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Abstract: Being valuable precursors in the production of adhesives, lubricants, and other
high-performance synthetic compounds, alkene dimers and oligomers can be obtained using
homogeneous zirconocene catalytic systems. Further advances in such systems require precise
control of their activity and chemoselectivity, increasing both the purity and yield of the products.
This relies on the process mechanism usually built around the consideration of the hydride complexes
as active intermediates in the alkene di- and oligomerization; however, the majority of studies lack the
direct evidence of their involvement. Parallel studies on a well-known Cp2ZrCl2-AlR3 or HAlBui

2 and
a novel [Cp2ZrH2]2-ClAlR2 (R = Me, Et, Bui) systems activated by methylaluminoxane (MMAO-12)
have shown a deep similarity both in the catalytic performance and intermediate composition. As a
result of the NMR studies, among all the intermediates considered, we proved that new Zr,Zr-
hydride complexes having the type x[Cp2ZrH2·Cp2ZrHCl·ClAlR2]·yMAO appear to be specifically
responsible for the alkene dimerization with high yield.

Keywords: zirconocene; metal hydrides; methylaluminoxane; alkene dimerization; nuclear
magnetic resonance

1. Introduction

Hydride metal complexes attract significant attention in the field of organometallic chemistry due
to their ability to function as highly active reagents or catalytically active centers for various reactions.
According to numerous studies, Ti subgroup complexes that contain M-H bond supposedly act as
active species, for example, in di-, oligo-, and polymerization of alkenes [1–5], as well as in the reduction
of unsaturated compounds [6–8]. With respect to the alkene di-, oligo-, and polymerization reactions
catalyzed by both Ti subgroup metallocenes and methylaluminoxane (MAO), this assumption had
been repeatedly proposed (Scheme 1); however, these studies lack direct evidence of the metal hydride
complex action. Nevertheless, we note several indirect observations supporting this assumption:

(i) The presence of a terminal vinylidene group in the alkene di-, oligo- and polymerization
products that appear due to the chain termination on β-H elimination stage which generates in situ
intermediates having the M–H bond (Scheme 1) [9–15];

(ii) running the catalytic system in the presence of hydrogen activates “dormant” or deactivated
catalytic sites and results in the acceleration of the polymerization reactions and improvement of the
polymer properties [16–19];

(iii) introduction of AlBui
3 into the catalytic systems zirconocene–(methylaluminoxane or boron

activators) makes such systems more effective in alkene di-, oligo-, or polymerization [19–28];
(iv) formation of bimetallic hydride complexes in the reactions of L2ZrCl2 with XAlBui

2 (X = H,
Cl, Bui) [29–33] which catalyze the alkene hydroalumination [29–32] and polymerization when the
complexes are being transformed into the cationic species by [Ph3C][B(C6F5)4)] [34,35].
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higher activity of the complexes (RCp)2ZrH3AlH2 (R = Bun, TMS) activated with MAO in ethylene 
polymerization than the corresponding zirconocene dichlorides [39]. Binuclear hydride clusters 
complexed with organoboron compounds [40–42] were found to be highly active initiators of 
isobutene homopolymerization and isobutene-isoprene copolymerization [42]. It is generally 
accepted that the activating effect of MAO or organoboron compounds on di-, oligo- and 
polymerization systems is connected with the formation of highly reactive cationic centers of type 
[L2M-H]+ [34,35,43]. 

Furthermore, quantum chemical modeling of the possible active sites governing the alkene 
polymerization also supports the proposed formation of the hydride intermediates and further 
participation in the reactions. For example, a DFT study of the initial stages of the methyl vinyl ether 
(MVE) polymerization which runs under the catalytic action of [Me2C(Cp)2Zr(Me)]+ and 
[Me2C(Cp)2Zr(H)]+ cations showed that it is the zirconium hydride which preferably initiates the 
polymer chain growth [44]. In Reference [43], devoted to the modeling of the propylene dimerization 
and oligomerization processes, the crucial role of the chlorine atom as a structural unit of the active 
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the activator that increases the rate and selectivity of the dimerization was revealed. 
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XAlBui2 and [Cp2ZrH2]2-ClAlR2 exhibit almost the same set of Zr,Al-hydride complexes. However, 
in the reaction of [Cp2ZrH2]2 with ClAlR2 (R = Et, Bui), new bimetallic Zr,Zr-hydride complexes that 
can chemically bind to MAO were observed [45].  

The goal of this research was to find the conditions for selective alkene dimerization in two 
catalytic systems: Cp2ZrCl2-(AlR3 or HAlBui2 (R = Me, Et, Bui))-MMAO-12, and [Cp2ZrH2]2-ClAlR2 (R 
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Scheme 1. Metal hydride intermediates as active centers of alkene oligo- and polymerization [5,10,11,36].

Moreover, Marks et al. showed that the zirconium hydride complexes modified with B(C6F5)3

are active in ethylene and propylene polymerization [37,38]. Collins et al. demonstrated significantly
higher activity of the complexes (RCp)2ZrH3AlH2 (R = Bun, TMS) activated with MAO in ethylene
polymerization than the corresponding zirconocene dichlorides [39]. Binuclear hydride clusters
complexed with organoboron compounds [40–42] were found to be highly active initiators of isobutene
homopolymerization and isobutene-isoprene copolymerization [42]. It is generally accepted that the
activating effect of MAO or organoboron compounds on di-, oligo- and polymerization systems is
connected with the formation of highly reactive cationic centers of type [L2M-H]+ [34,35,43].

Furthermore, quantum chemical modeling of the possible active sites governing the alkene
polymerization also supports the proposed formation of the hydride intermediates and further
participation in the reactions. For example, a DFT study of the initial stages of the methyl vinyl
ether (MVE) polymerization which runs under the catalytic action of [Me2C(Cp)2Zr(Me)]+ and
[Me2C(Cp)2Zr(H)]+ cations showed that it is the zirconium hydride which preferably initiates the
polymer chain growth [44]. In Reference [43], devoted to the modeling of the propylene dimerization
and oligomerization processes, the crucial role of the chlorine atom as a structural unit of the active
Zr,Al- binuclear hydride intermediates was shown, and the efficiency of the molecular hydrogen as the
activator that increases the rate and selectivity of the dimerization was revealed.

Our recent studies regarding the structure of the intermediates formed in the reaction of L2ZrCl2
with XAlBui

2 (X = H, Cl, Bui) [32], as well as the complexes generated in zirconocene dihydride-ClAlR2

(R = Et, Bui)-methylaluminoxane (MMAO-12) systems [45], showed that both systems L2ZrCl2-XAlBui2
and [Cp2ZrH2]2-ClAlR2 exhibit almost the same set of Zr,Al-hydride complexes. However, in the
reaction of [Cp2ZrH2]2 with ClAlR2 (R = Et, Bui), new bimetallic Zr,Zr-hydride complexes that can
chemically bind to MAO were observed [45].

The goal of this research was to find the conditions for selective alkene dimerization in two
catalytic systems: Cp2ZrCl2-(AlR3 or HAlBui

2 (R = Me, Et, Bui))-MMAO-12, and [Cp2ZrH2]2-ClAlR2

(R = Me, Et, Bui)-MMAO-12, and to reveal the structure of the zirconium hydride intermediates that
initiate the alkene transformations.
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2. Results

2.1. Study of 1-Alkene Transformations in Catalytic Systems Cp2ZrY2 (Y = Cl, H)-OAC-MMAO-12

2.1.1. Activity and Chemoselectivity of System Cp2ZrCl2-(AlR3 or HAlBui
2)-MMAO-12 with Respect

to Alkenes

On the first step of the catalytic experiments, we studied the effect of MMAO-12 on the activity
and chemoselectivity of systems Cp2ZrCl2-XAlBui

2 (X = H, Bui) that hydroaluminate the terminal
alkenes in the absence of the activator [7]. As shown elsewhere, the catalytic system based on
HAlBui

2 and zirconocene dichloride demonstrates low activity in the alkene hydroalumination
(hydroalumination product (2)); this experiment was taken as a reference point (Scheme 2, Table 1
(entry 1)) [30–32]. Addition of 30–240 eq. of methylaluminoxane to the system does not affect notably
the alkene conversion. For example, in the system L2ZrCl2-HAlBui

2-MMAO-12-1-octene at the ratio
[Zr]:[Al]:[MAO]:[1-alkene] = 1:60:240:50, the conversion of 1-octene does not exceed 20% in 3 h (Table 1,
(entry 4)).
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Unlike HAlBui
2, triisobutylaluminium is an effective reagent for 1-alkene hydrometalation

catalyzed by Cp2ZrCl2 [30,32,46]. As another reference, the hydroalumination products after 3 h of the
reaction were obtained at 83% yield (Table 1, entry 2) [32]. The addition of MMAO-12 increases the
conversion of 1-alkene up to 98% due to the generation of both hydroalumination (2) and dimerization
(4) products (Table 1, entry 3). Meanwhile, minor product 3, the precursor of dimer 4, was observed in
this system due to the formation of the metal alkyl, which appeared after incorporation of the second
alkene molecule into hydrozirconation product (Scheme 1). Rising the MMAO-12 content from 30 to
240 eq. increases the yield of 1-octene dimers (4b) from 5% to 40% (Table 1, entry 5). Similarly to
the case with HAlBui

2, a decrease in the AlBui
3 concentration leads to the selective formation of the

alkene dimers (97%) within 20 min of the reaction at 20 ◦C (Table 1, entry 6). A further increase
in the temperature accelerates the reaction and helps to reduce the concentration of the catalytic
system components without loss of both the chemoselectivity and the main product yield (entries 8,9).
These results are consistent with the data obtained for catalytic system L2ZrCl2-AlBui

3-ClAlR2-MAO
(1:20:(1–2):10, 0.05 mol% Zr, 60◦C, 1–4 h), in which aluminum alkyl AlBui

3 and aluminum chloride
ClAlR2 (R = Me, Et) activate the system that produces dimers with a high yield up to 94% [5,24,43].

Moreover, the conditions that we proved to be effective for the selective 1-octene dimerization were
extended to 1-hexene treatment (entries 10,11). These conditions also provide high substrate conversion;
however, the product distribution slightly changes due to the appearance of the hydrometalation (2)
and alkylation (6) products, and the dimer yield becomes 89%–91%.
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Table 1. Catalytic activity and chemoselectivity of system I Cp2ZrCl2-OAC-MMAO-12 in the reaction with 1-alkene.

Entry 1-Alkene OAC [Zr]:[Al]:[MAO]:[1-alkene] T, ◦C Time, min Alkene Conversion, % Product yield, 1 %
2-D 3-D 4 5-D 6

1

1-octene (1b)

HAlBui
2 [32]

1:60:0:50 20 180
11 11 - - - -

2 AlBui
3 [32] 83 83 - - - -

3 AlBui
3 1:60:30:50 20 180 98 91 2 5 - -

4 HAlBui
2 1:60:240:50 20 180

20 20 - - - -
5 AlBui

3 94 51 3 40 - -

6
AlBui

3
1:3:30:50 20 20 99 1 1 97 - -

7 1:3:30:100 20 30 99 - <1 98 - <1 (6′) 8

8 HAlBui
2 1:3:30:100 40 10

99 - 3 96 - -
9 AlBui

3 99 - 1 98 - -

10

1-hexene (1a)

HAlBui
2

1:3:30:100 40 15

99 5 1 91 - 2 (6′) 8

11 AlBui
3 99 4 1 89 - 3 (6′) 8

12 AlMe3 91 - - 87 2
(5′) 2 (6′)

13 AlEt3 92 2 3 68 - 6 (6′) 8

12 (6”)

14 HAlBui
2

1:3:30:250 60 5

98 1 1 94 - 2 (6′) 8

15 AlBui
3 99 2 1 1 88 - 4 (6′) 8

16 AlMe3 99 3 1 1 85 - 3 (6′)
17 AlEt3 96 3 1 1 85 - 1 (6′) 8

18 HAlBui
2

1:3:30:500 60 5

98 - - 97 - -
19 AlBui

3 98 1 1 93 - 1 (6′) 8

20 AlMe3 99 4 1 1 87 - 5 (6′)
21 AlEt3 98 1 1 96 - <1 (6′) 8

22
HAlBui

2

1:3:30:1000 60

15 99 - - 98 - -
23 30 83 5 - - 78 - -
24 60 86 5,6 <1 - 83 - <1 (6′) 8

25 AlBui
3 15 94 6 - - 92 - 1 (6′) 8

26 AlMe3 10 92 2 - 84 - 6 (6′)
27 AlEt3 60 65 7 - - 64 - <1 (6”)

1 Determined by GC-MS of deuterolysis products. 2 Formation of trimers up to 5% is observed. 3 Trimers—8%. 4 Trimers—5%. 5 2000 eq. of 1-hexene were taken; trimers up to 5% are observed.
6 Trimers—1%. 7 10 eq. of AlEt3 were taken. 8 Product 6′ was formed due to the presence of residual AlMe3 in MMAO-12.
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Further, we studied the influence of different organoaluminum compounds (OAC) on the activity
and chemoselectivity of the catalytic system; for this purpose, the isobutylalanes were replaced
consequently by AlMe3 and AlEt3. The application of these OACs at 40 ◦C slightly reduces the alkene
conversion to 91%–92% (entries 12,13). In the case of AlEt3, a decrease of the dimer yield to 68%
was observed due to the increased fraction of the alkylated monomer 6 in the products (entry 13).
The formation of 6 is possible through the alkene carbometalation product 5 which is generated by
either methyl or ethyl zirconocenes formed during the stage of the alkyl-chloride exchange between
Cp2ZrCl2 and either AlMe3 or AlEt3, respectively. It should be emphasized that for the systems
like Cp2ZrCl2-AlMe3, these stages, finished by-product 6, are very important since they provide
zirconocene hydrides which are the source of dimers 4. Rising of the temperature to 60 ◦C both
increases the substrate conversion and narrows the selectivity towards the dimerization, regardless of
the OAC nature (entries 14–21). Moreover, the amount of the substrate can be increased to 1000 eq. in
the case of HAlBui

2 without loss of the dimer yield (98%, entry 22).
As a result, we have established that the catalytic system based on HAlBui

2 provides the most
selective dimerization (entries 14,18,22).

2.1.2. Activity and Chemoselectivity of System [Cp2ZrH2]2-ClAlR2 (R = Me, Et, Bui)-MMAO-12 with
Respect to Alkenes

On the second step of the catalytic experiments, we studied the performance of system II
[Cp2ZrH2]2-ClAlR2-MMAO-12 (R = Me, Et, Bui) in the reaction with alkenes having various structures
(1a–f). In all the experiments, the main product was dimer 4 (Scheme 2, Table 2).

Monitoring of the reaction for 3 h at the initial ratio of the reagents [Zr]:[Al]:[MAO]:[1-hexene] =

1:3:30:100 at 20 ◦C showed the presence of an induction period which duration significantly depends
on the OAC structure. The longest induction period (60 min) was observed for ClAlMe2 (Figure S1a).
For ClAlBui

2, the induction period decreases to 15 min (Figure S1c), and the yield of dimer 4 rises
to 97% (Table 2, entry 6). A reaction in the presence of dimethyl- or diethylaluminum chlorides is
accompanied by the formation of hydro- and carboalumination products with a yield of 22%–23%
(Table 2, entries 3,4). As a result, systems based on [Cp2ZrH2]2, MMAO-12, and ClAlBui

2, compared to
other ClAlR2, were found to be more active and selective. Diisobutylaluminum chloride also showed
its effectiveness in the dimerization of other linear substrates: 1-octene and 1-decene. The yield of
dimers 4b,c obtained within 3 h at a temperature of 20 ◦C was 72%–98% (entries 7–18).

When the temperature is elevated to 40 ◦C, the reaction accelerates, and the induction period
vanishes. The yield of 1-hexene and 1-octene dimers reaches 73%–91% in 15 min (entries 19–24).
It should be noted that, in this case, the dependency of the system activity on the OAC nature disappears.
Moreover, under these conditions, the conversion of 4-methyl-1-pentene (1d) is over 97%, and the yield
of the dimerization products is 95% (entry 25). The temperature increase to 60 ◦C selectively provides
1-hexene dimers at 91%–94% yield within 5 min of the reaction (lines 26–28). Increasing 1-alkene initial
concentration to 500 equivalents does not affect the degree of its transformation at 60 ◦C, and the yield
of the dimerization products remains sufficiently high (85%–90%) (entry 32). A significant reduction
in the substrate conversion and dimer yield (65% and 57%, correspondingly) was observed only at
1000 equivalents of the alkene (entry 33).

Moreover, the relative amount of MMAO-12 in the catalytic system also affects the activity only
up to a certain level. The increase in the MMAO-12 content to 60 eq. (at 20 ◦C) accelerates the reaction
and provides the dimers with a yield of 86% (entries 34–36). Further increase of MMAO-12 content up
to 120 eq. does not change both the catalytic activity and the dimerization product yield (entry 37).
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Table 2. Catalytic activity and chemoselectivity of system II [Cp2ZrH2]2-ClAlR2-MMAO-12 in the reaction with terminal alkenes (all ratios are given with respect to
monomeric Cp2ZrH2).

Entry 1-Alkene ClAlR2 [Cp2ZrH2]: [Al]: [MAO]:[1-alkene] T, ◦C Time, min Alkene Conversion, % Product Yield, 1 %

2-D 3-D 4 5-D 6

1

1-hexene (1a)

ClAlMe2

1:3:30:100

20

60 32 2 7 15 1 (5′) 7 (6′)
2 180 99 2 6 80 2 (5′) 9 (6′)

3 ClAlEt2
60 75 2 4 47 - 22 (6”)

4 180 99 2 5 69 - 23 (6”)

5
ClAlBui

2
60 79 1 5 73 - -

6 180 99 1 2 97 - -

7

1-octene (1b)

ClAlMe2
60 25 2 1 4 15 - 4 (6′)

8 180 >99 2 4 10 72 3 9 (6′)

9 ClAlEt2
60 73 2 2 13 46 - 11 (6′) 4

10 180 >99 2 3 9 76 2 (5′) 4 9 (6′) 4

11
ClAlBui

2
60 85 2 12 60 - 10 (6′) 4

12 180 >99 2 3 9 77 2 (5′) 4 8 (6′) 4

13

1-decene (1c)

ClAlMe2
60 <5 - 2 3 - -

14 180 >99 3 6 81 1 (5′) 8 (6′)

15 ClAlEt2
60 68 4 10 28 5 (5”) 21 (6”)

16 180 >99 6 4 76 2 (5′) 4 12 (6′) 4

17
ClAlBui

2
60 73 4 7 59 - 2 (6′) 4

18 180 >99 4 7 87 - 2 (6′) 4

19

1-hexene (1a)

ClAlMe2

40

15 96 4 3 82 - 10 (6′)

20 ClAlEt2 15 98 2 3 83 - 11 (6′) 4

21 ClAlBui
2 15 >99 4 2 86 - 9 (6′) 4

22

1-octene (1b)

ClAlMe2 15 83 4 3 73 - 4 (6′)

23 ClAlEt2 15 89 4 3 79 - 1 (6′) 4

2 (6”)

24 ClAlBui
2 15 98 5 - 91 - 2 (6′) 4

25 4-methyl-1-pente-ne (1d) ClAlBui
2 30 >99 1 1 95 - 2 (6′) 4
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Table 2. Cont.

Entry 1-Alkene ClAlR2 [Cp2ZrH2]: [Al]: [MAO]:[1-alkene] T, ◦C Time, min Alkene Conversion, % Product Yield, 1 %

2-D 3-D 4 5-D 6

26

1-hexene (1a)

ClAlMe2
60

5 99 1 1 91 - 6 (6′)

27 ClAlEt2 5 99 1 2 92 - 5 (6′) 4

28 ClAlBui
2 5 99 - 2 94 - 3 (6′) 4

29 ClAlMe2
1:3:30:250 60

5 94 1 1 85 - 6 (6′)

30 ClAlEt2 5 98 3 1 2 90 - 5 (6”)

31 ClAlBui
2 5 98 1 2 87 - 3 (6′) 4

32 ClAlBui
2 1:3:30:500 60 30 95 1 2 87 - 5 (6′) 4

33 ClAlBui
2 1:3:30:1000 60 360 65 2 1 2 57 - 3 (6′) 4

34 ClAlBui
2 1:3:3:100 20 240 41 2 3 35 - -

35 ClAlBui
2 1:3:12:100 20 240 99 - 13 86 - -

36 ClAlBui
2 1:3:60:100 20 15 >99 2 <1 81 2 (5′) 4 14 (6′) 4

37 ClAlBui
2 1:3:120:100 20 15 >99 1 2 80 1 (5′) 4 15 (6′) 4

38 Allylbenzene (1e) ClAlBui
2

1:3:30:100 100
60 94 6 2 52 +

9 5 - 25 (6′) 4

39 Styrene (1f) ClAlBui
2 60 79 3 8 - 32 +

26 5 - 6 (6′) 4

1 Determined by GC-MS of deuterolysis products. 2 Formation of trimers up to 1%–2% is observed. 3 Trimers—8%. 4 Products 5′ or 6′ were formed due to the presence of residual AlMe3
in MMAO-12. 5 The formation of two regioisomers head-to-tail and tail-to-tail occurs.
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It was established that aryl-substituted alkenes 1e and 1f can undergo the dimerization at an
elevated temperature of 100 ◦C. Within 60 min, the dimers were obtained with yields of 61% and 58%,
respectively. However, the proximity of the Ar group to the double bond leads to a loss of the reaction
regioselectivity. The ratio of the regioisomers of the styrene dimer head-to-tail to tail-to-tail reaches
1.23:1 (entry 39).

Finally, the catalytic systems consisting of zirconocene dihydride, dialkylaluminum chlorides,
and MMAO-12, work just as well as the systems based on zirconocene dichloride. Therefore, to identify
the intermediates responsible for the alkene dimerization in both systems, we studied the structure
and activity of the hydride complexes by the means of NMR spectroscopy.

2.2. NMR Study of Hydride Intermediate Structures in Systems Cp2ZrY2 (Y = Cl, H)-OAC-MMAO-12

Earlier, we showed that the system Cp2ZrCl2-XAlBui
2 can generate certain bimetallic hydride

complexes; among them, the most active species in the hydroalumination reaction are the ones which
have an open Zr-H bond [32]. The NMR study showed that in the Cp2ZrCl2 reaction with AlBui

3 (1:5),
alkyl chloride complex 7 is produced and then transformed into complexes 8 and 10c, both undergoing
intermolecular exchange via intermediate 9 [30,32] (Scheme 3, Figure 1). In this work, the introduction
of MMAO-12 into the reaction mixture, in the 1H NMR spectra, gives rise to both a doublet at −1.22 ppm
(J = 17.6 Hz) and a triplet at −6.40 ppm (J = 17.6 Hz) which appear to be correlated in the COSY HH
spectrum (Figure S5). Moreover, those signals are connected with a singlet of the Cp-rings at 5.50 ppm.
The ratio of the signal intensities 2 (Zr-H):1 (Zr-H):20 (Cp) indicates the presence of two ZrCp2 fragments
in the molecule. With an increase in the MMAO-12 concentration, additional doublet at −1.23 ppm
and triplet at −6.59 ppm are observed; also, binary Cp-ring signals appear in the downfield part of
the spectrum at 5.46 and 5.48 ppm. Taking into account these data, as well as the results obtained
earlier [45], the structure of these complexes was assigned as 12 and is presented in Scheme 3. As we
have previously shown [45], this type of complexes is formed in the reaction of [Cp2ZrH2]2 with ClAlR2

(R = Et, Bui). In intermediates 12a–c, there is no intermolecular exchange with hydride atoms; this
indicates higher stability of these structures compared to complexes 8 and 10c.

The reaction of Cp2ZrCl2 with HAlBui
2 is accompanied by the formation of the known complexes

10c [29,30,32] and 11c [30,31]. With reduced HAlBui
2 content down to 2–3 equivalents (when the initial

Cp2ZrCl2 remains unreacted), complex 12c becomes observable; moreover, the complex is formed in
this system even in the absence of MMAO-12 (Figures S7 and S8). Similar to the system with AlBui

3,
addition of MMAO-12 increases the relative amount of complex 12c, and a new set of signals similar to
12c appear in the NMR spectrum. This phenomenon is possible due to the exchange reaction with
AlMe3 contained in MMAO-12, as we described earlier [45].

Zirconocene dihydride reacts with ClAlMe2 in a ratio of 1:3 providing a mixture of complexes:
10a, 12a, 13a, and Cp2ZrCl2 (Scheme 3, Figure 2a, Table 3). The structure of complex 10a was identified
by analogy with 10b,c [45]. A pair of signals at −0.60 ppm (Zr-H-Al) and 5.75 ppm (Cp) having an
intensity ratio of 2:10 were assigned to complex 13a [33]. The broadened nature of the signals belonging
to the hydride atom and cyclopentadienyl rings indicates the participation of 13a in the intermolecular
exchange; a possible reaction pathway is shown in Scheme 3. Complex 12a is characterized by both
triplet and doublet signals at −6.64 ppm (J = 17.6 Hz) and −1.19 ppm (J = 17.6 Hz); these signals relate
to that of Cp-rings at 5.52 ppm as 1:2:20. Probably, this complex is a result of the replacement of
one hydride atom in the zirconocene dihydride dimer with chlorine. The dialkylaluminum hydride,
produced as a result of the chloride-hydride exchange, reacts with Cp2ZrH2 and ClAlR2 and provides
trihydride complexes 10a–c.
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Table 3. 1H and 13C NMR of complexes 10a, 12a, 13a, 12a·MAO (δ, ppm, 400.13 MHz, C7D8, T = 27 ◦C).

Complex δH Cp δC Cp δH Zr-H-Zr δH Zr-H-Al δH MAO

10a 5.68 (s, 10H) 104.74 −2.43 (d, 8.6 Hz, 2H)
−1.19 (t, 8.6 Hz, 1H)

11a 5.72 (s, 10H) 107.90 −2.55 (br.s, 1H)
−1.60 (br.s, 1H)

12a 5.52 (s, 20H) 108.00 −6.64 (t, 17.6 Hz, 1H)
−1.19 (d, 17.6 Hz, 2H)

13a 5.75 (br.s,
10H) 108.29 (br.) −0.60 (br.s, 2H)

12a·MAO 5.42 107.88

−6.56 (t, 17.2 Hz, 1Н)
−1.08 (d, 17.2 Hz, 2Н)
−6.71 (t, 17.6 Hz, 1Н)
−1.27 (d, 17.6 Hz, 2Н)

12a·MAO (heavy phase) 5.11–5.33 107.59 (br.) −6.92 (br.t, 2H)
−1.44 (br.d, 2H) −0.63 ÷ −0.08



Molecules 2020, 25, 2216 10 of 19

Molecules 2020, 25, x FOR PEER REVIEW 11 of 20 

 

 
Figure 1. 1H NMR of system Cp2ZrCl2-AlBui3-MMAO-12 in С7D8 (T = 25 °C, intensity of upfield signals 
is increased): (a) [Zr]:[Al]:[МАО] = 1:5:0, T = −33 °C [32]; (b) [Zr]:[Al]:[МАО] = 1:5:0 [32]; (c) 
[Zr]:[Al]:[МАО] = 1:5:1.5; (d) [Zr]:[Al]:[МАО] = 1:5:5; (e) [Zr]:[Al]:[МАО] = 1:5:12. 

Table 3. 1H and 13C NMR of complexes 10a, 12a, 13a, 12а∙MAO (δ, ppm, 400.13 MHz, C7D8, T = 27 °C). 

Complex δН Cp δC Cp δН Zr-H-Zr δН Zr-H-Al δН MAO 

10a 5.68 (s, 10H) 104.74  
−2.43 (d, 8.6 Hz, 2H) 
−1.19 (t, 8.6 Hz, 1H) 

 

11a 5.72 (s, 10H) 107.90  
−2.55 (br.s, 1H) 
−1.60 (br.s, 1H) 

 

12а 5.52 (s, 20H) 108.00 
−6.64 (t, 17.6 Hz, 1H) 
−1.19 (d, 17.6 Hz, 2H) 

  

13a 5.75 (br.s, 10H) 108.29 (br.)  −0.60 (br.s, 2H)  

12a∙MAO 5.42 107.88 

−6.56 (t, 17.2 Hz, 1Н) 
−1.08 (d, 17.2 Hz, 2Н) 
−6.71 (t, 17.6 Hz, 1Н) 
−1.27 (d, 17.6 Hz, 2Н) 

 
 

 

12a∙MAO 
(heavy 
phase) 

5.11–5.33 107.59 (br.) 
−6.92 (br.t, 2H) 
−1.44 (br.d, 2H) 

 −0.63 ÷ −0.08 

Figure 1. 1H NMR of system Cp2ZrCl2-AlBui
3-MMAO-12 in C7D8 (T = 25 ◦C, intensity of upfield

signals is increased): (a) [Zr]:[Al]:[MAO] = 1:5:0, T = −33 ◦C [32]; (b) [Zr]:[Al]:[MAO] = 1:5:0 [32]; (c)
[Zr]:[Al]:[MAO] = 1:5:1.5; (d) [Zr]:[Al]:[MAO] = 1:5:5; (e) [Zr]:[Al]:[MAO] = 1:5:12.Molecules 2020, 25, x FOR PEER REVIEW 12 of 20 

 

 
Figure 2. 1H NMR of systems [Cp2ZrH2]2-ClAlR2 in С7D8 (T = 26 °C, intensity of upfield signals is 
increased): (a) ClAlMe2; (b) ClAlEt2 [45]; (c) ClAlBui2 [45]. 

Assessment of the NOESY spectrum for 12b opened the possibility to clarify the structure of 
complexes 12a–c. The spectrum exhibits cross-peaks between the signals of Cp- ring protons and 
hydride atoms with a quartet signal of ethyl group protons at 0.19 ppm (Figure 3); the relative 
intensity of the signals indicate the presence of no more than one ClAlEt2 molecule in the structure of 
12b. 

 
Figure 3. NOESY of [Cp2ZrH2]2-ClAlEt2 system (1:3) in С7D8. 

Figure 2. 1H NMR of systems [Cp2ZrH2]2-ClAlR2 in C7D8 (T = 26 ◦C, intensity of upfield signals is
increased): (a) ClAlMe2; (b) ClAlEt2 [45]; (c) ClAlBui

2 [45].

Assessment of the NOESY spectrum for 12b opened the possibility to clarify the structure of
complexes 12a–c. The spectrum exhibits cross-peaks between the signals of Cp- ring protons and
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hydride atoms with a quartet signal of ethyl group protons at 0.19 ppm (Figure 3); the relative intensity
of the signals indicate the presence of no more than one ClAlEt2 molecule in the structure of 12b.
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After the addition of MMAO-12 to the Cp2ZrH2-ClAlMe2 system at a ratio [Zr]:[ClAlR2]:[MAO]
= 1:3: (6–12), new upfield signals of the hydride atoms and protons of the cyclopentadienyl rings
belonging to adducts of complexes 12a with MMAO-12 (Figure 4a) were observed. In the case of
complex 12a, the 1H NMR spectrum exhibited both triplet and doublet signals at −6.56 and −1.08 ppm,
respectively, as well as broadened signals at −6.94 and −1.43 ppm. These signals correspond to a broad
peak of cyclopentadienyl rings at 5.11–5.33 ppm. Within a few minutes, the opacity of the homogeneous
solution and separation of a heavy phase was detected. This corresponds to the previously observed
effect for 12b,c [45]. As follows from the NOESY experiment (Figure S17), adducts 12a·MAO show
a negative NOE effect intrinsic to macromolecular compounds [47,48]. The signal broadening could
be attributed to the high molecular weight of the particles. The substantial difference in diffusion
coefficients between MMAO-12 derivatives (Figure S15) may indicate a large increase in the molecular
weight and particle volume in the course of a heavy fraction formation. The latter is possible in the case
of the intermolecular binding of MMAO-12 oligomers by the complexes. As a result, it was found that
among a large set of bimetallic hydride complexes, only complexes 12a–c were able to bind chemically
to MMAO-12.

Probably, the ability of the complexes to bind with the activator depends on the dynamic stability
of the structures, and on the possibility to replace the organoaluminum fragment in the molecules.
Moreover, the observation of adducts formed via covalent binding with methylaluminoxane suggests
the presence of a considerable number of accessible three-coordinated Lewis-acidic aluminum centers
in the activator. Since MMAO-12 acts similarly to trimethylaluminum or ClAlR2, which can substitute
AOC in the complexes 12a–c, it can be assumed that there is a sufficient number of OAlMe2 groups in
the methylaluminoxane structure [49–52].
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signals is increased): (a) ClAlMe2, [Zr]:[Al]:[MAO] = 1:1.5:3; (b) ClAlEt2, [Zr]:[Al]:[MAO] = 1:3:6 [45];
(c) ClAlBui

2, [Zr]:[Al]:[MAO] = 1:3:8 [45].

Using the complexes obtained in the [Cp2ZrH2]2-ClAlBui
2 system as an example, we showed that

the addition of 1-hexene to a solution containing a mixture of complexes 10c–13c in the absence of
MMAO-12 is accompanied with the appearance of hydrometalation products 2a: zirconocene alkyl
chloride and aluminum alkyl (Scheme 4); their identification was carried out on the base of NMR
data [30] and mass spectrometry of the deuterolysis products. For this reaction, complexes 10c and
11c interacted first, whereas 12c was no longer observed in the spectra only after 4 h of the process
(Figure S19). As follows from Figure 5, in the presence of MMAO-12, when the system contains
MAO-adducts along with the complexes 10c, 12c, 13c, complex 10 is consumed quickly, providing
hydrometalation products 2a. The formation of the dimers is accompanied by the vanishing of the
MAO- adducts of complex 12; especially their heavy fraction is consumed first.
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3. Discussion

Our study of the catalytic system Cp2ZrCl2-OAC-MMAO-12 proved the ability of this type
of system to dimerize 1-alkenes with high chemoselectivity to give head-to-tail products with a
vinylidene moiety > C=CH2 [5,9–12,24,53]. The other Ti subgroup metal compounds, for example,
postmetallocene Zr and Hf complexes with [ONNO]-type amine bis(phenolate) ligands, activated
by B(C6F5)3, catalyze the 1-hexene oligomerization with the same regioselectivity [54]. Among these
complexes, hafnium catalysts showed the best selectivity towards the dimers (up to 97%); moreover,
the molecular weight distribution of the oligomers, obtained in Hf-catalyzed reactions, do not
correspond to a typical Schulz−Flory regularity. Similar zirconium complexes with aryl-substituted
[OSSO]-type bis(phenolate) ligands on the trans-cyclooctanediyl platform, activated by dried modified
methylaluminoxane (dMMAO), catalyze 1,2-regioselective oligomerization of 1-hexene at relatively
low catalyst loadings and produce preferably head-to-tail dimer. The use of other transition metal
complexes leads, first of all, to changes in the reaction regioselectivity. For example, the systems based
on Fe [55] and Co [56,57] complexes and Al- coactivators provide linear head-to-head dimers, whereas
W catalysts [58] give predominantly methyl- and dimethyl-branched tail-to-tail products. In these
studies, the participation of the transition metal hydride complexes as active centers is assumed
as given.

However, in the literature, information regarding the direct evidence of the alkene dimerization
under the action of metal hydrides is very limited [59,60]. For example, it was shown that the binuclear
hydride complex [(Ind’)2Y(µ-H)]2 catalyzes regio- and stereoselective homodimerization of various
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α-olefins at 80 ◦C, as well as head-to-head codimerization of styrene with other α-olefins [59]. In this
work, we show that the activity and chemoselectivity of the systems based on zirconocene dichloride
and dihydride are comparable to each other; this outlines the zirconium hydrides as the probable
precursors of active intermediates of the dimerization reaction.

As follows from the NMR study, Zr,Al-hydride clusters 10a–c, even in the presence of MMAO-12
activator, give only hydrometalation products, while the dimerization pathway is determined by
biszirconium hydride complexes 12a–c. The comparison of the action of complexes 10 and 12 shows that
the first stage of the reaction, as presented in Scheme 1, is the hydrometalation stage. Further, the process
flow is possible in two directions: either transmetalation with the transfer of the alkyl fragment to
aluminum or the introduction of a second alkene molecule into the hydrozirconation product with the
formation of the dimer. Therefore, for the bimetallic Zr,Al- hydride complexes 10a–c, the processes of
the alkene hydrometalation and subsequent transmetalation proceed in the most rapid manner. Indeed,
as shown by quantum chemical modeling [61], the limiting stages of the reaction are either the stage of
the alkene incorporation into zirconocene hydrochloride (∆G, = 10.4 kcal/mol), or the stages of Zr−Cl
and Zr−H bridge bond breaking in Zr,Al-bimetallic complexes (17.8 kcal/mol and 19.8 kcal/mol) before
the alkene coordination. The transmetalation stages have insignificant or even no activation barriers.
Complex 12 is also, apparently, like 10, capable for the alkene hydrometalation; however, its activation
with methylaluminoxane gives active species which selectively provide dimers. Specifically, the stages
of the consecutive incorporation of the two alkene molecules and the chain termination through β-H
elimination proceed fast, and without the direct involvement of the organoaluminum fragment which,
when located close to hydride atoms, would facilitate chain transfer to aluminum.

In broad understanding, this case can be considered as an example of biszirconium catalysis
similar to the alkene polymerization in the presence of Group 4 bimetallic complexes [62–64].
Further development of this work into establishing the activation mechanism of the biszirconium
hydride complexes can be fruitful in uncovering the reasons for the selective formation of alkene di-
and oligomers.

4. Materials and Methods

1Нand 13C NMR spectra were recorded on a Bruker AVANCE-400 spectrometer (400.13 MHz (1H),
100.62 MHz (13C)) (Bruker, Rheinstetten, Germany). As the solvents and the internal standards, C7D8

(toluene-d8) and CDCl3 were employed. 1D and 2D NMR spectra (COSY HH, HSQC, HMBC, NOESY)
were recorded using standard Bruker pulse sequences. 1D and 2D DOSY spectra were obtained using
ledbpgp2s pulse program (LED with bipolar gradient pulse pair, 2 spoil gradients). The experiments
were carried out at 23–25 ◦C and temperature stabilization accuracy within 0.1 ◦C. The acquisition
parameters for the diffusion experiments were δ = 1 ms, ∆ = 0.1–0.2 s.

The yields of compounds 2–5 were determined from the yields of hydrolysis and deuterolysis
products, which were calculated relative to the amount of the initial olefin. The products were
analyzed using a gas chromatograph mass spectrometer GCMS-QP2010 Ultra (Shimadzu, Tokyo,
Japan) equipped with the GC-2010 Plus chromatograph (Shimadzu, Tokyo, Japan), TD-20 thermal
desorber (Shimadzu, Tokyo, Japan), and an ultrafast quadrupole mass-selective detector (Shimadzu,
Tokyo, Japan).

4.1. General Procedures

All operations for organometallic compounds were performed under argon according to the
Schlenk technique. The zirconocene dichloride was prepared using the standard procedure from
ZrCl4 (99.5%, Merck, Darmstadt, Germany) [65]. The synthesis of [Cp2ZrH2]2 from Cp2ZrCl2 was
performed as described previously [29–31]. The solvents (benzene, toluene) were distilled from AlBui

3

immediately before use. Commercially available HAlBui
2 (99%, Merck, Darmstadt, Germany), ClAlEt2

(97%, Strem, Kehl, Germany), AlBui
3 (95%, Strem, Kehl, Germany), AlEt3 (98%, Merck, Darmstadt,

Germany), AlMe3 (97%, Merck, Darmstadt, Germany) MMAO-12 (7% Al in toluene, Merck, Darmstadt,
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Germany) were involved into the reactions. CAUTION: the pyrophoric nature of aluminum alkyl and
hydride compounds require special safety precautions in their handling. Terminal alkenes 1-hexene
(97%, Acros, Geel, Belgium), 1-octene (99%, Acros, Geel, Belgium), 1-decene (95%, Acros, Geel,
Belgium), 4-methyl-1-pentene (97%, Acros, Geel, Belgium), allylbenzene (98%, Acros, Geel, Belgium),
styrene (99%, Fisher, Hampton, NH, USA) were used as received. NMR data, mass spectra of the
obtained dimers 4a–f correspond to the data, presented in Refs. [5,10,11,66].

4.2. Reaction of Cp2ZrCl2 with OAC, MMAO-12 and 1-Alkene

A flask with a magnetic stirrer was filled under argon with 0.0342 mmol (10 mg) of Cp2ZrCl2, 0.103–2.05
mmol of OAC (AlMe3, AlEt3, HAlBui

2, AlBui
3), 0.925–8.2 mmol of MMAO-12 and 1.71–34.3 mmol of

1-alkene. The reaction was carried out with stirring at different temperatures 20, 40 and 60 ◦C. After 5, 10,
15, 30, 45, 60 min, samples (0.1 mL) were syringed into tubes filled with argon, and the samples were
decomposed with 10% HCl or DCl at 0 ◦C. Products were extracted with CH2Cl2, and the organic layer
was dried over Na2SO4. The yield of products was determined by GC-MS.

4.3. Reaction of [Cp2ZrH2]2 with ClAlR2, MMAO-12 and 1-Alkene

A flask with a magnetic stirrer was filled under argon with 0.022 mmol (10 mg) of [Cp2ZrH2]2,
0.135 mmol of ClAlR2, 0.135–5.4 mmol of MMAO-12 and 4.5–45 mmol of 1-alkene. The reaction was
carried out with stirring at different temperatures 20, 40 and 60 ◦C. After 5, 10, 15, 30, 60, 90, 120, 150,
180, 240 and 360 min, samples (0.1 mL) were syringed into tubes filled with argon, and the samples
were decomposed with 10% HCl or DCl at 0 ◦C. Products were extracted with CH2Cl2, and the organic
layer was dried over Na2SO4. The yield of products was determined by GC-MS.

4.4. NMR Study of the Reaction of Cp2ZrCl2 with XAlBui
2 (X = H, Bui) and MMAO-12

Method A. An NMR tube was charged with 0.034 mmol (10 mg) of Cp2ZrCl2 and 0.5 mL of
C7D8 in an argon-filled glovebox. The tube was cooled to 10 ◦C and 0.051–0.185 mmol of XAlBui

2

(X = H, Bui) was added dropwise. The mixture was stirred and the formation of complexes 10–13 was
monitored by NMR at room temperature. Further addition of 0.051–0.41 mmol of MMAO-12 provided
a separation of the reaction media into two fractions. Method B. An NMR tube was charged with
0.051–0.41 mmol of MMAO-12, 0.5 mL of C7D8 and 0.051–0.185 mmol of XAlBui

2 (X = H, Bui) in an
argon-filled glovebox. The tube was cooled to 10 ◦C and 0.034 mmol of Cp2ZrCl2 was added. The
mixture was stirred and the formation of complexes was monitored by NMR at room temperature.

4.5. NMR Study of the Reaction of [Cp2ZrH2]2 with ClAlR2 (R=Me, Et, Bui) and MMAO-12

Method A. An NMR tube was charged with 0.022 mmol (10 mg) of [Cp2ZrH2]2 and 0.5 mL of
C7D8 in an argon-filled glovebox. The tube was cooled to 10 ◦C and 0.044–0.135 mmol of ClAlR2 was
added dropwise. The mixture was stirred and the formation of complexes 10–13 was monitored by
NMR at room temperature. Further addition of 0.067–0.54 mmol MMAO-12 provided a separation of
the reaction media into two fractions. Method B. An NMR tube was charged with 0.067–0.54 mmol of
MMAO-12, 0.044–0.135 mmol of ClAlEt2 and 0.5 mL of C7D8 in an argon-filled glovebox. The tube
was cooled to 10 ◦C and 0.022 mmol (10 mg) of [Cp2ZrH2]2 was added. The mixture was stirred and
the formation of complexes was monitored by NMR at room temperature.

5. Conclusions

In summary, our studies on the alkene transformations under the action of MAO-activated
systems Cp2ZrCl2-(AlR3 or HAlBui

2) and [Cp2ZrH2]2-ClAlR2 (R = Me, Et, Bui) show their capability
to provide dimeric products with high yield and selectivity at the low content of the OAC and
methylaluminoxane. Parallel studies on the systems have shown a deep similarity both in the
catalytic performance and intermediate composition. As a result of the NMR studies, among all the
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intermediates considered, we proved for the first time that new Zr,Zr- hydride complexes having type
x[Cp2ZrH2·Cp2ZrHCl·ClAlR2]·yMAO appear to be specifically responsible for the alkene dimerization.
Further study of the reaction mechanism will uncover the process of activation of biszirconium
complexes by methylaluminoxane, and this will explain the unique selectivity of these intermediates
in the dimerization pathway.
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