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Abstract

Aphids are insects that cause direct damage to crops by the removal of phloem sap, but more importantly they spread
devastating viruses. Aphids use their sophisticated mouthpart (i.e. stylet) to feed from the phloem sieve elements of the
host plant. To identify genes that affect host plant resistance to aphids, we previously screened an Arabidopsis thaliana
activation tag mutant collection. In such mutants, tagged genes are overexpressed by a strong 35S enhancer adjacent to
the natural promoter, resulting in a dominant gain-of-function phenotype. We previously identified several of these mutants
on which the aphid Myzus persicae showed a reduced population development compared with wild type. In the present
study we show that the gene responsible for the phenotype of one of the mutants is At5g65040 and named this gene
Increased Resistance to Myzus persicae 1 (IRM1). Overexpression of the cloned IRM1 gene conferred a phenotype identical to
that of the original mutant. Conversely, an IRM1 knockout mutant promoted aphid population development compared to
the wild type. We performed Electrical Penetration Graph analysis to investigate how probing and feeding behaviour of
aphids was affected on plants that either overexpressed IRM1 or contained a knockout mutation in this gene. The EPG
results indicated that the aphids encounter resistance factors while reaching for the phloem on the overexpressing line. This
resistance mechanism also affected other aphid species and is suggested to be of mechanical nature. Interestingly, genetic
variation for IRM1 expression in response to aphid attack was observed. Upon aphid attack the expression of IRM1 was
initially (after 6 hours) induced in ecotype Wassilewskija followed by suppression. In Columbia-0, IRM1 expression was
already suppressed six hours after the start of the infestation. The resistance conferred by the overexpression of IRM1 in A.
thaliana trades off with plant growth.
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Introduction

Phloem-feeding insects display a variety of activities during

settlement and feeding on a host plant. Aphids, for example,

choose a plant based on surface cues [1]. After landing on a host

plant, they intercellularly probe plant tissue and frequently

puncture epidermis, mesophyll, and parenchyma cells to deter-

mine the suitability of the host [2]. Once they established a feeding

site, aphids can continue feeding from a single phloem sieve

element for hours or even days [3]. These probing and feeding

activities of aphids can be monitored using the Electrical

Penetration Graph (EPG) technique in which the aphid and the

plant are wired in a low-voltage circuit connected to a recording

system [4,5]. Information on the aphid activities can be extracted

from the recorded signal waveforms and provides insight into the

location of plant resistance factors [5].

Plants are not passive victims of insect attack but they have

developed several lines of defence [6]. Plant defences can be based

on chemical and/or mechanical traits that negatively affect the

biology of the insect [7]. Chemical defence usually involves

compounds with antibiotic activity that are present on the leaf

surface or in the phloem [8,9]. For instance, secondary metabolites

present in trichomes of tomato prevent aphids from settling [10].

Similarly, a protein possessing lectin activity in Arabidopsis thaliana

has an insecticidal effect towards aphids [11,12]. Structural

modifications of the cell wall may hamper aphid feeding by

strengthening barriers against probing and feeding. Transcript

profiling studies revealed that genes encoding proteins associated

with cell wall reinforcement and remodelling were commonly up-

regulated in aphid infested plants [13–15].

Some genes may potentially affect resistance towards aphids

once their expression level or profile is changed [16,17]. For the

identification of such genes activation tag mutant libraries can be

used. In an activation tag mutant, genes are overexpressed to

generate a dominant gain-of-function phenotype that can be

selected for [17,18]. The activation of genes is accomplished by

random insertion of a transposon on which the Cauliflower mosaic

virus (CaMV) 35S promoter is present that can constitutively

enhance or activate the expression of adjacent genes [18].

Previously, we used this A. thaliana activation tagged population

to screen for resistance towards the aphid Myzus persicae with the

aid of an aphid-virus system in which the efficiency of virus

transmission was used as an indicator for aphid resistance. This

screen resulted in the identification of nine mutants with and

increased resistance towards M. persicae, i.e. slower aphid

population development on the mutant compared to the wild
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type [19]. In this paper, we describe the characterization of one of

these mutants by identifying the activated gene and its role in

aphid resistance. This led to the identification of the Increased

Resistance to Myzus persicae 1 (IRM1) gene that, once being

overexpressed, increased the resistance of A. thaliana towards

aphids.

Materials and Methods

Insect Rearing
Myzus persicae was reared in cages on Chinese cabbage (Brassica

rapa L. ssp. pekinensiscv. Granaat). Brevicoryne brassicae was reared on

Brussels sprouts (Brassica oleracea L. var. gemmifera cv. Cyrus) at the

Department of Entomology, Wageningen University. Both rear-

ings were maintained in an acclimatized room with a relative

humidity of 60–70%, a temperature of 2062uC and an 18:6 L:D

photoperiod. For all experiments, only apterous aphids were used.

Plant Material and Growth Conditions
Mutant 3646 was previously identified as a mutant with a

reduced aphid population development [19]. Seeds of A. thaliana

wild type Wassilewskija (WS) were obtained from the library

present at Wageningen UR Plant Breeding [18]. Seeds of T-DNA

insertion line SALK_106042 (At5g65040 knock out mutant,

referred to as 40-KO hereafter and its corresponding wild type

Columbia-0 (Col-0) were obtained from NASC (http://

arabidopsis.info/; [20]). To induce germination, seeds were placed

at 4uC in the dark for 3 days under high humidity. Subsequently,

seeds were transferred to potting compost (Lentse PotgrondH) and

plants were cultivated in a climate chamber with a 6:18 L:D

photoperiod. The temperature was maintained at 2062uC during

the day and 1862uC during the night (60–70% relative humidity).

Plants were watered every other day and no pest control was

applied.

Confirmation of Homozygous Presence of T-DNA in the
40-KO Mutant

Genomic DNA of 40-KO leaves was isolated using the DNeasy

Plant Mini kit (Qiagen). A PCR reaction was carried out to

confirm the homozygous presence of the T-DNA insertion in the

first exon of the At5g65040 gene (Figure S1). Gene specific primers

40-KO_F and 40-KO_R) were designed up- and downstream of

the T-DNA insertion site (http://signal.salk.edu/tdnaprimers.2.

html) and used in combination with a T-DNA left border primer

(LBb1.3) (Table 1). PCR reactions were performed in a total

volume of 20 ml according to the manual of PhireH (Finnzymes,

Product codes: F-122S). The PCR programme consisted of 30

seconds at 98uC followed by 35 cycles of 98uC for 5 sec, 63uC for

5 sec, and 72uC for 30 sec with a final extension at 72uC for

10 min.

Construction of Transgenic A. thaliana Plants
The full length coding region of At5g65040 attached to a

forward primer AttB1F (located upstream of the start codon) and

reverse primer AttB2R (located downstream of the stop codon)

situated in the pEX-A vector was obtained from Eurofins

(Ebersberg, Germany). The coding region fragment of

At5g65040 was transferred into donor vector pDONR207 using

the GatewayH BP ClonaseTM II enzyme mix (Invitrogen) to

generate entry vector pDONR207::At5g65040. The entry vector

was subsequently cloned into Gateway destination vector pFAST-

R02 [21] using the Gateway LRH ClonaseTM II enzyme mix

(Invitrogen) to generate the expression construct pFAST-R02-40

in which At5g65040 is under the control of the Cauliflower mosaic

virus (CaMV) 35S promoter. The construct was transformed into

E. coli and transformants were checked by colony PCR analysis

using primers AttB1F and AttB2R (Table 1). After verifying the

accuracy of the sequences of the gene, the construct was

transformed into Agrobacterium tumefaciens strain GV3101 [22] by

electroporation. Agrobacterium tumefaciens mediated transformation

[23] was used to introduce the pFAST-R02-40 plasmid into

Columbia-0 and 40-KO mutant plants. Seeds containing the

construct were selected using fluorescence microscopy (Zeiss,

SteREO Discovery.V8) [21]. Two independent transformants in

Col-0, referred to as G0085 and G0088,and two independent

transformants in 40-KO, referred to as G0090 and G0092, were

used in further experiments.

Inverse PCR
Genomic DNA of leaves collected from mutant 3646 was

extracted using the DNeasy Plant Mini kit (Qiagen). Isolated DNA

was digested with restriction enzyme EcoRI (Thermo, product #
ER0275) or BamHI (Thermo, product # ER0051) and subse-

quently ligated with T4 DNA ligase (Fermentas, product #
EL0011). Five ml of ligated DNA was used as a template in an

inverse PCR (iPCR) reaction that was performed in a total volume

of 50 ml containing the PhusionTM enzyme (Finnzymes, Product

codes: F-530S, 100U). All enzymes were used according to the

supplier’s manuals. Primers were designed with Primer-3-Plus

[24]. For transposon flanking sequence isolation, primers Bar_R

and Bar_F were designed based on the sequences of the BAR gene

that is located on the transposon (Table 1). For T-DNA flanking

sequence isolation, primers (T-DNA LB_F and T-DNA LB_R)

were designed based on the sequences of the T-DNA left border

(Table 1), since the right border of T-DNA is commonly lost upon

integration [25]. The following iPCR programme was used: 30

seconds at 98uC followed by 35 cycles of 98uC for 10 sec, 64uC for

10 sec, and 72uC for 3 min with a final extension at 72uC for

10 min. PCR products were sequenced and then blasted against

the A. thaliana genome (http://www.arabidopsis.org/; [26]).

Time Course Experiment of Aphid Infestation
Four-week-old wild type plants were infested with 15 randomly

selected aphids per plant. Plant material was collected at zero, six

and 24 hours after aphid infestation. Aphids were gently brushed

away from the leaf tissue. Uninfested A. thaliana plants were also

brushed. For each treatment, three biological replicates were

obtained each consisting of a pool of 17 plants. Leaf samples were

immediately flash frozen in liquid nitrogen after collection and

stored at 280uC until use.

Quantitative RT-PCR
Total RNA from leaf samples was extracted using the RNeasy

Plant mini kit (Qiagen). One mg of total RNA was treated with

DNaseI (Invitrogen) according to the manufacturer’s instructions.

DNA-free total RNA was reverse transcribed into cDNA using the

iScript cDNA synthesis kit (Bio-Rad). Synthesised cDNA was

diluted 20 times. Gene-specific primers were designed with

Primer-3-Plus software [24] and are listed in Table 1. The

ACTIN8 (At1g49240) gene was used as the reference to normalize

gene expression across the samples [27]. Quantitative RT-PCR

was performed in a total volume of 10 ml containing 2 ml cDNA,

1.5 ml of each gene-specific primer (0.5 mM), and 5 ml SYBR

Green Supermix Reagent (BioRad). Quantitative RT-PCR was

performed in duplicate in a Real-Time Thermal Cycler (BioRad)

using the following programme: 95uC for 3 min followed by 40

cycles of 95uC for 15 sec, and 60uC for 1 min.

Aphid Resistance in Arabidopsis thaliana
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No-choice Aphid Assays
No-choice aphid assays were performed with 15 biological

replicates per genotype. Synchronized one-day-old nymphs were

used to infest three-week-old plants with one nymph per plant.

Nymphs were transferred to the plants using a fine brush. The

total number of aphids was counted 14 days after infestation.

Independent-samples t-test and ANOVA followed by Tukey tests

were used to determine the significance between genotypes

(P,0.05).

Electrical Penetration Graph
The electrical penetration graph (EPG) technique [4] was

employed to monitor penetrating and feeding behaviour of

aphids on mutant and wild type plants. A gold wire (diameter

20 mm) was attached onto the dorsum of young adult aphids

using conductive water-based silver glue. The wired aphid was

placed on a five-week-old plant that was connected to a

recording system via a copper electrode in the soil [28]. The

EPGs were recorded in a 22uC room with constant light for 8

hours. At least 15 recordings of individual aphids (one aphid per

plant) were obtained for each line. The EPG data were

analysed using the PROBE 3.0 software (Wageningen Univer-

sity, the Netherlands) to distinguish the various waveforms.

Waveform C represents the pathway phase, when the aphid

stylet is penetrating through the leaf tissue; waveform E2

represents phloem sap ingestion; Waveform F is associated with

derailed stylet mechanics or penetration difficulties; and

waveform G indicates active uptake of water from the xylem

elements [4].

Parameters were analysed individually for each aphid after

which the means and standard errors of the mean (SE) for the

total number of aphids per genotype was calculated. The

Mann-Whitney U and Fisher exact test were used to determine

if there were significant differences in the aphid’s probing and

feeding behaviour between mutant and wild type plants

(P,0.05).

Results

Phenotypic Characterization of Mutant 3646 and
Location of the T-DNA

Mutant 3646 was previously identified as an A. thaliana

activation tag mutant with a significantly smaller number of M.

persicae than the wild type WS [19]. In addition, aphids showed a

longer pre-reproductive period on this mutant compared to the

wild type WS [19]. Plants of mutant 3646 are dark green with

smaller rosette leaves than the wild type (Figure 1A). Furthermore,

mutant 3646 needed a longer time to flower, and had smaller

flowers and siliques than wild type WS plants.

In an activation tag mutant, a mutation may be caused by either

the transposon and/or the T-DNA on which the transposon is

present [18]. To determine the cause of the phenotype of mutant

3646, we performed inverse PCR with primers designed on

transposon and T-DNA sequences (Table 1). The PCR fragments

obtained with primers that amplify transposon flanking sequences

were 100% identical to T-DNA sequences, indicating that the

transposon was still located on the T-DNA. Primers designed to

pick up T-DNA flanking sequences recovered A. thaliana genomic

DNA. Using BLASTn [26], we determined that the T-DNA was

located 3.5 kb upstream of gene At5g65040 and 0.5 kb upstream

of gene At5g65050 (Figure 1B). Because the enhancer can

effectively activate genes within a range of 8.2 kb [29], these two

genes were considered candidate genes responsible for the

increased aphid resistance of mutant 3646.

Identification and Verification of the Gene Responsible
for the Increased Aphid Resistance

To determine the responsible gene for the increased aphid

resistance, we first performed quantitative RT-PCR to compare

the expression level of the two candidate genes in mutant 3646 and

wild type plants. Quantitative RT-PCR demonstrated a signifi-

cantly higher expression of At5g65040 in mutant 3646 than in the

wild type, whereas the expression of At5g65050 in mutant 3646

was at the same level as in wild type (Figure 1C). Therefore,

Table 1. Primer sequences.

Name Purpose Sequence (59–39)

Bar_F Inverse PCR GCGTCGTTCTGGGCTCATGGT

Bar_R Inverse PCR CTGGCAGCTGGACTTCAGCCTG

T-DNA LB_F Inverse PCR CCCGTCTCACTGGTGAAAAGAA

T-DNA LB_R Inverse PCR ATTCGGCTATGACTGGGCACA

LBb1.3 Confirmation of T-DNA insertion ATTTTGCCGATTTCGGAAC

40-KO_F Confirmation of T-DNA insertion CACGAACAAATCAAATCATGC

40-KO_R Confirmation of T-DNA insertion TGAAAATTTGAATTCACTGGTTG

At5g65040_F Quantitative RT-PCR TCTGCCATCATCGTGACATT

At5g65040_R Quantitative RT-PCR TTTGCTTCTCCCTGCATTCT

At5g65050_F Quantitative RT-PCR GGAATGTCATGGGAAAATGG

At5g65050_R Quantitative RT-PCR AGCTCAGCCGTTGATGATG

Actin8_F Quantitative RT-PCR GATGGAGACCTCGAAAACCA

Actin8_R Quantitative RT-PCR AAAAGGACTTCTGGGCACCT

AttB1F Construction of transgenic plant GGGGACAAGTTTGTACAAAAAAGCAGGCT

AttB2R Construction of transgenic plant ACCACTTTGTACAAGAAAGCTGGGT

doi:10.1371/journal.pone.0070914.t001
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At5g65040 was considered the prime candidate for the increased

aphid resistance in mutant 3646.

To further verify the role of At5g65040 in resistance against M.

persicae in A. thaliana, no-choice aphid assays were performed to

compare aphid population development on At5g65040 knock out

mutant plants (referred to as 40-KO hereafter) to that on plants of

its corresponding wild type Col-0. The 40-KO mutant is

morphologically similar to the wild type (Figure 2A) and it

contains a T-DNA insert in the first exon of At5g65040 that

disrupts the expression of this gene (Figure 2B, Figure S1).

Figure 1. Characteristics of mutant 3646. (A) Phenotype of six week old Wassilewskija (WS) and activation tag mutant 3646; (B) Location of the
T-DNA insert (inverted triangle) containing the transposon (grey square) between At5g65040 (IRM1) and At5g65050. Black triangles at the end of the
genes indicate the gene orientation. The distance from a gene to the T-DNA is indicated below the horizontal line. Short lines above the genes
represent the position of primers used for quantitative RT-PCR analysis. Diagram is not drawn to scale; (C) Quantitative RT-PCR analysis of the two
genes flanking the T-DNA. Values are the means 6 standard deviation of three biological replicates. The star indicates a significant difference
between bars within a pair (Independent-samples t-test, P,0.05).
doi:10.1371/journal.pone.0070914.g001
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Fourteen days after infestation, aphid numbers were significantly

higher on 40-KO than on wild type Col-0 plants (Figure 2C). In

addition, we constructed transgenic lines by overexpressing

At5g65040 under the CaMV 35S promoter in wild type Col-0

(G0085, G0088) and 40-KO mutant (G0090, G0092) plants.

Compared to the wild type, all the transgenic lines had smaller

rosette leaves (Figure 2A), delayed bolting time and smaller size of

flowers and siliques. The expression of At5g65040 was significantly

higher in the transgenic lines than in the wild type Col-0 and the

expression levels differed among the lines (Figure 2B). The

numbers of aphids on these lines were significantly lower than

on the wild type (Figure 2C) 14 days after infestation. Taken

together, these results confirm that At5g65040 is the gene

responsible for the increased aphid resistance in mutant 3646

and we named this gene Increased Resistance to Myzus persicae 1

(IRM1). To reveal how IRM1 is expressed in wild type plants in

response to aphid attack, we performed a time course experiment

of aphid infestation. Figure 3A shows a significant induction of

IRM1 expression in WS, six hours after infestation followed by a

repression later. In Col-0 the expression of IRM1 was already

repressed after 6 hours of aphid infestation and remained as such

(Figure 3B).

Aphid Probing and Feeding Behaviour on Lines Affected
in IRM1 Expression

To obtain information about the possible role of IRM1 in aphid

resistance we recorded in detail the probing and feeding behaviour

of aphids on mutant (3646 and 40-KO) and wild type (WS and

Col-0) plants using the EPG technique. All aphids started to

penetrate the leaf they were placed on around the same time on all

tested plants, as indicated by the time to the first probe (Table 2).

The EPG parameters related to stylet pathway behaviour showed

significant differences between mutant 3646 and wild type WS

(Mann-Whitney U test, d.f. = 33, P,0.05; Table 2). A significantly

larger number of test probes and a significantly longer time of the

minimum of waveform C prior to sieve element salivation (E1)

were observed on mutant 3646. Waveform F, associated with

derailed stylet penetration, was also observed for a significantly

longer time and in a larger number on mutant 3646 (Table 2).

Significant differences were also observed for the pathway phase

between mutant 40-KO and wild type Col-0 (Mann-Whitney U

test, d.f. = 31, P,0.05; Table 2), which was the opposite of the

difference between mutant 3646 and wild type WS. On mutant

40-KO, the number of test probes was significantly smaller and

minimum waveform C prior to sieve element salivation (E1) was

shorter (Table 2). With regard to phloem-contact, parameters

differed only between mutant 3646 and wild type WS. On mutant

3646 aphids needed more time from the first probe to the first

sieve element salivation (1st E1) (Mann-Whitney U test, d.f. = 33,

P,0.05; Table 2) and to the first sustained phloem sap ingestion

(1st sE2) (Mann-Whitney U test, d.f. = 28, P,0.05; Table 2).

Furthermore, a significantly smaller number of aphids on mutant

3646 reached the sustained phloem sap ingestion (sE2) during the

eight hours recording (Fisher’s exact test, two-tailed, P,0.05;

Table 2). For phloem feeding, however, aphids did not perform

differently as indicated by comparable phloem sap ingestion (E2)

between mutant and wild type plants (Table 2). In the xylem

phase, a difference was observed only between mutant 40-KO and

wild type Col-0 (Mann-Whitney U test, d.f. = 31, P,0.05; Table 2).

The aphids spent less time taking up xylem sap from mutant 40-

KO as was indicated by a shorter time and smaller number of

waveform G (Table 2).

Brevicoryne Brassicae Performance on Mutant 3646
Based on the EPG results, that suggests that IRM1 confers a

mechanical barrier against the generalist aphid M. persicae, we

hypothesized that the IRM1 resistance is general and affects other

aphid species as well. To test this hypothesis, we monitored

population development of the specialist aphid B. brassicae on

mutant 3646. The total number of B. brassicae aphids was

significantly lower on mutant 3646 than on wild type plants 14

days after infestation, with an average of seven aphids on mutant

3646 and 19 aphids on the wild type (Independent sample t test,

P,0.001, n = 15).

Discussion

Overexpression of IRM1 Increases Aphid Resistance in A.
thaliana

We identified At5g65040 as the gene responsible for the

increased resistance towards M. persicae in mutant 3646 [19] and

named it Increased Resistance to Myzus persicae 1 (IRM1). In this

mutant IRM1 is constitutively expressed due to the insertion of a

35S promoter upstream of the gene. The negative effect of a

constitutive overexpression of the IRM1 gene on aphid population

development was confirmed in transgenic lines that contained the

cloned gene under the control of a CaMV 35S promoter in Col-0

background. Conversely, a T-DNA insertion mutant (40-KO),

which did not show any expression of the IRM1 gene, showed

improved aphid performance. An analysis of gene expression

profiles in publicly available microarray data sets using Geneves-

tigator showed that IRM1 expression is strongest in the xylem and

very low in other plant tissues (https://www.genevestigator.com/;

[30]). Although IRM1 has been predicted to encode a DUF581

domain containing protein [31], there is nothing known about the

function of this gene.

Our data showed that the expression levels of IRM1 differed

among the four independent transgenic lines (in Col-0), but the

reduced aphid number on these lines was comparable. In addition,

the twofold increased IRM1 expression in mutant 3646 compared

with the wild type WS conferred a similar resistance level [19].

These results indicate that the plant resistance conferred by

constitutive overexpression of IRM1 is not dependent on the

expression of IRM1 alone; after a certain transcript abundance is

reached, additional transcripts do not increase resistance any

further, suggesting that other factors become limiting.

The IRM1 expression was shown to be induced in one

microarray study with M. persicae infested A. thaliana Col-0 plants

[32], but not in others [33,34]. These conflicting results may be

caused by the fact that the expression of IRM1 is too low for a

stable detection in a microarray study. We found IRM1 expression

to be suppressed in Col-0 upon aphid infestation whereas in WS it

was initially induced, but suppressed afterwards. Such differences

may result from the genetic differences among the two A. thaliana

ecotypes in the basal defence to aphids [35].

Overexpressing IRM1 causes Difficulties for Aphids to
Reach the Phloem

The electrical penetration graph (EPG) technique can reveal

possible constraints that an aphid encounters while trying to feed

on a plant [5]. The EPG results indicate that plant resistance

conferred by overexpressing IRM1 affects the aphid in its ability to

reach the phloem (stylet pathway phase). All parameters that were

used to describe this phase (Table 2) showed values that are

significantly higher when IRM1 was overexpressed. Contrarily,

aphids on the IRM1 knock out mutant could penetrate the plant

tissue easier and had faster access to the phloem than aphids on

Aphid Resistance in Arabidopsis thaliana
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the wild type. Furthermore, the aphids spent significantly less time

in the xylem on the IRM1 knock out mutant than on the wild type,

which indicates sufficient uptake of phloem sap [36,37] and also

suggests that they encounter less resistance to access the phloem.

Overexpression of IRM1 clearly disrupted the capability of M.

persicae to reach sustained phloem sap ingestion as the tested aphids

were either unable or needed double the time to reach this stage

on the IRM1 overexpression mutant 3646 compared to the wild

type. Because this phase is needed to transmit persistent viruses

[38], the chance of virus transmission by aphids may be reduced

due to IRM1 overexpression. This is consistent with our previous

observation in which the IRM1 overexpression mutant was

identified based on its lower percentage of virus infected plants

[19].

To date, no information on a possible role of IRM1 in xylem or

other plant tissue is available. Considering the extremely

reinforced cell walls in xylem [39], we speculate that IRM1

overexpressing plants may have enhanced mechanical barriers

that hamper penetration of plant tissue by aphids. This speculation

is supported by the fact that IRM1 overexpressing not only affects

M. persicae but also adversely affect B. brassicae, an aphid species

with the same feeding strategy but with a different host

specialization. This suggests that the resistance acts as a

mechanical barrier which is not aphid species specific. This aphid

resistance mechanism in A. thaliana IRM1 overexpressing plants is

different from previously identified aphid resistance mechanisms,

most of which are phloem based [40–43].

Figure 2. Characteristics of IRM1 mutant lines and the effect of this gene on aphid performance. Phenotype of six week old Columbia-0
(Col-0), IRM1 knock-out mutant (40-KO) and IRM1 overexpressing transgenic lines (G0085, G0088, G0090, G0092); (B) Expression of IRM1 in leaves of
Col-0, IRM1 knock out mutant and four independent IRM1 overexpressing transgenic lines. Values are the means (6 SD) of three biological replicates;
(C) No-choice aphid assays on plants of Col-0, 40-KO and transgenic overexpressing lines. Values are the means (6 SD) of 15 biological replicates. Bars
marked with different letters are significantly different from each other (ANOVA followed by Tukey tests, P,0.05).
doi:10.1371/journal.pone.0070914.g002
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Figure 3. Expression analysis of IRM1 in WS and Col-0 upon aphid infestation. Expression levels of IRM1 in WS (A) and Col-0 (B) plants 0, 6
and 24 hours after aphid infestation. Values are the means (6 SD) of three biological replicates. The stars indicate significance between infested and
uninfested samples within a time point (Independent sample t-test, P,0.05).
doi:10.1371/journal.pone.0070914.g003

Table 2. Electrical penetration graph (EPG) results.

Location of
resistance factor EPG Parameter WS n1 = 18

Mutant 3646
n = 15 P2 Col-0 n = 16 40-KO n = 15 P

Surface Time to 1st probe (min) 2.560.7 3.361.4 0.940 3.360.6 4.461.3 0.414

Pathway Number of test probes to E1 10.562.6 18.562.6 0.041* 6.561.6 2.560.4 0.038*

Minimum C prior to E1 (min) 7.160.8 15.061.6 0.003* 7.461.1 4.760.6 0.032*

Total time of F (min) 0.060.0 11.063.7 0.023* 0.060.0 3.962.7 0.274

Number of F 0.060.0 1.060.3 0.008* 0.060.0 0.160.1 0.263

Phloem Time from 1st probe to 1st E1 (min) 60.0612.6 136.5618.5 0.019* 132.7622.6 95.6614.5 0.115

Time from 1st probe to 1st sE2 (min) 128.5618.9 283.4641.9 0.018* 146.8630.1 136.5629.8 0.414

Number (%) of aphids with sE2 18 (100%) 10 (67%) 0.013* 16 (100%) 15 (100%) 1.000

Total time of E2 (min) 97.5610.4 114.7625.2 0.699 244.8633.8 156.9636.9 0.089

Average E2 duration (min) 7.862.4 13.965.2 0.380 132.8636.7 77.5637.2 0.066

Xylem Total time of G (min) 15.265.8 11.863.3 0.573 6067.9 27.265.9 0.005*

Number of G 1.260.3 1.060.0 0.810 2.460.3 1.360.2 0.009*

EPG recording with each aphid was conducted for 8 h. Values are means 6 SE of EPG parameters. Mann-Whitney U tests were used to determine the significant
difference between the activities of aphids on the mutant and the wild type plants. Fisher’s exact test was applied to analyse the number of aphids that had shown sE2.
Grey boxes indicate a significant difference (P,0.05).
doi:10.1371/journal.pone.0070914.t002
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Increased Aphid Resistance in IRM1 Overexpressing Lines
Trades Off with Plant Growth

It has been shown that plant resistance to insects and pathogens

trades off with plant growth [44,45]. In our study, we also see that

A. thaliana lines constitutively overexpressing IRM1 have an

increased resistance to aphids, which is accompanied by poor

plant growth. Similarly, constitutive activation of the jasmonic acid

and ethylene pathway in A. thaliana mutant cev1 increases resistance

to aphids and pathogens but results in dwarf growth [46]. Also, the

constitutive expression of a proteinase inhibitor that is induced in

wild type plants by attackers in Nicotiana attenuata, leads to a

significant reduction in plant growth [47].

Conclusions
Constitutive overexpression of IRM1 results in mechanical

barriers that make it difficult for M. persicae to reach the phloem

and subsequently reduces its population size. Overexpression of

IRM1 in A. thaliana also affects B. brassicae and may affect other

phloem-feeding insects as well. A reduced capability to reach the

phloem most likely reduces the transmission of persistent viruses.

Increased aphid resistance in IRM1 overexpressing A. thaliana

plants is accompanied with reduced plant growth. Future

experiments on the protein encoded by the IRM1 gene, e.g.

subcellular localization as well as its activity in plants and aphids,

will help to provide functional insight into the role of IRM1 in

planta. This will lead to a better understanding of plant-aphid

interactions on the molecular level.

Supporting Information

Figure S1 Diagram of the At5g65040 gene indicating position of

the T-DNA insert (up part) and confirmation of the homozygous

presence of the T-DNA in SALK_106042 (40-KO) (bottom part).

Open boxes represent 59 UTR and 39UTR; lines represent

introns, grey boxes represent exons, black triangle at the end of the

gene indicates the gene orientation. Inverted triangle represents T-

DNA; arrows represent the gene specific primers and T-DNA left

border primer. The primer combinations used for amplification

are indicated above the gel lanes.

(TIF)
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