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Abstract
Background: Handling of the dawn phenomenon (DP) with multiple daily insulin injection 
(MDII) regimen is a real challenge.
Objective: We aimed to demonstrate the effectiveness of a dual-basal-insulin (a long-acting 
glargine and an intermediate-acting neutral protamine Hagedorn (NPH)) regimen for the 
management of DP in children with type 1 diabetes mellitus (T1DM). The primary efficacy 
outcome was to overcome morning hyperglycemia without causing hypoglycemia during the 
non-DP period of the night.
Design: Retrospective cohort study.
Method: Charts of 28 children with T1DM (12 female; 42.8%, mean age 13.7 ± 2.1 years) 
treated with MDII were retrospectively reviewed. The median duration of diabetes was 
4.5 years (range 2–13.5 years). DP was diagnosed using a threshold difference of 20 mg/dL 
(0.1 mmol/L) between fasting capillary blood glucose at 3 a.m. and prebreakfast. NPH was 
administered at midnight in addition to daily bedtime (08.00–09.00 p.m.) glargine (dual-basal-
insulin regimen). Midnight, 03:00 a.m., prebreakfast and postprandial capillary blood glucose 
readings, insulin–carbohydrate ratios, and basal-bolus insulin doses were recorded the day 
before the dual-basal-insulin regimen was started and the day after the titration of the insulin 
doses was complete. Body mass index standard deviation scores (BMI SDS) at the onset–3rd–
12th month of treatment were noted.
Results: Before using dual basal insulin, prebreakfast capillary blood glucose levels were 
greater than those at midnight and at 03:00 a.m. (F = 64.985, p < 0.01). After titration of the 
dual-basal-insulin doses, there were significant improvements such that there were no 
statistically significant differences in the capillary blood glucose measurements at the three 
crucial time points (midnight, 03.00 a.m., and prebreakfast; F = 1.827, p = 0.172). No instances 
of hypoglycemia were reported, and the total daily insulin per kilogram of body weight did not 
change. The BMI SDS remained steady over the course of the 1-year follow-up.
Conclusion: In this retrospective cohort study, the dual-basal-insulin regimen, using a long-
acting glargine and an intermediate-acting NPH, was effective in overcoming early morning 
hyperglycemia due to insulin resistance in the DP. However, the effectiveness of the dual-
basal-insulin regimen needs to be verified by prospective controlled studies using continuous 
glucose monitoring metrics or frequent blood glucose monitoring.
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Introduction
A rise in blood glucose levels in the early morning 
hours without preceding hypoglycemia is known 
as the dawn phenomenon (DP), which is caused 
by inadequate insulin levels that fail to sustain 
normoglycemia. Although this was a known phe-
nomenon since the 1920s,1 the term “dawn phe-
nomenon” was first labeled by Schmidt et al.2 in 
1981. An increase in insulin in the early morning 
hours with stable blood glucose levels is also seen 
in healthy individuals, indicating that it is a typi-
cal physiological requirement.3 Current evidence 
indicates that early morning hyperglycemia is the 
result of insulin resistance, which is associated 
with nocturnal secretion of growth hormone.4 
Growth hormone is primarily released during 
night5 and impairs hepatic and peripheral insulin 
sensitivity.6 The circadian rhythm of insulin 
secretion is absent in patients with type 1 diabetes 
mellitus (T1DM) and altered in type 2 diabetes 
mellitus (T2DM); thus, anti-insulin effects of 
growth hormone remain unmet.

DP could be seen in both T1DM and T2DM. 
Investigations into the frequency of DP have pro-
duced inconsistent results because of the multi-
plicity of quantitative definitions7; however, DP 
affects almost half of the patients with T1DM. 
Insulin resistance is increased in puberty due to 
the increased growth hormone secretion; hence, 
DP is more prevalent in the adolescent age 
group.8–10 Particularly when DP is “extended,” 
high blood glucose level persists beyond the time 
of breakfast. It thus affects overall glycemic con-
trol, raises glycated hemoglobin (HbA1c) by 
0.4%, shortens the time in range, and increases 
glycemic variability.11,12 In addition to micro- and 
macrovascular complications, chronic hypergly-
cemia and glycemic variability cause alterations in 
gray and white matter structures of the brain, 
which may lead to cognitive disability.13,14 The 
most effective way to manage DP is through con-
tinuous subcutaneous insulin infusion pumps 
(CSII), which enable varying nocturnal infusion 
rates.15 Despite the availability of CSII, correct-
ing DP still requires alternative solutions. This is 
particularly important for adolescents who may 
refuse to use CSII or face challenges getting reim-
bursement for devices and equipment.16–18 
Therefore, not every child or adolescent with dia-
betes qualifies for CSII, and multiple daily insulin 
injections (MDII) is ultimately required to treat 
the disease. However, managing DP in patients 
using MDII is more challenging. The control of 

DP cannot be accomplished with a single long-
acting insulin (i.e. without a peak action through-
out the day). If the dose of long-acting insulin is 
increased to overcome early morning insulin 
resistance (i.e. DP), the risk of hypoglycemia dur-
ing the non-DP hours of the day and night may 
increase.

To treat early morning hyperglycemia in T1DM 
children using a basal-bolus insulin regimen with 
MDII, the basal insulin dose in the early morning 
hours must be increased. Neutral protamine 
Hagedorn (NPH) is an intermediate-acting 
human insulin with an onset of action in 1–3 h 
and peak action in 4–8 h.17 The onset and peak 
action coincide with early morning hyperglyce-
mia, typically between 2:00 and 5:00 a.m. when 
NPH is administered at midnight. Thus, the 
requirement for morning insulin spike can be met 
by using NPH at midnight. With this rationality, 
we have been managing DP in our clinic recently 
with a dual-basal-insulin regimen, consisting of 
long-acting insulin at bedtime (glargine) and 
intermediate-acting insulin at midnight (NPH). 
In this study, we aimed to evaluate the efficacy of 
a dual-basal-insulin regimen for the treatment of 
DP in children with T1DM.

Material and method
We conducted a retrospective cohort study. 
Charts of 28 children with T1DM (12 females, 
16 males) who used dual-basal-insulin treatment 
for the management of DP were reviewed. 
Diagnosis of T1DM was based on ISPAD 2018 
guidelines.19 All patients were under 18, had dia-
betes for at least 2 years, and were using MDII. At 
the time of diagnosis or referral to our clinic, 
every child with T1DM and their parents partici-
pate in a structured training program on diabetes, 
types of insulin and their actions, insulin delivery 
systems, healthy feeding guidelines, and advanced 
carbohydrate counting. Insulin is initially admin-
istered at a daily dose of 0.5–1 U per kg of body 
weight. The initial basal insulin (long-acting, 
insulin glargine) dose is 25–30% of the daily total, 
with the remaining 70–75% administered as meal 
boluses (rapid-acting, insulin aspart, or lispro). 
Capillary blood glucose levels are measured at 
least eight times a day – before and 2 hours after 
meals, at midnight, and 03.00 a.m. The doses of 
long- and rapid-acting insulins are adjusted to 
achieve glycemic targets (preprandial 70–145 mg/
dL [0.4–0.8 mmol/L], postprandial 90–180 mg/
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dL [5.1–10.3 mmol/L], bedtime 120–180 mg/dL 
[6.8–10.3 mmol/L], and nocturnal 80–162 mg/dL 
[4.6–9.2 mmol/L]) and avoid hypoglycemia.20 
Insulin dose adjustments are generally carried out 
under a 3-day fixed carbohydrate meal plan. 
Prandial insulin dose is adjusted according to 
postprandial glucose targets, and individualized 
insulin–carbohydrate ratios (ICR) for each meal 
(breakfast, lunch, dinner) are determined. 
Patients and caregivers are taught to adjust rapid-
acting insulin to meet the carbohydrate consumed 
with individualized ICR for each meal (flexible 
insulin regimen). Basal dose adjustment is carried 
out by targeting fasting morning glucose within 
the range of 20–30 mg/dL (1.1–1.7 mmol/L) of 
bedtime glucose level and >80 mg/dL 
(4.6 mmol/L) at 03.00 a.m. The patients and their 
caregivers are asked to record capillary blood glu-
cose measurements, insulin doses, and carbohy-
drate counts for each meal daily. During the 
follow-up visits every 3 months, insulin doses, 
ICR, and diabetes education are reviewed based 
on these records.

When the blood glucose measurements were sim-
ilar at midnight and 03.00 a.m. and increased 
toward the morning, the DP was considered. 
Using the 3-month patient data, DP was identi-
fied and quantified by subtracting the capillary 
blood glucose nadir at 03.00 a.m. from the pre-
breakfast fasting capillary blood glucose value 
(07.00–09.00). The diagnosis of DP was con-
firmed when the patient consumed a 3-day fixed 
carbohydrate meal that contained 50% carbohy-
drate, 35% fat, and 15% protein. We settled on a 
20-mg/dL (1.1-mmol/L) threshold to define 
DP.21–23 The lack of difference between blood 
glucose measurements at midnight and 03:00 a.m. 
indicates the adequacy of the basal insulin dose. 
Patients with a history of surgery, infection, or 
psychological stress during the previous 6 weeks 
or were taking medications (glucocorticoids, 
beta-blocking agents, etc.) that could affect insu-
lin sensitivity were excluded from the study. The 
initial NPH dose was calculated as 25% of the 
patient’s current glargine dose. The glargine dose 
was reduced by 10% simultaneously when start-
ing the NPH dose to avoid hypoglycemia. 
Glargine was administered at bedtime (08.00–
09.00 p.m.), while NPH was administered at 
midnight. Titration of insulin doses was per-
formed by changing the NPH and glargine doses 
by 1–2 units up or down in the following 

10–14 days to achieve a prebreakfast glucose level 
of less than 145 mg/dL (8.3 mmol/L),20 and a dif-
ference between prebreakfast and 03.00 a.m. cap-
illary blood glucose less than 20 mg/dL 
(1.1 mmol/L), while 03.00 a.m. glucose was kept 
above 80 mg/dL (4.6 mmol/L). Breakfast ICR was 
readjusted based on target blood glucose values 
during this period.

Age at the diagnosis of T1DM was extracted from 
patient files. Tanner stages of puberty were 
noted.24 Body weight and height at the onset, 3rd 
and 12th month of dual-basal-insulin regimen 
were recorded. Body mass index (BMI) and its 
standard deviation score (SDS) were calculated.25 
BMI SDS was assessed using Centers for Disease 
Control and Prevention (CDC) charts.25 
Midnight, 03:00 a.m., breakfast pre- and post-
prandial capillary blood glucose readings, break-
fast ICR, and basal insulin doses were recorded 
the day before the dual-basal-insulin regimen was 
started as well as the day after the titration of the 
basal insulin doses was complete. NPH insulin 
was considered as basal insulin in calculations. 
Because of the retrospective nature of the study, 
we did not have other capillary glucose records 
during the day; thus, the change in glucose levels 
could not be evaluated. HbA1c and BMI-SDS at 
the onset, 3rd, and 12th months of the dual-
basal-insulin regimen were recorded. Two peri-
ods of the study were defined as:

B1: The day when only Glargine was used (before 
the start of NPH)
B2: The day when the titration of the basal insu-
lin doses was complete

Statistical analysis
All statistical analyses were carried out using 
SPSS 21.0 for the Windows software package 
(IBM Corp. Armonk, NY, USA). Normality was 
tested using the Shapiro–Wilk test. Descriptive 
analyses were presented using mean and standard 
deviation for normally distributed data, median, 
and minimum–maximum for non-normally dis-
tributed data. Mean values of continuous varia-
bles are compared using t-tests; medians are 
compared using the Mann–Whitney U test or the 
Wilcoxon test, as appropriate. The change of cap-
illary blood glucose at three time points (mid-
night, 03.00 a.m., and prebreakfast) as well as 
HbA1c and BMI-SDS at 0, 3, and 12 months 
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were analyzed using ANOVA for repeated 
measures.

Results
Twenty-eight children with T1DM (12 females; 
42.8%) were included in the study. At B1, the 
mean age was 13.2 ± 2.4 years in girls and 
14.2 ± 1.7 years in boys, the median duration of 
diabetes was 4.5 years (range 2–13.5 years), and 
the mean BMI SDS was 0.2 ± 1.2. All patients 
were pubertal, and Tanner stages ranged from 2 
to 5. Mean HbA1c was 98.4 ± 18.6 mmol/mol 
[9.0 ± 1.7%]. Baseline characteristics of the 
patients are presented in Table 1.

At B1, prebreakfast capillary blood glucose level 
was higher than those at midnight and 03.00 a.m. 
(F = 64.985, p < 0.01; shown in Figure 1). There 
was no difference between midnight and 03.00 
a.m. capillary blood glucose levels (p = 0.647; 
shown in Figure 1). The median daily insulin 
dose was 1.09 U per kg body weight (range 0.73–
1.7), and basal insulin at B1 was 31.7% (range 
18–50%) of total daily insulin.

On the day of the start of NPH, the initial median 
NPH dose was 0.08 U per kg body weight (range 
0.04–0.12 U/kg). After titration of glargine and 
NPH insulin at B2, the NPH dose was decreased 
to a median of 0.07 U per kg of body weight (21% 
of initial glargine dose instead of 25%; range 

0.03–0.27 U/kg). The final glargine dose was 
decreased by a median of 5% (range 0-21.4) of 
B1. The total amount of basal insulin (glar-
gine + NPH) increased to a median of 37.3% 
(range 23.0–58.3%) of the total daily insulin at 
B2, which was significantly higher than B1 
(31.7%; p < 0.01; shown in Figure 2).

After titration of the two basal insulin at B2, there 
were no statistically significant differences in the 
capillary blood glucose measurements at three 
time points (midnight, 03.00 a.m., and prebreak-
fast; F = 1.827, p = 0.172; shown in Figure 1). 
The magnitude of DP was improved in all 
patients, and 54% were out of DP at B2. Also, 
54% of the patients had their prebreakfast blood 
glucose within the target range at B2. No instances 
of hypoglycemia were detected at any time point.

Table 2 shows the changes in insulin doses, blood 
glucose measurements, and insulin requirements 
after the dual-basal-insulin regimen. ICR at break-
fast decreased in 54% of the cases, indicating the 
need for less insulin for the same amount of carbo-
hydrate. Median ICR at breakfast was 1:4 (range 
1:2–1:11) at B1 and 1:5 (range 1:2.5–1:12) at B2 
(p < 0.01). Postbreakfast capillary blood glucose 
measurements decreased significantly during B2 
compared to B1 (p < 0.01). The total daily insulin 
dose per kg (median 1.07 U/kg, range 0.73–
1.49 U/kg) during B2 was similar to B1 (p = 0.833; 
Table 2). BMI-SDS did not change during the 
first 12 months of B2 (0.2 ± 1.2, 0.3 ± 1.3, and 
0.2 ± 1.5, p = 0.709 at baseline, 3rd, and 12th 
month, respectively) (F = 0.174, p = 0.712). 
Although the change in HbA1c during 1-year fol-
low-up was not statistically significant, there was a 
decrease at the 12th month [98.4 ± 18.6 mmol/
mol (9.0% ± 1.7%), 98.6 ± 19.7 mmol/mol 
(9.02 ± 1.8%), and 95.1 ± 16.4 mmol/mol 
(8.7% ± 1.5%) at baseline, 3rd, and 12th month, 
respectively] (F = 0.494, p = 0.542). There were 
no diabetic ketoacidosis or severe hypoglycemia 
episodes during the 12-month follow-up.

Discussion
It is well known that DP increases glucose expo-
sure and glycemic variability. Insulin therapy aims 
to mimic pancreatic insulin secretion patterns, 
and CSII is the best management tool for DP. 
However, an alternative treatment approach is 
necessary for patients with T1DM using an MDII 
regimen. In the current study, we demonstrated 

Table 1.  Baseline characteristics of the patients.

Gender (Female) (n, %) 12, 42.8%

Age (years)* 13.7 ± 2.1

Duration of diabetes (years)$ 4.5 (2–13.5)

Body weight SDS* 0.0 ± 1.4

Height SDS* −0.3 ± 1.1

BMI SDS* 0.2 ± 1.2

HbA1c  

mmol/mol* 98.4 ± 18.6

%* 9.0 ± 1.7

*Mean ± standard deviation.
$Median (minimum–maximum).
BMI, Body mass index; SDS, standard deviation score.
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the effectiveness of dual basal insulin, a long-act-
ing glargine and an intermediate-acting NPH, for 
managing DP in children with T1DM to reduce 

morning hyperglycemia. The dual-basal-insulin 
regimen increased the basal insulin safely without 
causing hypoglycemia during the non-DP period 

Figure 1.  Capillary blood glucose at midnight, 03.00 a.m., and prebreakfast before and after the dual-basal-
insulin regimen. The blue line represents B1 and the red line represents B2. The change of capillary blood 
glucose at three-time points (midnight, 03.00 a.m., and prebreakfast) was analyzed using ANOVA for repeated 
measures.

Figure 2.  Percentage of basal insulin before (B1) and after (B2) the initiation of NPH. The blue bar represents 
glargine, the yellow bar represents NPH insulin, and the red bar represents bolus insulin. The ratio of basal 
insulin to the total daily insulin was significantly higher at B2 compared to B1 (p < 0.01).
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of the night. Although total basal insulin increased 
with dual-basal-insulin therapy, total daily insulin 
remained the same, possibly due to a decrease in 
morning bolus insulin. Accordingly, NPH effec-
tively overcame the early morning insulin resist-
ance associated with DP.

DP, one of the causes of morning hyperglycemia, 
can impact overall glycemic control. Monnier 
et al.11 reported the impacts of DP on HbA1c and 
24-hour mean glucose as 0.4% and 12.4 mg/dL 
(0.7 mmol/L), respectively. Li et al.12 reported a 
lower time in range and higher coefficient of vari-
ation in patients with DP compared to non-DP. 
Wang et al.26 reported an independent association 
between glycemic excursions and DP. Also, a sig-
nificant correlation was reported between poor 
sleep quality and the magnitude of DP.27 It is cru-
cial to address insulin resistance linked to DP 
based on these observations. However, increasing 
the glargine dose while targeting fasting morning 
glucose levels may result in hypoglycemia during 
the non-DP portion of the day. King et  al.28 
reported that more than 10% of the continuous 
glucose monitoring (CGM) readings were less 
than 70 mg/dL (4 mmol/L) when the insulin glar-
gine dose was titrated to achieve a basal glucose 
goal of <130 mg/dL (7.4 mmol/L) for all day 
instead of the non-DP period of the day. 

Therefore, increasing the long-acting insulin dose 
is not the best strategy to overcome insulin resist-
ance of DP in order to control blood glucose lev-
els in the early morning.

NPH, an intermediate-acting human insulin, has 
been used as basal insulin in conventional insulin 
regimens to provide for insulin needs between 
meals and overnight. However, NPH insulin is no 
longer widely used as basal insulin after the intro-
duction of long-acting insulin analogs in the early 
2000s.17 Nevertheless, NPH insulin is ideal for 
the control of DP due to its peak effect and dura-
tion of action. The findings of our study are 
encouraging in terms of pointing to a novel appli-
cation for NPH insulin. After NPH was com-
menced, morning blood glucose excursions were 
blunted, and the ICR decreased (indicating the 
need for less insulin for the same amount of car-
bohydrate) in the current study. Despite the total 
basal insulin dose increase, overall daily insulin 
did not change.

Insulin is an anabolic hormone that increases glu-
cose utilization, lipogenesis, and protein and gly-
cogen synthesis.29 Thus, improvement of glycemic 
control with intensive insulin treatment could 
result in weight gain.30 According to Valeria 
et al.,31 high insulin doses per unit of body surface 

Table 2.  Insulin doses, midnight, 03.00 a.m., and morning capillary blood glucose, and HbA1c values before 
and after the initiation of dual basal insulin.

Variables B1 B2 p

Total daily insulin (unite/kg/day)* 1.09 (0.73–1.7) 1.07 (0.73–1.49) 0.833‡

Basal/total insulin ratio (%)* 31.7 (18–50) 37.3 (23.0–58.3) <0.01‡

Midnight capillary blood glucose (mg/dL), 
[mmol/L]$

138.4 ± 40.6, [7.9 ± 2.3] 146.7 ± 40.2
[8.4 ± 2.3]

0.734§

03.00 a.m. capillary blood glucose (mg/dL), 
[mmol/L]$

142.5 ± 37.8
[8.3 ± 2.1]

134.8 ± 37.1
[7.7 ± 2.1]

0.831§

Morning preprandial capillary blood glucose 
(mg/dL), [mmol/L]$

239.9 ± 55.6
[13.7 ± 3.2]

148.1 ± 40.1
[8.4 ± 2.3]

<0.01§

Morning postprandial capillary blood glucose 
(mg/dL), [mmol/L]$

210.1 ± 70.1
[12 ± 4]

126.8 ± 33
[7.2 ± 1.9]

<0.01§

Morning insulin–carbohydrate ratio* 1:4 (1:2–1:11) 1:5 (1:2.5–1:12) <0.01‡

*Median (minimum–maximum).
$Mean ± standard deviation.
‡Wilcoxon test.
§Paired samples t-test.
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area and the waist-to-height ratio are risk factors 
for metabolic syndrome. Maintaining a normal 
body weight should be advised for people with 
T1DM because abdominal obesity is a risk factor 
for cardiovascular disease in female teenagers, 
and there is a U-shaped link between BMI and 
mortality.31,32 In the current study, increased 
basal insulin with the addition of NPH covered 
only the DP portion of the day and did not cause 
an increase in the total daily insulin dose; also, 
BMI SDS did not increase during the 1-year fol-
low-up in our patients. Thus, the dual-basal-insu-
lin regimen did not pose a risk for obesity.

Our study is the first report of a dual-basal-insulin 
regimen for the management of DP to the best of 
our knowledge. There is only one report compar-
ing semilente and NPH insulin, which states that 
semilente is superior to NPH insulin for the sup-
pression of DP in adolescents with T1DM.33 
However, in that study, only a single basal insulin 
was used at bedtime.

HbA1c has been the gold standard for monitoring 
glycemic control in diabetic individuals. In indi-
viduals with T2DM, Monnier et  al.11 reported 
that DP increased HbA1c levels by 0.4%. 
Although there was no statistical significance, the 
current study observed a 3% reduction in HbA1c 
after 12 months of follow-up. On the other hand, 
HbA1c estimates average blood glucose levels 
over the preceding 2–3 months; it does not reflect 
glycemic variability.34,35 Glycemic variability is 
considered to be more critical than HbA1c in the 
development of diabetic vascular complications.34 
Based on the limitations of HbA1c and the sig-
nificance of glycemic variability, there is a trend 
for CGM metrics to be the gold standard method 
for the assessment of glycemic control.36 
Riddlesworth et  al.37 reported that 14 days of 
CGM data could provide a reliable estimation of 
glucose metrics for the prior 3-month period. So, 
given all these limitations of HbA1c and the 
importance of glycemic variability, it would be 
more accurate to evaluate the effectiveness of 
dual basal insulin by CGM.

This study has several limitations. We could not 
evaluate the effect of long-acting insulin, which 
we reduced the dose of throughout the day. As 
the study was retrospectively designed, we did not 
get all the glucose readings except for breakfast; 
therefore, we only included the time from 

midnight to breakfast. Also, we did not evaluate 
the effectiveness of NPH insulin by CGM met-
rics, which could provide more valuable data 
regarding glycemic variability. Also, we did not 
perform validated methods of measures of insulin 
sensitivity to evaluate the effectiveness of dual-
basal-insulin therapy. As our purpose was to 
compare the insulin sensitivity before and after 
the dual-basal-insulin therapy, not to define exact 
insulin sensitivity, we used the ICR as an indirect 
indicator of insulin sensitivity.

In conclusion, the dual-basal-insulin regimen, 
using a long-acting glargine and an intermediate-
acting NPH, was effective in overcoming early 
morning hyperglycemia due to insulin resistance 
in DP. However, the effectiveness of the dual-
basal-insulin regimen needs to be verified by pro-
spective controlled studies using CGM metrics or 
frequent blood glucose monitoring.
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