quick overview) offer a powerful tool to identify the

genotype-phenotype associations in individual bacteria and

microbial communities (70). GEMs are set up to describe

cellular behaviors through multi-omics data combined with

specific objective functions (71). To reconstruct GEMs, genome-

wide sequences and similarity-based annotations are required.

Although several automatic reconstruction and refinement tools

have been developed (72), manual curation and the inclusion

of specific experimental data remain the most critical steps

during the reconstruction process. Given the complexity of the

reconstruction process, it is usually more feasible to build GEMs

progressively, starting from key gut bacterial strains andworking

up to more complex makeups. In this regard, using well-

established gene databases and integrating them with multi-

omics data can help to build high-quality metabolic models.

Besides the automated and semi-automated approaches,

machine learning techniques have evolved to improve GEM

prediction by determining principal features from large-scale

datasets. BoostGAPFILL, using a standard matrix factorization,

obtains the metabolite adjacency matrix to predict possible

candidate reactions from a reaction network (73). The results

of this algorithm can also be used by FASTGAPFILL to weight

reactions (74). AMMEDEUS has been proposed to identify

BOX 1 Constraint-based modeling.

Metabolic networks based on genome annotations, and consequently enzymatic reaction, (i.e., they use genotype-phenotype associations), provide bases that can

be used by stoichiometric methods. Constraint-based models (CBMs) have been shown as pragmatic tools to investigate genome-scale metabolic networks. CBMs

in metabolic networks regularly come in a steady-state form with relevant constraints imposed on multiple reactions. This results in a bounded convex cone, which

includes optimal solutions. Each point within this feasible solution space represents a single flux distribution, which contains fluxes of every reaction throughout the

network. Flux balance analysis (FBA) is a common linear programming optimization problem that assumesmetabolite accumulation is zero during the growth phase:

max /min
∑

j

cjvj

subject
∑

j

Sijvj = 0

vmin
j ≤ vj ≤ vmax

j

where
∑

j

cjvj is a linear function representing the cellular objective. The coefficients cj determine the weights of the reaction j. Also, vj and Sij are the reaction j’s flux

and the stoichiometric coefficient of metabolite i in reaction j. Also, vj is constrained to vmin
j and vmax

j . The constraint and direction of intracellular reactions are

correlated with Gibbs free energy (G). Thermodynamically, a reaction with a negative 1G can deliver non-zero fluxes [for more information, see (69)]. In most FBA

studies, the biomass-producing reaction is set to be maximized as the objective function. Biomass-producing reactions represent the components of the desired cell

including macromolecular content and associated metabolites expressed as a weighted ratio based on cell dry weight. Depending on the aim of a study, the objective

function can be defined as the optimization of the desired metabolite produced by the cell.
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the parts of a metabolic network that need to be improved

using machine learning algorithms and ensemble analysis (75).

To examine metabolic networks as a deep-learning-oriented

approach, DeepEC has been developed, which can be adopted to

predict enzyme commission (EC) numbers of protein sequences

to precisely illustrate enzymatic functions (76). In addition

to refining (75, 77), machine learning tools can also identify

biomarkers to determine cellular phenotypes from different

omics data (78–80). The mechanistic view of genome-scale

networks integrated with machine learning tools is exceptionally

useful for high-throughput data employed to design metabolic

engineering experiments (81).

Several algorithms have been developed to model the

principal metabolic crosstalk between microbes within the gut

(see Box 2). A common approach is to develop a joint GEM

for the whole microbial system using microbiome generation

toolboxes (84, 85). This has been accelerated using semi-

automated approaches like AGORA and AGORA2. AGORA

is a validated assembly that includes 773 metabolic models

of gut microorganisms (86). This GEM reconstruction tool

has recently been improved to account for 7,206 strains using

comparative genomics (87). The CoReCo pipeline (88), a

reconstruction toolbox to model related species, was also used

to reconstruct a refined GEM for Candida albicans with some

improvement (89). The model was then paired with 910 gut

bacteria GEMs to analyze the interactions and identify specific

metabolites with inhibitory/activatory effects on the fungus.

With the availability of robust GEMs for different strains,

several constraint-based algorithms were implemented for

broader inter-species modeling of microbial communities,

like OptCom (82) and cFBA (90) to more recent ones like

COMETS II (91) and IndiMesh (92) (see Box 2 for a brief

overview of the algorithms). These algorithms feature the

contribution of individual microorganisms to microbiome

metabolism, host phenotype, and nutrient uptake. To generate

the microbial communities, Basile et al. (93) used MMint (94)

to simulate inter-species interactions. The simulations using a

collection of 836 GEMs for anaerobic digestion microbiomes

using genome-centric metagenomics suggested that exchanges

related to amino acids have a germane role in solving

auxotrophies. Furthermore, generating GEMs for bacteria from

the predominant taxa identified in the human microbiome and

subsequently performing flux balance analysis (FBA) to predict

interactions, demonstrated how the gut microbiome and diet

interact (95). MICOM, which is a customizable GEM, enables

the integration of multiple GEMs, from a wealth of sequencing

data available on different databases, with dietary data defined

as the constraint (96). This framework provides a better

understanding of alterations of the microbiome composition as

it helps to quickly identify sets of individual growth rates and

taxon-specific dilutions.

Integration of multi-omics data into
GEMs

Along with the development of constraint-based modeling

of microbial communities, modeling of human metabolism has

also drawnmuch attention. Rigorous context-specific GEMs can

facilitate the development of new therapies and the prevention

of metabolic diseases. The efforts for such human models

began with the reconstruction of generic genome-scale network

reconstructions (Recon) models and human metabolic reaction

(HMR), recognized as the two most comprehensive generic

BOX 2 Interactions between microbes.

Species within the microbiome tend to interactively communicate and may exhibit significant temporal and spatial changes to the environmental signals. The

underlying interactions are the main factors that contribute to the structure and function of the gut microbiota. Initial efforts were focused on developing a common

GEM for a system with more than single species under steady-state conditions. Therefore, a combined biomass-producing reaction was used to be maximized. The

idea of compartmentalized GEMs was then further developed. The initial idea was simple: one species adsorbs the metabolite produced by the other counterparts.

Each GEM was assumed as a compartment with an additional tacit compartment to consider exchange reactions of GEMs. The key challenge focuses on how to

coordinate metabolite exchanges between species. When it comes to the behavior of cells at the community level, single optimization is poor at predicting the

nature of the community, while multi-objective optimization methods can maintain the association between individual-community levels properly and this was

first introduced in OptCom (82). OptCom optimizes the biomass objective function of each individual as the inner objective and the community biomass objective

function as the outer objective within shared metabolic networks.

max /min v
Community

BOF

subject









max /min vmBOF

subject
∑

j

Sij
mvj

m
= 0

vmj,min ≤ vmj ≤ vmj,max









,m = 1 :number of species

Constraints for Community

Under steady-state conditions, the microbial community inhabiting the gut would behave regardless of gradients within the adjacent microenvironments. Like

dFBA, d-OptCom was proposed to include the dynamics of the microbiome (83), where it integrates stationary flux distributions with kinetic models associated with

substrate uptakes.
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FIGURE 2

Overview of di�erent algorithms used in microbiome-cardiovascular disease studies. Several constraint-based models have been proposed to

predict and analyze the metabolic behavior of cells in recent years. This figure depicts these methods classified based on their applications and

underlying algorithms (for more details, see the Supplementary Table).

GEMs for humans (97). Once combined with available high-

throughput data, these generic GEMs can be rendered context-

specific for different cell types. Integration of proteomics (98),

metabolomics, and transcriptomics data is allowed by different

algorithms to achieve cell-specific networks that provide a

more accurate overview of cellular metabolism. In most

algorithms, mixed-integer linear programming is applied. For

this purpose, multiple algorithms are available, including MBA,

iMAT, GIMME, INIT, FASTCORE, and mCADRE (for more

details, see Figure 2 and the Supplementary Table). In all these

algorithms, one type of omics -or more- and a GEM are given

as the inputs to extract a tissue-specific model. While GIMME

minimizes the usage of reactions encoded by low-expression

genes, iMAT and INIT are free of low-expression genes using

an optimal trade-off algorithm (99–101). In the MBA method,

a group of active reactions based on high-expression genes is

defined (102). FASTCORE and mCADRE are developed based

on this assumption as well (103, 104). Also, CORDA as a non-

minimalistic algorithm keeps down fluxes using cost-consuming

reactions (105).

Despite the advancement of bio-informatic approaches

for the integration of multiomics into metabolic models,

there are still remarkable methodological shortcomings in the

reconstruction of personalized GEMs, restricting their potential

to grant reliable metabolic predictions and personalized

treatment yield. In recent years, several context-specific GEMs,

considering multiple individual data have been presented.

For instance, Foguet et al. (106) performed personalized
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BOX 3 Integration of omics with a GEM.

Metabolic modeling of human tissues is essentially more challenging than that of prokaryotes since each tissue has different metabolic behaviors and functions.

To overcome these hurdles, researchers tried to formulate a mixed-integer linear programming problem and link GEMs to gene expression networks, protein

expressions, etc. of a given tissue by applying multiple algorithms. The underlying concept is straightforward: narrowing down the feasible solution space. To link

thermodynamic constraints into GEMs correlated with omics data, synchronizing thermodynamically GEM methods, such as Relative Expression and Metabolite

Integration (REMI) (113), have been developed, reducing the number of alternative optimal solutions within the feasible space.

The sole application of one type of data, e.g., transcriptomic data, might not lead to explicit results. The integration of multi-omics data is necessary to better

understand how phenotypic behavior of metabolic pathways changes in different environmental and even genetic conditions. The variation can be captured by

machine learning tools like the support vector method and used as references to regulate metabolic model constraints for a narrower feasible solution space (see

Figure 3).

context-specific GEMs to illustrate the role of genotype variants

on phenotypes subjected to prevalent human diseases, in

a study on 524,615 individuals. Sometimes more than one

type of omics is integrated with GEMs. The application of

cross-sectional multi-omics data is not unprecedented in CVD-

related studies. The integrative approach to examining the

association between whole blood transcriptomics and fasting

serum metabolomics emphasized the significance of multi-

omics in the search for diseasemechanisms (107). Aiming to link

the plasma lipidome to CVDs, large-scale genome-wide analyses

of different lipid species accompanied by several CVD-related

phenotypes alluded to the functions of lipid loci, including

LPL and FADS2 on CVDs (108). This investigation successfully

illustrated the merit of genetic regulation of lipid metabolism

for discovering biomarkers for preventative purposes. The

integration of genotype data from the METabolic Syndrome In

Men (METSIM) cohort and NMRmetabolic profiling suggested

the need for more comprehensive computational approaches

when it comes to high-throughput data (109).

The ambiguities associated with CVD mechanisms need

to be uncovered using GEMs and other pragmatic strategies.

For instance, glucose 6-phosphate potential in activating

mammalian target of rapamycin and regulating glycolytic flux

was investigated using a kinetic-type model for cardiomyocyte,

CardioGlyco. The results revealed that phosphoglucose

isomerase activity is a function of glucose 6-phosphate and

it directly regulates the mammalian target of rapamycin and,

consequently, myocyte growth (110). In another case study,

a cardiomyocyte-specific GEM, iCardio, was reconstructed

to explore whether the metabolic profile of all heart failure

is similar (111). Arif et al. (112) used transcriptomic data to

reconstruct a cell-specific GEM and investigated metabolic

alterations that emerged after myocardial infarction. They

reported a set of gene clusters associated with myocardial

infarction in the heart and liver. A new reaction-centric

method, TIDE (tasks inferred from differential expression), was

proposed to identify metabolic function variations in cardiac

failure gene expression. Using high-throughput RNA-seq data,

thanks to a cell-specific GEM, the deregulation of metabolic

behavior prompted after myocardial infection in the heart was

identified. This study demonstrated the utility of such integrated

multi-tissue analyses to systematically unravel the underlying

metabolic roots of diseases. For a brief phenomenological

overview of the integration of omics with a GEM, see Box 3.

Considering disturbances existing within high-throughput

data, machine learning approaches have boosted the quality

of the integration process. To distinguish hidden features

of metabolomic data, FIngerID (114) and BioTransformer

(115) identify metabolites from mass spectroscopy datasets.

Some data-driven approaches have recently been used to

integrate fluxomics and transcriptomics data as well (116–

118). Moreover, algorithms based on kernel matrices for

heterogeneous high-throughput data have been developed

which provide a platform to investigate the metabolic

interactions of microbiome-CVDs (65, 119). Recently, the

application of machine learning for identifying dysbiosis of gut

microbiota has been highlighted, which makes the diagnostic

screening of CVDs feasible.

Frameworks to describe the
dynamics and spatial insights of gut
microbiome

Human gut microbiota exhibits a great deal of spatial

and temporal heterogeneity. Microbial populations in

the intestine significantly vary in both the cross-section

and length of the gut. Spatiotemporal features play a

fundamental role in a comprehensive understanding of

the human-microbiome interaction since the microbiome

fluctuates based on transient environmental factors. Since

a bacterial imbalance at one position in the gut could

precipitate a local inflammatory response (120), developing

microbiome-focused therapies requires quantitative predictions

of these dynamics.

Different modeling approaches have been used so far to

predict the dynamical behavior of microbial communities.

Formerly, ordinary differential equations (ODEs) drew attention

for simulating the behavior of consortiums where time

was considered as the independent variable. Initial dynamic
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FIGURE 3

Constraint-based analysis by imposing di�erent constraints on the same genome-scale metabolic network. It is assumed that v3 is to be

maximized. Having a context-specific genome-scale metabolic model leads to a di�erent convex-cone feasible solution with a di�erent flux

distribution.

models applied a quasi-steady-state (121) assumption for

intracellular balances, while they assumed the extracellular

functions to be changed at each regular time step. The

dynamic flux balance analysis (dFBA) method uses GEMs

integrated with some kinetic equations (122). This approach

leads to a set of ODEs integrated with linear programming

equations with an ODE solver (123). Due to the complexity

of constraint-based modeling of humans, these rudimentary

dynamic flux balance analyses are uncommon, particularly

when spatial variations are of interest. The dFBA method

can be further applied to account for spatial effects by

discretizing the computational domain as well. Population-

based approaches were among the initial strategies to garner

attention. After Biggs and Papin predicted the biofilm

formation of Pseudomonas aeruginosa (124), Bauer et al. (125)

presented BacArena to analyze multispecies communities. They

predicted the phenotype of seven species as representatives

of the human gut microbiota as well as the competition

for nutrients generated due to gradients. Then, multi-level

optimization approaches were developed to represent the

composition of the community over time using multi-

objective functions. In addition to OptCom (82) and d-

OptCom (83), µbialSim (126), which assumed a well-mixed

homogeneous culture condition, was developed featuring

multi-level optimizations. These systems-oriented optimization

methods were successfully applied to the gut microbiome of

humans and predicted the main metabolites. These approaches

can potentially be adapted to optimize host metabolic behavior

by designing appropriate diets. Integrative analyses with the

aim to identify diagnostic biomarkers and propose new

therapeutic interventions are also allowed in the presence of

transcriptomics data.

Multiscale modeling of the
gut-cardiovascular axis

The main challenge in the investigation of the gut-heart

axis is to identify the interactions between the individual gut

species and CVD progression, important pieces of information

that can introduce potential new paths for drug discovery.

Since it is unfeasible to investigate all microbiome dynamics

experimentally, multiscale models are promising approaches.

To this end, the selection of appropriate multiscale models is

crucial (see Box 4). To predict microbiome-CVDs interplay,

we need to bridge data between cell/tissue scales to genetic

scales. Information from a single cell is inadequate, and at

times, a fundamental correlation at the community level is

necessary. To address this issue, the application of suitable

discrete models such as agent-based modeling and continuous

models such as constraint-based modeling is essential. In

comparison, discrete models are useful when the roles of

individuals need to be determined; continuous models, on

the other hand, are more computationally cost-effective

(128) (Figure 4).

Sometimes more fundamental knowledge about the

system interactions is required than what is provided in the

previous section. For such complex systems in which the

interactions between “individuals” have not been formulated

into mathematical relations, agent-based models (ABMs) prove

to be particularly useful. This framework allows researchers

to encode the intricacies of a multi-bacterial system into

a series of relatively simple rules that can be tuned more

precisely to determine the underlying functions (129). In ABMs,

microbes are defined as decision-making agents interacting

with each other and their environment (130). Decisions are
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BOX 4 Multiscale models.

The microbiome is a complex network interacting between different temporal and spatial scales. Multiscale models are used when answering a scientific question

needs information from different resolutions. There are gaps between different measurable scales and multiscale models are intended to bridge them. Figure 5

represents the differences between the types of results achieved by the application of models at different levels. There are several approaches for developing a

multiscale model. In some cases, submodels should be solved in parallel, while it is common to simulate independent approaches and apply the outputs as inputs for

further resolutions. In terms of multiscale modeling of cardiovascular diseases, several top-down and bottom-upmethods have been generated [for more information

see (127)].

FIGURE 4

An overview of modeling methods at di�erent scales classified, into continuum and discrete models.

FIGURE 5

Overview of di�erent levels of resolution related to di�erent modeling approaches. The final multiscale model is able to capture results at both

resolution x and resolution y.

set based on heuristic rules depending on the objective of the

study. Several agent-based models, including Stochsim (131),

AgentCell (132), Smoldyn (133), etc., have been proposed to

investigate interactions, either extracellular or intracellular,

with different details. GutLogo, based on the NetLogo (134)

agent-based modeling framework, is a new tool to model
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operating parameters and dynamics of gut microbiota (135).

This method was developed to analyze the interactions that

emerged by populations of Clostridium, Desulfovibrio, and

Bifidobacterium as well as their metabolic functions. In

terms of availability, MESA and AgentPy are recent open-

source Python frameworks for implementing and analyzing

ABMs and can be integrated with a wide range of Python

libraries (136, 137).

The application of ABMs to cardiac fibrosis or platelet

aggregation has been previously studied (138, 139). Cardiac

fibrosis is an important part of cardiac remodeling that leads

to heart failure and death, while platelet aggregation is part of

the sequence of events leading to the formation of a clot. Such

modeling approaches, mostly done at multiple scales, can make

predictions at cellular and tissue levels that are merely possible

via logic-based models (139).

Future directions

Using computational approaches highlighting biochemical

processes involved in CVDs, different types of genotypic

and phenotypic information are encoded into mathematical

models. The tool can be used to mitigate CVDs at different

stages, simulate cellular growth under different environmental

conditions, and give hypotheses to be investigated by in-

vitro and in-vivo platforms. GEMs integrated with other

computational models at different scales can be used to

investigate the role of individual species at the community level

and their metabolic interactions with cardiometabolic diseases.

Interventions hampered by experimental limitations can be

identified to define clinical scenarios and elucidate underlying

disease mechanisms.

Although the widespread use of metabolic modeling is

promising, several shortcomings limit their applications in that

they are limited to biochemical interactions, while the roles of

signaling and gene regulatory components are disregarded. It is

also crucial to find new methodologies, based on personalized

prediction, to alleviate uncertainties that emerge as the result of

mapping GPR associations. Future efforts should be emphasized

on establishing universal GEM reconstruction protocols with the

aim of minimizing uncertainties arising in metabolic modeling

of microbiome-CVDs crosstalk.

Conclusion

In the healthcare industry, it is essential to find ways to

provide personalized medicine, which maximizes the efficiency

of treatments and reduces side effects while keeping costs

down (140). The ultimate goal of precision medicine is to

identify risk factors per individual and maximize personalized

treatment benefits, which is different from current population-

based therapies (141). Specifically, preventative and therapeutic

practices based on population interventions are practical for

only a specific portion of the community. Therefore, while this

perspective has opened new avenues to defining novel treatment

strategies, it presents new challenges in working with new

data generated.

To enable personalized prevention, diagnosis, and treatment

of diseases such as CVDs new systems-oriented approaches

have been used to study the structural characteristics of the

microbiome to elucidate the causal mechanisms. Given the

importance of the gut microbiome in human health, researchers

have performed different types of studies to further reveal the

behavior and structure of the gut microbial communities as

well as their unknown interactions with the host. Advancements

in high-throughput data equipment make the availability of

different omics easier. However, even with access to this wealth

of information, predicting the behavior of microbiome-host

interplay is often still burdensome. Accordingly, mathematical

tools and computational approaches have been deployed to

better grasp these heterologous data.

The emergence and integration of different meta-omics

data, e.g., integration of time-series data, has made it more

sensible how microbial communities interact with the human

host and respond to disturbance. On the other hand, GEMs,

particularly when integrated with omics, provide us with

a great understanding of underlying mechanisms associated

with CVDs. Several regulatory methods to define more

accurate constraints and bi-level optimization algorithms to

model the growth and interactions of the gut microbiota

have been proposed; some of these can also be applied to

study microbiome-host interactions. Combining the essential

assumptions and theories from different types of models yields

even deeper insight into communities. Mounting evidence from

microbiome studies confirms the possible role of metabolites

produced by bacterial communities in treating cardiometabolic

diseases. In order to prevent CVDs and prevent early

intervention, microbiome and host-diet interplay can promote

personalized nutrition.

The future focus should be on systems-oriented studies

of microbial metabolites to modulate host physiology more

effectively. Systems biology-type studies should be conducted

via a multidisciplinary perspective featuring the collaboration

between researchers with clinical and engineering backgrounds

to render effective personalized treatment.
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