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Abstract

Soil organic carbon (SOC) reflects soil quality and plays a critical role in soil protection, food safety, and global climate
changes. This study involved grid sampling at different depths (6 layers) between 0 and 100 cm in a catchment. A total of
1282 soil samples were collected from 215 plots over 8.27 km2. A combination of conventional analytical methods and
geostatistical methods were used to analyze the data for spatial variability and soil carbon content patterns. The mean SOC
content in the 1282 samples from the study field was 3.08 g?kg21. The SOC content of each layer decreased with increasing
soil depth by a power function relationship. The SOC content of each layer was moderately variable and followed a
lognormal distribution. The semi-variograms of the SOC contents of the six different layers were fit with the following
models: exponential, spherical, exponential, Gaussian, exponential, and exponential, respectively. A moderate spatial
dependence was observed in the 0–10 and 10–20 cm layers, which resulted from stochastic and structural factors. The
spatial distribution of SOC content in the four layers between 20 and 100 cm exhibit were mainly restricted by structural
factors. Correlations within each layer were observed between 234 and 562 m. A classical Kriging interpolation was used to
directly visualize the spatial distribution of SOC in the catchment. The variability in spatial distribution was related to
topography, land use type, and human activity. Finally, the vertical distribution of SOC decreased. Our results suggest that
the ordinary Kriging interpolation can directly reveal the spatial distribution of SOC and the sample distance about this
study is sufficient for interpolation or plotting. More research is needed, however, to clarify the spatial variability on the
bigger scale and better understand the factors controlling spatial variability of soil carbon in the Loess Plateau region.
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Introduction

Soil organic carbon (SOC) is an important aspect of soil quality

and plays an important role in soil productivity, environmental

protection, and food safety [1]. Because SOC is the biggest part of

the terrestrial carbon cycle and carbon-based greenhouse gas

balance research [2], slight changes in SOC can greatly impact

atmospheric CO2 concentrations and global climate change.

Therefore, SOC has become a core topic in global climate change

research. Considerable attention has focused on SOC in relation

to climate change and greenhouse gas emissions [3,4].

The SOC has a strong spatial heterogeneity which can be

expressed by a function [5,6]. A precise understanding of SOC

spatial characteristics can improve the accuracy of SOC stock

estimations and contribute to the development and implementa-

tion of effective carbon sequestration methods. Recently, a series

of studies regarding SOC spatial distribution and stock were

conducted by international researchers. ie., in some European

countries [7,8], the United States [9], India [10], Brazil [11], and

other countries. These studies indicated that the spatial variability

of SOC characteristics was affected by multiple factors, including

land use, soil parent material, topography, vegetation, climate, and

agricultural use [12–15].

The Loess Plateau of China is located in an ecologically

vulnerable semi-arid region that is affected by one of the most

serious soil erosion problems in the world. In the past decade,

large-scale vegetation recovery and ecosystem improvement (to a

certain extent) have occurred as a result of the ‘‘Grain for Green

Project’’ implemented by the Chinese government [16]. Due to its

complex and broken topography and hilly and gully landforms,

spatial heterogeneity in the Loess Plateau region is relatively high

[17]. Although many studies have been conducted, the data in

these studies were mainly collected at slope and [18,19] ecosystem

scales [20,21] and from shallow soil layers [22–24]. In addition,

SOC spatial variability studies at a catchment scale have mainly

focused on the environmental features that resulted from different

land uses and soil types [25–27]. These SOC measurements were

rarely related to the depth of the soil layers. Generally, only small

amounts of data were used in these analyses, due to the

considerable effort required to obtain data in this complex terrain.

Many of the studies mentioned above are associated with

significant uncertainty. This uncertainty results from the unavail-
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ability of complete data sets, the diversity of the data sources, and

the inherent spatial heterogeneity of the SOC [28].

Two objectives were addressed in this study: 1) obtaining the

vertical distribution of SOC in a typical Loess Plateau small

catchment; 2) elucidating the spatial variability and distribution of

SOC at different depths within the catchment.

Materials and Methods

Study area
The Zhifanggou catchment is a typical small catchment on the

Loess Plateau. which is located in Ansai County, Shaanxi

Province, China (longitude 108u5194402109u269180, latitude

36u309450237u99310, altitude 1,010021,1431 m, 8.27 km2)

(Fig. 1). The geomorphology of this catchment is extremely

Figure 1. The location of the catchment.
doi:10.1371/journal.pone.0083061.g001

Figure 2. The land use types.
doi:10.1371/journal.pone.0083061.g002

Figure 3. The locations of the sampling.
doi:10.1371/journal.pone.0083061.g003
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broken and exhibits the characteristics of a valley. The soils are

predominantly loess and uniform in texture. The sand, silt, and

clay contents of the soil are 65, 24, and 11%, respectively. The

average annual precipitation in the catchment is 541.2 mm. In

addition, 75% percent of the annual rainfall in this region occurs

between July and September. During these months, the rainfall is

intense and causes extensive erosion. The study area is under four

main land use types that cover woodland (54%), grassland (32%),

farmland (8%)and shrubland (6%). (Fig. 2). The main land uses

(and vegetation species) are shrubland(r), woodland (Populous simonii

Carr., Fruit trees) grassland (Medicago sativa L., Artemisia gmelinii, Stipa

bungeana, Artemisia scoparia,) and farmland (Triticum aestivum, Zea

mays, Glycine max) [29].

Sampling method
The grid method was used to collect soil samples. All of the

designated sample sites were arranged on a 1:10,000 scale

topographic map. A grid interval of 2006200 m was used, and

each grid was considered an independent study unit. A portable

GPS was used to locate each sample site. Each site was divided

into 6 depths between 0–100 cm as follows: 0–10, 10–20, 20–40,

40–60, 60–80 and 80–100 cm. All samples were collected with a

5-cm-diameter hand auger. 215 soil sampling sites including

farmland 28, shrubland 33, woodland 77 and grassland 77. A total

of 1,282 soil samples were collected from 215 soil sampling sites

(Fig. 3). Soil samples were air dried before passage through a

0.25 mm sieve for laboratory analysis. The SOC content of each

sample was determined in duplicate with the dichromate oxidation

(external heat applied) method [30]. The samples were collected in

November 2010.

Data processing and analysis
The geostatistical method is a spatial analysis method that was

developed from classical statistics. Based on the theory of

regionalized variables, this method effectively uses semi-variogram

and Kriging interpolations to determine the spatial distribution,

variability, and related characteristics of the various random

structural variables [31]. The semi-variance function was fit based

on the coefficient of determination R2 and the residual sum of

squares (RSS) to obtain an optimal theoretical mode [32].

The Kriging interpolation method was used to estimate the

values of the unmeasured sites x0 by assuming that z’ (x0) equals

the linear sum of the known measured values. This process is

expressed by the following equation [33]:

Z0(x0)~
XN

i~1

liZ(Xi) ð1Þ

where Z’ (x0) is the predicted value at position x0, Z(Xi) is the

known value at sampling site Xi. li is the weighting coefficient of

the measured site. and N is the number of sites within the

neighborhood searched for the interpolation.

The data that were used in this study were analyzed with

classical statistical methods in the program SPSS 18.0. Analysis of

variance (ANOVA) was performed with the least significant

difference (LSD) method to compare the impacts of different soil

depths on SOC content (P,0.05). The K-S (Kolmogorov-

Smirnov) test was used to determine if the data were normally

distributed. Logarithmic or other transformations were performed

on data that were not normally distributed to obtain a normal

distribution. The use of non-normally distributed data would

increase the estimation of error. Therefore, it was necessary to

transform these non-normally distributed data. The test results

indicated that the SOC distributions were skewed at soil depths of

10–20, 20–40, 40–60, and 80–100 cm and were normal at soil

depths of 0–10 and 60–80 cm. However, the normally distributed

SOC contents were highly skewed and had a high kurtosis. Thus, a

logarithmic conversion of the SOC contents of the six soil layers

was performed. The kurtosis and skewness of the SOC content

decreased in each soil layer and were normally distributed. After

logarithmic conversion, the normally distributed data were

imported into the software GS +9.0 for semi-variance fitting.,

GS +9.0 software was used to obtain semi-variance fits and an

optimal theoretical model. The ArcGIS9.3 software was used for

Table 1. Summary statistics from the classical analyses of soil organic carbon (SOC) content.

Soil
Depth(cm) N

Mean
(g?kg21)

Median
(g?kg21)

Min
(g?kg21)

Max
(g?kg21) Std.D. C.V.(%) Skewness Kurtosis

Distribution
type

0–10 215 6.36a 5.09 1.30 30.22 3.96 62 2.30 7.40 NN

0.51 0.54 Nlog *

10–20 215 4.43b 3.84 1.33 14.87 2.12 48 1.62 3.21 n

0.36 0.12 Nlog *

20–40 215 2.99c 2.58 0.95 8.78 1.41 47 1.74 3.42 n

0.50 0.34 Nlog *

40–60 215 2.49d 2.17 1.00 6.69 1.10 44 1.70 3.14 n

0.61 0.23 Nlog *

60–80 213 2.29d 2.01 0.66 11.69 1.14 50 1.96 5.42 NN

0.51 0.93 Nlog *

80–100 209 2.20e 1.96 0.25 8.51 1.03 47 1.50 3.64 n

0.17 0.95 Nlog *

Notes: N., Number of samples; C.V., Coefficient of Variation; Std. D., Standard Deviation.
a, b, c, d, e, Different lowercase letters represent a significant difference between the layers (P,0.05).
*, Natural logarithm transformation with the corresponding skewness and kurtosis values.
N, Normal distribution; n, Near Normal Distribution; NN, Non-Normal Distribution; Nlog, Log-Normal Distribution.
doi:10.1371/journal.pone.0083061.t001
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the classical Kriging interpolation and for plotting the spatial

distribution.

Results and Discussion

Descriptive statistics of the SOC content
The descriptive statistics obtained from SOC in the study area

are presented in Table 1. The mean SOC content was 3.08 g?kg21

in the study area, well below the average SOC level in China [34].

The mean SOC of all soil layers was between 2.20 and

6.36 g?kg21. The highest SOC content in the study area was

observed in the 0–10 cm layer. The SOC content decreased with

increasing soil depth. As anticipated, the lowest SOC content was

observed at a depth of 80–100 cm because SOC is mainly formed

by the decomposition of animal and plant residues that are

primarily distributed in the soil surface and decrease with depth.

The higher SOC in the surface soils indicates that the surface soil

Figure 4. Semi-variance charts of soil organic carbon (SOC) under different soil depths.
doi:10.1371/journal.pone.0083061.g004

Table 2. Geostatistical parameters for soil organic carbon(SOC) content.

Soil Depth(cm) Model C0 C0+C
Proportion (C0/
C0+C) Range (m) R2 RSS

0–10 Exponential 0.1306 0.2832 0.461 552 0.822 3.036E-03

10–20 Spherical 0.0968 0.1946 0.497 562 0.907 8.505E-04

20–40 Exponential 0.0314 0.1788 0.176 234 0.682 1.121E-03

40–60 Gaussian 0.0201 0.1472 0.137 233 0.915 1.240E-03

60–80 Exponential 0.0249 0.1348 0.185 254 0.533 1.354E-03

80–100 Gaussian 0.0204 0.1358 0.150 264 0.774 2.733E-04

doi:10.1371/journal.pone.0083061.t002
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actively participates in ‘‘carbon sequestration’’. The relationship

between SOC content (unit: g/kg) and soil depth (unit: cm) is

expressed by the following power function: y = 17.501x20.462,

R2 = 0.9889, p,0.001. These results are similar to those reported

by [17].

The SOC coefficients of variation in the six layers were 62, 48,

47, 44, 50, and 47%, respectively. According to the classification

system proposed by Nielson and Bouma [35], the variable is

considered to have weak variability if the coefficient of variation

(CV) is less than 10% and moderate variability if the CV is

between 10% and 100%; otherwise, the variable has strong

variability. Therefore, these values all correspond to moderate

variability. The highest coefficient of variation was 62%, at a soil

depth of 0–10 cm. The lowest coefficient of variation was 44%, at

a soil depth of 40–60 cm. This low coefficient of variation resulted

from the influence of multiple factors on the soil surface, including

human intervention, vegetation type, land use, and topography.

The average SOC contents were significantly different for each

soil layer. This finding indicated that the central tendency of the

SOC distribution was likely affected by anomalous values that led

to a non-normal distribution.

Geostatistical analysis of the SOC contents
A table of SOC variability characteristics was generated from

semi-variance fitting (Table 2). In Table 2, C0 is the nugget

variance, C is the structural variance, and C0+C is the sill. C0/

C0+C represents the degree of spatial variability, which is affected

by both structural and stochastic factors. Higher ratios indicate

that the spatial variability is primarily caused by stochastic factors,

such as fertilization, farming measures, cropping systems, and

other human activities. By contrast, a lower ratio suggests that

structural factors, such as climate, parent material, topography,

soil texture, soil type, and other natural factors, play a significant

role in spatial variability. In addition, a proportion less than 25%

indicates a strong spatial correlation in the system, a proportion

between 25% and 75% indicates a moderate spatial correlation,

and a proportion larger than 75% indicates a weak spatial

correlation. If the proportion is near 1, then the variable is

constant at all scales [36].

As shown in Table 2, the C0/C0+C values for SOC were 0.461,

0.497, 0.176, 0.137, 0.185, and 0.150, respectively, in the six

different soil layers. The proportion was between 25 and 75% at

soil depths of 0–10 and 10–20 cm, indicating a moderate spatial

correlation. This correlation was apparent in the 552 and 562 m

ranges, respectively, and was subjected to the impacts of stochastic

and structural factors. The C0/C0+C was less than 25% in the

four layers at a depth of 20 to 100 cm, indicating a strong spatial

correlation. This spatial correlation was apparent in the 414, 234,

534, and 264 m ranges and was affected by structural factors. The

spatial correlation ranges are different from Han [17] and Liu [15]

that are caused by the different study area.

The variability range determines the spatial autocorrelation.

When a variable is within the range values, it is spatially

autocorrelated, and when it is outside of the range values, it is

not. This determination provides guidelines for effectively

designing sampling schemes [26]. In this study, large range

variations occurred between 234 and 562 m that is to say during

the large range the data have the spatial autocorrelation. In

general, the sampling distances that are outside of the range are

invalid for interpolation or plotting [37]. The average sampling

grid interval was 200 m in this study. This sampling grid was

smaller than the minimal range of 234 m, which indicates that the

sampling interval in the study area met the requirements for

spatial variability analysis.

Figure 5. The spatial distribution of the soil organic carbon
(SOC)under different soil depths in the catchment.
doi:10.1371/journal.pone.0083061.g005

Figure 6. The soil organic content in the different land use
types.
doi:10.1371/journal.pone.0083061.g006
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The semi-variance function model fitting curve for each soil

layer was obtained using the semi-variance function. The semi-

variance function of the SOC in the soil layers displayed the same

trend (Fig. 4). The function values gradually increased with

increasing spatial distance before stabilizing. The semi-variogram

of the SOC contents at depths of 0–10, 10–20, 20–40, 40–60, 60–

80, and 80–100 cm corresponded with the following models:

exponential, spherical, exponential, Gaussian, exponential, and

Gaussian, respectively. All six layers had coefficients of determi-

nation R2 of 0.682 to 0.915 and a small RSS. These results

indicate that the theoretical model was an adequate representation

of the spatial structural characteristics of the SOC contents in the

soil layers. In addition, the curve fit for each layer was optimized.

Spatial distribution of the SOC content
To visualize directly the spatial distribution of SOC content in

this catchment (according to the obtained semi-variogram model),

the ordinary Kriging interpolation method from geostatistics was

adopted to interpolate each layer in the study area and to generate

a spatial distribution diagram of SOC content (Fig. 5).

As shown in Fig. 5, the overall spatial distribution of SOC

density in each layer was observed in patches or speckles. Previous

studies have shown that the distributions of SOC contents in soils

result from the combined effects of soil parent material, climate,

topography, landscape, and human intervention [38]. In this

study, the catchment area was small with a uniform climate, soil

parent material, and soil type. Consequently, the SOC content

variations were only related to the landscape and human activities.

Figures 2 and 5 depict areas with significantly high SOC

content in each layer in the mid-east and north regions of the

catchment. These areas are mainly covered by woodland and fruit

trees. The gully channels also contained high concentrations of

SOC. The SOC content of the peripheral areas of the catchment

was lower due to their higher elevation. From the vertical

direction, the 0–10 and 10–20 cm depths had smaller spot areas

with dispersed distributions, indicating strong variability. The

highest-content spots occurred in the woodlands and shrub lands.

By contrast, the lowest-content spots occurred in the grasslands

and farmlands. That is to say the woodland and shrub lands can

increase the soil organic carbon content. Form Fig 6 we can know

that the SOC content in the 0–10 and 10–20 cm depths was shrub

lands . woodlands . grasslands . farmlands. No significant

variations in SOC spatial distributions were observed in the other

four soil layers that had concentrated and high-content areas. The

80–100 cm depth had loosely distributed spots in which the low-

content spots corresponded with grasslands and farmlands.

Therefore, topographical factors, land use, and human activities

were the major causes of spatial variability in SOC distribution. In

addition, the ordinary Kriging interpolation directly reflected the

spatial distribution of SOC in this catchment.

Conclusions

This study showed that the overall spatial distribution of the

SOC density in each layer of the study area was observed in

patches or speckles and the coefficient of variation of the SOC

content in each layer was moderate variability. Correlations within

each layer were observed between 234 and 562 m. Our results

suggest that the ordinary Kriging interpolation can directly reveal

the spatial distribution of SOC and the sample distance about this

study is sufficient for interpolation or plotting. More research is

needed, however, to clarify the spatial variability on the bigger

scale and better understand the factors controlling spatial

variability of soil carbon in the Loess Plateau region.
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